TN Simpósio Brasileiro de Química Teórica

18 a 21 de novembro de 2007

Poços de Caldas - MG

RESUMOS

NTV Simpósio Brasileiro

Resumos

Apresentação

A trajetória do Simpósio Brasileiro de Química Teórica iniciou em 1979, quando os professores Marco Antônio Chaer Nascimento e Diana Guenzburger promoveram, nas dependências do Centro Brasileiro de Pesquisas Físicas, a primeira edição deste encontro. O evento contou com a participação de aproximadamente 50 pesquisadores de diversas partes do pais. O entusiasmo e a receptividade dos participantes foi tão marcante que resultou na realização do I Simpósio Brasileiro de Química Teórica (SBQT) no ano de 1981.

A organização do simpósio mobilizou a comunidade cientifica que promove o Simpósio Brasileiro de Química Teórica (SBQT) a cada dois anos em diferentes regiöes do pais. A denominação Química Teórica engloba, na realidade, uma área bastante ampla de estudos de estrutura eletrônica de átomos, moléculas, sólidos e à determinação de propriedades termodinâmicas de líquidos, resultado do desenvolvimento de modelos na interface mecânica estatística/mecânica quântica molecular.

Desde seu início, o Simpósio tem-se destacado pela qualidade dos trabalhos apresentados e a presença de importantes pesquisadores nacionais e internacionais. Além disso, incentiva a participação crescente de profissionais e alunos de pós-graduação e graduação de diferentes segmentos do meio cientifico nacional e internacional. Prova disso são os números de participação que aumentam a cada nova edição: I SBQT (50), II SBQT (100), III SBQT (113), IV SBQT (125), V SBQT (135), VI SBQT (160), VII SBQT (200), VIII SBQT (230), IX SBQT (360), X SBQT (310), XI SBQT (415), XII SBQT (370). Essa ampla participação tem contribuido significativamente na formação de novos pesquisadores, principalmente nas áreas de Química e Física Teóricas, com importantes desdobramentos nas áreas de Matemática e Computação.

A expressiva participação de pesquisadores e estudantes de várias partes do Brasil pode se comprovada na adesão de participantes da região Sudeste, dos estados do Rio Grande do Sul, Distrito Federal e Pernambuco, Sergipe, Paraiba, Amazonas, Espirito Santo e Goiás. A diversidade regional dos inscritos no SBQT comprova a repercussão positiva que este simpósio vem causando em todo o país e uma tendência clara de descentralização das pesquisas teóricas das grandes capitais.

O SBQT é o único evento que tem a publicação de seus proceedings em periódico indexado de circulação internacional e com arbitragem rigorosa por pares. A publicação dos Anais do SBQT iniciou-se com o VI SBQT, quando trabalhos completos apresentados no evento foram publicados no Journal of Molecular Structure (THEOCHEM). Este periódico foi utilizado para a publicação dos Anais do SBQT até o X SBQT. A partir do XI SBQT as publicações foram realizadas no International Journal of Quantum Chemistry. O livro de resumos garante a repercussão dos trabalhos apresentados no simpósio contribuindo para a divulgação da produção acadêmica de pesquisadores e estudantes. Boa leitura!

INFLUÊNCIA DA PERDA DE ÁGUA E DAS TENSÕES CONFINANTES NAS PROPRIEDADES FÍSICAS E MECÂNICAS DA ARGAMASSA DE ASSENTAMENTO PARA ALVENARIA ESTRUTURAL

C.S. Barbosa (1); J.B. Hanai (2); P.B. Lourenço (3); G. Mohamad (4)

(1) Doutorando, Escola de Engenharia de São Carlos - USP, claudius@sc.usp.br
(2) Professor Titular, Escola de Engenharia de São Carlos - USP, jbhanai@sc.usp.br
(3) Professor Associado, Universidade do Minho, Portugal pbl@civil.uminho.pt
(4) Doutorando, Universidade do Minho, Portugal gihad@civil.uminho.pt

RESUMRO

Os ensaios padronizados com corpos-deprova de argamassa não refletem as condições reais a que ela está sujeita na forma de junta de assentamento. O objetivo deste trabalho é verificar as alterações nas propriedades da argamassa no estado endurecido, geradas pela perda de água para o bloco de concreto durante o processo de cura. Analisa-se também o efeito de confinamento decorrente da maior deformabilidade da argamassa em relação ao bloco e da pequena espessura das juntas. Realizaram-se ensaios para obtenção das propriedades mecânicas da argamassa, segundo o método normalizado, e utilizandose fôrmas absorventes. Ensaios à compressão triaxial complementam a parte experimental, apresentando-se também resultados de outros pesquisadores. Determinaram-se as características físicas da argamassa, tais como: massa específica, índice de absorção e índice de vazios, quando submetidas aos distintos processos de cura. Constatou-se uma clara tendência de modificação das propriedades físicas e mecânicas da argamassa causada pela perda de água para o bloco e devido ao efeito de confinamento. Essas alterações não são identificadas nos ensaios padronizados, o que pode acarretar imprecisões na interpretação do comportamento estrutural da alvenaria e na formulação de modelos matemáticos de cálculo.

Palavras-chave: argamassa de assentamento, alvenaria estrutural, propriedades mecânicas, perda de água, confinamento.

Absiact

The standardized assays with mortar specimens do not reflect the real conditions the one that it is subjects in the form of nesting meeting. The purpose of this work is to verify the alterations in the properties of the mortar in the hardened state, derivinf from the loss of water in the concrete block during the cure process. The effect of consequent confinement of the biggest deformability of the mortar in relation to the block and of the small thickness of the joints is also analyzed. Assays for attaining the mechanical properties of mortar were conducted, according to normalized method, and using absorbent molds. Assays to the triaxial compression complement the experimental part, also presented results from other researchers. The physical characteristics of the mortar were determined as: specific mass, absorption rate and void rate, when submitted to the distinct cure processes. A clear trend of modification of the physical and mechanical properties of the mortar caused by the loss of water for the which had block and to the confinement effect was evidenced. These alterations are not identified in the standardized assays, which it can cause imprecise interpretation of the structural behavior of the masonry and the formularization of mathematical calculation models.

Keywords: nesting mortar , structural masonry, mechanical properties, water loss, confinement.

Chemical Speciation of Co(iI) in Aqueous Solution - A DFT Study

Heitor Avelino de Abreu(PQ)* and Hélio Anderson Duarte(PQ)
*abreuheitor@gmail.com
Grupo de Pesquisa em Química Inorgânica Teórica - GPQIT - Dep. de Química/ICEx - Universidade Federal de Minas Gerais

Key-Words: DFT, cobalt, chemical speciation

Thearatil

Cobalt may enter the environment from both natural sources and human activities. Cobalt is an essential element, required for good health in animals and humans, however, in large quantities it can be toxic. For example, a biochemically important cobalt compound is vitamin B12 or cyanocobalmin. However, harmful health effects can occur when people is excessively exposed to cobalt. Serious effects on the lungs have been reported such as asthma, pneumonia, and wheezing. Therefore, the understanding of the chemical speciation of Co (II) in aqueous solution is quite important for both biological and chemical aspects.

RGSUIS antorscussion

Density Functional Calculations (DFT) were performed in order to analyze the distinct species hidro/hydroxo formed by the $\mathrm{Co}(\mathrm{II})$ cation in aqueous medium and its hydrolysis process. Different electronic states and tautomers of all species arising from the Co (II) hydrolysis have been calculated. The PCM/UAHF continuum solvent model was used to obtain the free energy of solvation in water for all the studied species. Reactions 1-4 represent the hydrolysis processes analyzed in this work.

$$
\left.\begin{array}{ll}
{\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]_{(\mathrm{aq})}^{2+}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{aq})}} \\
{\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]_{(\mathrm{aq})}^{2+}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{aq})}} & {\left[\mathrm{Co}(\mathrm{OH})\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right]_{(\mathrm{aq})}^{+}+\mathrm{H}_{3} \mathrm{O}_{(\mathrm{aq})}^{+}} \\
{\left[\mathrm{Co}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]_{(\mathrm{aq})}+2 \mathrm{H}_{3} \mathrm{O}_{(\mathrm{aq})}^{+}} \\
{\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]_{(\mathrm{aq})}^{2+}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{aq})}} \tag{4}\\
{[\mathrm{Co}} & {\left[\mathrm{Co}(\mathrm{OH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]_{(\mathrm{aq})}^{-}+3 \mathrm{H}_{3} \mathrm{O}_{(\mathrm{aq})}^{+}} \\
\left.[\mathrm{O})_{6}\right]_{(\mathrm{aq})}^{2+}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{aq})} & {\left[\mathrm{Co}(\mathrm{OH})_{4}\right]_{(\mathrm{aq})}^{2-}}
\end{array}+4 \mathrm{H}_{3} \mathrm{O}_{(\mathrm{aq})}^{+}\right)
$$

PBE/TZVP level of theory was used together the PCM/UAHF solvation model to describe our system. This methodology has already been used successfully in early works. ${ }^{1,2}$
Using the thermodynamic data obtained and applying equation 5 it was possible to estimate the deprotonation constant values from equations 1-4, respectively.

$$
\begin{equation*}
\Delta \mathrm{G}^{\text {TOTAL }}=\Delta \mathrm{E}^{\text {ele }}+\Delta \mathrm{G}^{\text {therm }}+\Delta \mathrm{G}^{\text {solv }} \tag{5}
\end{equation*}
$$

Figure 1 shows the estimated values of the $-\log \beta$ obtained in this work versus the Gibbs free energy of the deprotonation processes of Co (II). In this figure are shown both the experimental and the
calculated values. The predicted values follow the same trends of the experimental data. The error bars is around $4 \mathrm{kcal} . \mathrm{mol}^{-1}$, except the predicted value for the third pKa which is about $12{\mathrm{kcal} . \mathrm{mol}^{-1}}^{-1}$ smaller. Modeling this hydrolysis step $\left(\left[\mathrm{Co}(\mathrm{OH})_{3}\right]^{-}\right)$ is quite demanding due to the fact that the water molecules are weakly bound to the metal center and, consequently, they are labile groups. It means that the correct description of this species has to take into account the dynamics of the system. Notwithstanding, we have shown that the $\left.\left[\mathrm{Co}(\mathrm{OH})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]^{-}\right)$model correct represents the third pKa of the system.

Figure 1. Comparison between the theoretically estimated Gibbs free energy of Co (II) and the respective experimental value.

conclisions

PBE/TZVP-PCM/UAHF level of theory was able to correctly describe the Co^{2+} hydrolysis, as it has been shown for other metal ions ${ }^{1,2}$. Geometrical and electronic properties of all species formed have been analyzed and will be discussed in detail.

Achnomerments

FAPEMIG, CNPq, CAPES

[^0]
THEORETICAL INVESTIGATION OF THE OXIDANT ACTIVITY OF BERGENIN

${ }^{1}$ Heitor Avelino de Abreu (PQ)*, ${ }^{2}$ Izandina Aparecida S. Lago (PQ), ${ }^{1}$ Antônio Flávio de C. Alcântara (PQ) and ${ }^{1}$ Hélio Anderson Duarte (PQ)

*abreuheitor@gmail.com

${ }^{1}$ Departamento de Química/lCEx - Universidade Federal de Minas Gerais - Belo Horizonte - Minas Gerais
${ }^{2}$ Curso de Pós-Grad. em Química de Produtos Naturais, Universidade Federal do Amazonas - Manaus - Amazonas

Key-Words: Bergenin, DFT, oxidant activity

TThedulgsion

Bergenin, a natural isocoumarin, has been isolated from a variety of plants and was reported to exhibit several biological activities, such as hepatoprotective, antihepatotoxicity on carbon tetrachloride-intoxicated hepatocytes, antifungal and anti-HIV. It is known that the hepatoprotective activity of bergenin is increased in derivate esters, mainly in acetyl-bergenins. ${ }^{1,2}$ However, there is no investigation about molecular properties, antioxidant properties and the hepatotoxic mechanism of bergenin. Recently we have carried out some experiments to test the bergenin activitiy with $\cdot \mathrm{OH}$ species. ${ }^{3}$ Figure 1 shows the structure of bergenin. This is a theoretical study intended to determine the preferential bergenin sites for its oxidation.

Figure 1. Chemical structure of $(+)$-bergenin.

DFT calculations using PBE/6-311++G(d,p) theory level were performed in Gaussian03 program package in order to describe the structures of bergenin and its radical species. It was studied the reactions between bergenin and four different radicals: $\cdot \mathrm{CCl}_{3}, \cdot \mathrm{H}, \cdot \mathrm{OH}$ and ${ }^{\cdot} \mathrm{CH}_{3}$. It was also considered six different sites in bergenin containing hydroxil or metoxy groups in order to react with the radical groups. The groups considered are those attached to the carbons $\mathrm{C}-5, \mathrm{C}-6, \mathrm{C}-7, \mathrm{C}-12, \mathrm{C}-13$, and $\mathrm{C}-16$, generating the radicalar species 05,06 , 07, 012, and 013, respectively.
PCM/UAHF solvation continuum model was applied to estimate the solvation energy in aqueous medium, the HF/6-31+G(d) level of theory was used in single point calculations under the optimized structures.
The free reaction energies (ΔG) of the radicalar bergenin species formation have been calculated.

Table 1 contains the reactions studied and the ΔG for the reactions with radicals ${ }^{\circ} \mathrm{OH}$ and $\cdot \mathrm{CCl}_{3}$.
Table 1. Free reaction energies for the bergenin oxidation reaction with OH and CCl_{3} radicals.

	$\Delta \mathrm{G} / \mathrm{kcal}^{\text {mol }}{ }^{-1}$	
	Radicals	
Reactions	${ }^{\circ} \mathrm{OH}$	CCl_{3}
bergenin + Rad $\rightarrow \mathbf{O 5}+\mathrm{HRad}$	-37.78	-10.93
bergenin $+\mathrm{Rad} \rightarrow \mathbf{O 6}+\mathrm{CH}_{3} \mathrm{Rad}$	-48.26	-38.35
bergenin + Rad $\rightarrow 07+$ HRad	-36.98	-10.13
bergenin + Rad $\rightarrow \mathbf{0 1 2 + \text { HRad }}$	-62.47	-35.62
bergenin + Rad $\rightarrow \mathbf{O 1 3 +}$ HRad	-21.58	5.27
bergenin + Rad $\rightarrow \mathbf{0 1 6 + H R a d}$	-21.05	5.81

From Table 1, it is possible to note that the two most favorable processes are those that form 06 and 012, since the free reaction energy is exothermic.
One could argue that the mechanism involved can have energy barriers preventing the reaction to occur. It has been observed experimentally that OH and $\cdot \mathrm{CCl}_{3}$ reacts with bergenin. Furthermore, the mechanism of these reactions in aqueous solution involves probably several different channels. One needs to sample all of them in order to predict the kinetics of these reactions. The simple PCM/UAHF solvation model can correctly predict the contribution of the solvation energy to the $\Delta \mathrm{G}$ of the reaction, since the specific interactions of the solvent with the solute, that are neglected in this model, are similar in the reactants and products and, consequently, cancelled, as it has been observed in other works.

Gomichusions

In this work we have observed two preferential oxidation sites in bergenin (O6 and O12). Energetics of the processes can be useful to better understand the oxidation process with different reactants. Thermodynamic properties and molecular orbital aspects will be discussed in details.

FAPEMIG, CNPq and CAPES

[^1]
AB Initio systemiatic study of triaikylphosfine oxides structures

Eudes E. Fileti ${ }^{1 *}$ (PQ), Thaciana Malaspina ${ }^{2}$ (PQ) and Luciano T. Costa ${ }^{2}(P Q)$ fileti@ufabc.edu.br

1) CCNH, Universidade Federal do ABC, Santo André, SP, CEP 09210-270
2) Instituto de Química, Universidade de São Paulo, São Paulo, SP, CP 26077, CEP 05513-970

Palavras Chave: Trialkylphosphine oxides, ab initio, stability, vibrational frequencies.
evaluated. Gaussian 03 program was employed in all calculations.
We have study the single structure of the TMPO ($\mathrm{C}_{3 \mathrm{~V}}$ symmetry), two isomers of the TEPO (C_{3} and
C_{S} symmetries), three isomers of the TBPO (two of C_{3} and one of C_{5} symmetries) and 3 isomers of the TOPO (two of C_{3} and one of C_{S} symmetries). It is
interesting to observe that the isomers considered here are relate only to the possible conformations for n-alkyl group. That is, we are not considering isomers of the type iso, sec or terc.

Overall the value for total (E) and relative energies $(\Delta \mathrm{E})$ of the shape Y is systematically more stable than other forms. In the case of TEPO, the Y shape is only $0.4 \mathrm{kcal} / \mathrm{mol}$ more stable the T shape. For the TBPO, the Y shape is more stable by $1.6 \mathrm{kcal} / \mathrm{mol}$ in relation to T form and 4.6 $\mathrm{kcal} / \mathrm{mol}$ in relation to S form. For the TOPO the Y shape is more stable by $1.6 \mathrm{kcal} / \mathrm{mol}$ in relation to T form and $18.0 \mathrm{kcal} / \mathrm{mol}$ in relation to S form.

The financial support of the FAPESP and CNPq is greatly acknowledged. EEF thanks Dr. G. Dalpian for useful suggestions.

[^2]
NOVO COMPLEXO DE EURÓPIO COM 2,4,6-TRICLOROFENIL ACETOACETATO: UM ESTUDO TEÓRICO E EXPERIMENTAL

Ana Paula Souza (PG)*, Severino Alves Júnior (PQ) e Oscar Loureiro Malta (PQ)

anasouza.quimica@yahoo.com.br Universidade Federal de Pernambuco, Departamento de Química Fundamental, 50670-901, Recife, PE. Palavras Chave: európio, intensidades f-f, Sparkle.

Thloc 1esto

O estudo das propriedades espectroscópicas de complexos de íons lantanídeos tem sido um desafio para químicos experimentais e teóricos. [1]. A modelagem de complexos de európio tem auxiliado nos cálculos envolvendo as intensidades f-f e o campo ligante, principalmente quando a estrutura cristalográfica do composto não foi determinada. Neste trabalho, foram realizados cálculos dos parâmetros de intensidades e do espectro de absorção teórico a partir da geometria otimizada pelo modelo SMCL [2], Sparkle Model for the Calculations of Lanthanide Complexes, implementado no programa MOPAC93r2. O espectro eletrônico foi calculado utilizando o método INDO/S-CI [3], Intermediate Neglect of Differential Overlap/Spectroscopic-Configuration Interation, implementado no programa ZINDO.

O complexo $\left[\mathrm{Eu}(\mathrm{TMA})_{2} .\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right] \mathrm{OH}$, onde $\mathrm{TMA}=$ 2,4,6-triclorofenil acetoacetato, foi sintetizado e a partir dos resultados da caracterização sua fórmula molecular foi proposta. A geometria otimizada pelo modelo Sparkle classificou o complexo como pertencendo ao grupo de simetria C_{1}, corroborando com a relação das intensidades das transições $\left.\left({ }^{5} D_{0} \rightarrow{ }^{7} F_{1}\right) /{ }^{5} D_{0} \rightarrow{ }^{7} F_{2}\right)$ que é bem menor que 1 , como é esperado para baixas simetrias (Figura 1).

Figura 1. Espectro de emissão do complexo $\left[\mathrm{Eu}(\mathrm{TMA})_{2} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right] \mathrm{OH}$.

O espectro de absorção teórico está em boa concordância com o experimental (Figura 2), apresentando mesmo número de bandas.

Os parâmetros de intensidades teóricos estão de acordo com os experimentais (Tabela 1).

Tabela 1. Parâmetros de intensidades Ω_{2} e Ω_{4} das transições $4 \mathrm{f}-4 \mathrm{f}$ no complexo de európio em unidades de $10^{-20} \mathrm{~cm}^{2}$.

complexo	Ω_{2} exp.	Ω_{4} exp.	Ω_{2} teor.	Ω_{4} teor.
$\left[\mathrm{Eu}(\mathrm{TMA})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right] \mathrm{OH}$	17,8	4,4	17,6	3.2

Figura 2. Espectros de absorção teórico dado pelo modelo SMCL e experimental do complexo $\left[\mathrm{Eu}(\mathrm{TMA})_{2} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right] \mathrm{OH}$.

Abstract

 O complexo $\left[\mathrm{Eu}(\mathrm{TMA})_{2} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right] \mathrm{OH}$ apresentou as transições características do íon Eu^{+3}. O európio no complexo está em um ambiente de baixa simetria. A concordância entre os espectros de absorção teórico e experimental sugere que a estrutura molecular provavelmente está correta. Os parâmetros de intensidades teóricos estão em concordância com os experimentais, estes resultados mostram que o íon európio está em um ambiente polarizável.

7hludemmentos:

CNPq, RENAMI e IMMC.

[^3]
XIV Simpósio Brasileiro de Química Teórica (SBQT)

Estudo Teórico da reação de N($\left.{ }^{4} \mathrm{~S}\right)+\mathrm{CH}_{3}\left({ }^{2} \mathbf{A}^{\prime \prime}{ }_{2}\right)$

Tiago Vinicius Alves* (PG), Antonio G. S. Oliveira Filho (IC), Fernando Rei Ornellas (PQ) *e-mail: tiagovini@iq.usp.br.

Instituto de Química, Universidade de São Paulo, Caixa Postal 26077, São Paulo 05513-970, Brasil. Palavras Chave: CCSD (T), cinética.

MTiomerab

Reações de radicais metila com átomos de nitrogênio no estado fundamental (${ }^{4} \mathrm{~S}$) têm sido amplamente estudadas devido à sua importância em diversos campos tais como: metalurgia, química atmosférica de astros como Titan, Netuno e Triton [1], conversão de gás natural em compostos de maior relevância química, processos de combustão, etc.

Neste trabalho, utilizando o estado-daarte em termos de cálculos de estrutura eletrônica, preocupamo-nos em obter quantidades energéticas da forma mais exata possível para esta reação, dentre elas a altura das barreiras, de modo a descrever sua cinética de forma acurada.

Os cálculos de otimização das geometrias, das freqüências vibracionais e energias foram realizados utilizando-se o método $\operatorname{CCSD}(\mathrm{T})$, coupled cluster com excitações simples e duplas e com um tratamento iterativo das excitações triplas, juntamente com o conjunto de bases atômicas do tipo cc-pVnZ ($n=\mathrm{D}, \mathrm{T}$), (correlation consistent polarized valence n-zeta).

Estabelecidas as relações energéticas, efetuamos o tratamento cinético dessas reações. A formação do primeiro intermediário procede por uma reação bimolecular sem a formação de um estado de transição, onde utilizamos a teoria do estado de transição variacional microcanônica ($\mu \mathrm{VTST}$). Para as etapas unimoleculares utilizamos a teoria RRKM.

A tabela 1 nos mostra as energias relativas do processo obtidas em diferentes níveis da teoria. A figura 1 ilustra o perfil energético da superfície de energia potencial tripleto, evidenciando os pontos estacionários.

Tabela 1. Valores $\operatorname{CCSD}(T)$ de $\Delta E, \Delta H, \Delta G$ em kcal/mol a 298 K da reação.

Bases	$\Delta \mathbf{E}$	$\Delta \boldsymbol{H}$	$\Delta \mathbf{G}$
cc-pVDZ	$-24,12^{\mathrm{a}}$	$-27,00$	$-26,25$
cc-pVTZ	$-32,33^{\mathrm{b}}$	$-32,41$	$-32,73$

[^4]O esquema 1 nos mostra o mecanismo proposto para esta reação, através do qual obtivemos a expressão para a constante global

do processo.
Figura 1. Perfil energético ($\mathrm{kcal} / \mathrm{mol}$) a $\operatorname{CCSD}(\mathrm{T}) / \mathrm{cc}-\mathrm{pVTZ}$ incluindo a energia do ponto zero.

Esquema 1:

A partir dos valores dessas constantes intermediárias calculamos a constante global do processo.

Mremicheres

Comparativamente a estudos da literatura ($9,1 \times 10^{-12} \mathrm{~cm}^{3} \mathrm{~s}^{-1}$ molécula ${ }^{-1}$) [2] o valor da constante obtida neste trabalho ($1,06 \times 10^{-10}$ $\mathrm{cm}^{3} \mathrm{~s}^{-1}$ molécula ${ }^{-1}$) mostrou uma maior concordância com o valor experimental ($8,5 \mathrm{x}$ $10^{-11} \mathrm{~cm}^{3} \mathrm{~s}^{-1}$ molécula ${ }^{-1}$) [3]. Isso reflete o tratamento mais acurado da estrutura eletrônica dessas espécies feito neste trabalho.

Ao CNPq (T.V.A. e F.R.O.) e à FAPESP (F.R.O.) pelo apoio financeiro.

[^5]
PROPRIEDADES ESTRUTURAIS E ELETRÔNICAS DE PRODAN EM VÁRIOS SOLVENTES: UM ESTUDO TEÓRICO E EXPERIMENTAL.

Cíntia C. Vequi-Suplicy* (PG), Kaline Coutinho (PQ), Maria Teresa M. Lamy (PQ)

cintia@if.usp.br
Instituto de Física, Universidade de São Paulo.
Palavras Chave: Prodan, solvatochromismo, efeito de solvente, modelo contínuo PCM, modelo discreto, QM/MM.
eletrônica para todos os métodos de cálculos utilizados.

Neste trabalho foi realizado um estudo teórico e experimental sobre as propriedades de estruturais e eletrônicas da sonda fluorescente Prodan (6-propionil-2-dimetillamino-naftaleno). Foram deter-minados a geometria, o dipolo e as energias de absorção eletrônica. Para a interação com o solvente foram usados o modelo contínuo (PCM) e o modelo explícito com um método híbrido QM/MM.

Através da análise de energia, dipolo e principalmente através da comparação com a geometria experimental medida com raio-x ${ }^{[1]}$, determinamos que a geometria que melhor descreve essa molécula é a otimizada com o método B3LYP/6-31G*.
Ao se colocar os diferentes solventes (água, DMSO, acetonitrila, diclorometano, clorobenzeno e ciclohexano) com o modelo PCM não observamos diferenças significativas na geometria e no dipolo, porém observamos diferenças nas transições eletrônicas (calculadas com INDO/CIS). Na figura 1 estão mostradas essa transição experimental ${ }^{[2]}$ e calculadas para os vários solventes.

Figura 1: Valores experimentais e teóricos para a freqüência de transição em relação ao dipolo de cada solvente.

Com objetivo de melhorar os resultados obtidos nos diferentes solventes, um modelo discreto de solvente foi usado, através do procedimento seqüencial de simulações computacionais e cálculos quânticos ${ }^{[3]}$. Na tabela 1, estão apresentados os deslocamentos da transição

Tabela 1: Valores de deslocamento da transição eletrônica em Diclorometano comparativamente a diferentes solventes: água (A), DMSO (B), Acetonitrila (C), Clorobenzeno (D), Ciclohexano (E) obtidos experimentalmente e com os diferentes modelo: contínuo PCM e explícito levando em conta a primeira e segunda camadas de solvatação como carga pontuais (1e2PC) e a primeira camada com as moléculas de solvente e a segunda como cạrgas pontuais $(1 \mathrm{M}+2 \mathrm{PC})$.

cm^{-1}	A	B	C	D	E
Exp.	-471	-316	161	0	906
PCM	-509	-378	-393	233	678
1e2PC	-89	-	19	-	193
1M+2PC	-49	-	-498	-	96

Analisando a tabela 1 verificamos que o modelo discreto apresenta valores ainda mais discrepantes em relação aos experimentais. Isso nos levou a reavaliar o modelo de potencial de interação para o Prodan e verificar que a polarização do soluto é importante e não estava sendo incluída devido a resultados com PCM mostrarem sua pouca relevância. Desta forma, verificamos que o solvente altera o dipolo de $6,10 \mathrm{D}$ do Prodan isolado para $\sim 10 \mathrm{D}$ em água e $\sim 8 \mathrm{D}$ em acetonitrila.

- Womaroor

Até o presente momento foi possível concluir que o Prodan apresenta geometria plana no estado fundamental e que o modelo discreto de solvente descreve melhor as interações soluto-solvente, mostrando que quanto mais polar o solvente maior a polarização do meio no soluto. As energias das transições para o modelo discreto com os novos dipolos estão sendo calculadas.

Agradecimento ao apoio financeiro da FAPESP, do Instituto de Física da USP e CNPq/Renami.
1.llich, P.; Prendergast, F.G.; J. Phys. Chem., 1989, 93, 4441.
2. Lobo, B.C.; Abelt, C.J.; J. Phys. Chem. A, 2003, 107, 10938.
3. Coutinho, K.; Canuto, S.; Zerner, M.C.; J. Chem. Phys., 2000, 112, 9874.

MECHANISM FOR THE HYDROLYSIS AND ALCOHOLYSIS OF ALKOXYSILANES: MODEL SYSTEMI FOR SOL-GEL PROCESSES.

Thaciana Malaspina** (PQ), José M. Riveros ${ }^{1}$ (PQ) *thaciana@iq.usp.br
1) Instituto de Química, Universidade de São Paulo, São Paulo, SP, CP 26077, CEP 05513-970
Palavras Chave: Alkoxysilanes, hydrolysis, sol-gel-process.

Hydrolysis reactions of alkoxysilanes are responsible for the initial stages of sol-gel processes that lead to deposition of SiO_{2} and the formation of silicon-containing condensations products. Understanding the mechanisms of these reactions is a subject of great interest in order to control the formation of tailor-made new materials. Because the equivalent of acid- and bas-catalyzed hydrolysis can be experimentally characterized by gas-phase ion chemistry techniques, our initial motivation was to understand the solvation-free process. We were particularly interested in the acid-catalyzed process because it is unclear whether this type of hydrolysis proceeds by a stepwise or a synchronous mechanism. In this study, a full theoretical characterization of this process is reported using $\mathrm{Si}\left(\mathrm{OCH}_{3}\right)_{4}$ as our model system.

Preliminary calculations were carried out to establish the structures and energetics resulting from protonation $\mathrm{Si}\left(\mathrm{OCH}_{3}\right)_{4}$ and $(\mathrm{HO}) \mathrm{Si}\left(\mathrm{OCH}_{3}\right)_{3}$. Full geometry optimization were were obtained using density functional theory at the B3LYP level with a $6-311+G(d, p)$ basis set. The Gaussian 03 program was employed in all calculations. Vibrational frequencies were calculated for all species to characterize the calculated structures as true minima or transition states on the potential surface energy.
Protonation of $\left(\mathrm{CH}_{3} \mathrm{O}\right)_{4} \mathrm{Si}$ and $\left(\mathrm{CH}_{3} \mathrm{O}\right)_{3} \mathrm{SiOH}$ yields structures that are best described as silyl ions bound either to a methanol or a water molecule as shown below.

$$
\begin{aligned}
\left(\mathrm{CH}_{3} \mathrm{O}\right)_{4} \mathrm{Si}+\mathrm{H}^{+} \rightarrow & \left(\mathrm{CH}_{3} \mathrm{O}\right)_{3} \mathrm{Si}^{+}\left(\mathrm{HOCH}_{3}\right) \\
\left(\mathrm{CH}_{3} \mathrm{O}\right)_{3} \mathrm{SiOH}+\mathrm{H}^{+} & \rightarrow\left(\mathrm{CH}_{3} \mathrm{O}\right)_{3} \mathrm{Si}^{+}\left(\mathrm{H}_{2} \mathrm{O}\right) \text { or } \\
& \left(\mathrm{CH}_{3} \mathrm{O}\right)_{2}(\mathrm{HO}) \mathrm{Si}^{+}\left(\mathrm{HOCH}_{3}\right)
\end{aligned}
$$

The energetics for the processes above yield the proton affinities for these species, and have been calculated to be $200 \mathrm{kcal} / \mathrm{mol}$ for $\left(\mathrm{CH}_{3} \mathrm{O}\right)_{4} \mathrm{Si}$ and $198 \mathrm{kcal} / \mathrm{mol}$ and $192 \mathrm{kcal} / \mathrm{mol}$ for $\left(\mathrm{CH}_{3} \mathrm{O}\right)_{3} \mathrm{SiOH}$ for protonation at OMe and at OH respectively.
In the gas-phase, methanolysis of $\left[\left(\mathrm{CH}_{3} \mathrm{O}\right)_{3} \mathrm{SiOH}\right] \mathrm{H}^{+}$is the exothermic process and the energy surface of this reaction was investigated.
$\left(\mathrm{H}_{3} \mathrm{CO}\right)_{3} \mathrm{Si}^{+} \ldots \mathrm{H}_{2} \mathrm{O}+\mathrm{CH}_{3} \mathrm{OH} \rightarrow\left(\mathrm{H}_{3} \mathrm{CO}\right)_{3} \mathrm{Si}^{+} \ldots \mathrm{CH}_{3} \mathrm{OH}+$ $\mathrm{H}_{2} \mathrm{O}$

Starting with the OH protonated substrate, the reaction is well represented by a double well potential surface where the initial complex involves a proton-bound dimer between the protonated alkoxysilane and methanol. Reaction then proceeds through a well characterized transition state that is identified as attack on Si in the equatorial plane of a near-trigonal bipyramid structure.
The calculated general energy profile for the reaction is shown below along with the structures for entrance and exit complexes and the transition state.

The calculated energy profile agrees with the fact that these reactions are facile in the gas-phase.

COMGMEIOMS

The present calculations reveal that the gasphase hydrolysis reaction of alkoxysilanes under acidic conditions is better represented as a solvent exchange reaction of a solvated silyl cation. These are highly electrophilic species that can coordinate strongly to Lewis bases. Furthermore, our work reveals that the hydrolysis reaction proceeds in a concerted fashion and not through a stable intermediate.

AChow en ormonts

This work was supported by PRONEX-FAPESP, CNPq, AFOSR and the Millenium Institute for Complex Material, Phase 2. We thank Raquel Rainone for some of the experimental results.

CÁlculos de afinidades Eletrônica e por Próton usando bases com PSEUDOPOTENCIAL E MÉTODO CCSD(T)

Nelson H. Morgon (PQ)* - morgon@iqm.unicamp.br
Instituto de Química - UNICAMP; Cx. Postal 6154 - Campinas, SP - CEP 13084-862.
Palavras Chave: Afinidades eletrônica e por próton, $\operatorname{CCSD}(T)$; bases com pseudopotencial.

3 TM Polloco

A afinidade eletrônica (AE) de uma dada espécie química é a energia cedida quando o composto neutro em fase gasosa ganha um elétron extra para formar um ion carregado negativamente, segundo a reação: $A(g)+e-=A^{-}(g) \Delta_{r} H^{\circ}=A E$. Já as reações de transferência de próton estão relacionadas intimamente com a afinidade por próton (AP) e são de grande importância em química e em processos bioquímicos, neste caso incluem-se a maioria das reações catalisadas enzimaticamente. A próton afinidade para a reação $\mathrm{A}^{-}(\mathrm{g})+\mathrm{H}^{+}(\mathrm{g})=\mathrm{AH}(\mathrm{g})$ a uma temperatura T é definida como o negativo da entalpia de reação, ou seja, $P A=-\Delta_{r} H=\Delta(E)+R T$. A energia total para moléculas poliatômicas pode ser aproximada em termos das componentes de rotação, translação, vibração e eletrônica: $E(T)=$ $E_{\text {rot }}(T)+E_{\text {trans }}(T)+E^{\prime}$ vib $(T)+Z P E+E_{\text {eletr. }} A A E$ e a AP são propriedades difíceis de serem medidas experimentalmente. No caso de estimativas através de cálculos teóricos, a principal dificuldade é a correta descrição da energia, sendo necessárias metodologias que incluem conjuntos de funções de base completos com métodos altamente correlacionados, o que necessariamente implica em altos custos computacionais, principalmente quando o tamanho dos sistemas estudados é relativamente grande e estes envolvem átomos a partir do 3° período da tabela.

Neste trabalho aplicamos uma estratégia desenvolvida para o estudo teórico de $A E$ e $A P^{1}$ em uma série de moléculas utilizando cálculos $\operatorname{CCSD}(T)$ e CR-CCSD(T) com base ajustadas com pseudopotencial SBKJC - BO, e acrescidas com funções difusas (s, p) e de polarização (d, f) - B1. Todos os cálculos foram feitos usando o programa GAMESS/2007(R1) ${ }^{3}$, à exceção dos sistemas contendo camada aberta, onde os cálculos $\operatorname{CCSD}(\mathrm{T})$ foram obtidos com GAUSSIAN03/B04 ${ }^{4}$. O procedimento envolve as etapas de: a) otimização da geometria e análise vibracional usando o método HF com base B0; b) reotimização através de cálculos MP2/B0; c) obtenção de energias com $\operatorname{CCSD}(T) / B 0$ ou $\operatorname{CR}-\operatorname{CCSD}(\mathrm{T}) / B 0$ e MP2/B1. A expressão final de energia, por exemplo, para AP é dada por:

$E[C R-C C S D(T) / B 1] \sim E[C R-C C S D(T) / B 0]+E[M P 2 / B 1]-$ E[MP2/B0] + ZPE[HF/B0]

Os resultados calculados das afinidades eletrônica e por próton para alguns sistemas estão nas Tabelas 1 e 2 , respectivamente e como pode ser observado na maioria dos casos encontram-se dentro do erro experimental.
Tabela 1. Valores de $A E$ (eV) calculado e experimental para alguns sistemas selecionados.

Sistema	AE $_{\text {CALC }}$ (Eq. 1)	AE $_{\text {EXPER }}{ }^{\text {(a) }}$
F	3,39	$3,40 \pm 0,01$
CCl_{3}	2,19	$2,173 \pm 0,097$
CBr_{3}	2,56	$2,57 \pm 0,12$
Br	3,39	$3,3630 \pm 0,0030$

Tabela 2. Valores de AP (kJ/mol) calculado e experimental para alguns sistemas selecionados.

Sistema	$\mathrm{AE}_{\text {calc }}$ (Eq. 1)	AP EXPER $^{\text {(a) }}$
I'	1315,1	1315
CHClBr^{-}	1563,4	1560 ± 13
$\mathrm{CH}_{2}=\mathrm{C}(\mathrm{Me}) \mathrm{CH}_{2}{ }^{-}$	163,5	1644 ± 13
Acetamida, 2, ,2,-tricloro	1493,6	1436 $\pm 8,8$
m h htp://webbook.nist.gov		

Embora os resultados apresentados nas Tabelas 1 e 2 referem-se a alguns sistemas, foram estudados 31 compostos contendo átomos de $\mathrm{H}, \mathrm{C}, \mathrm{N}, \mathrm{O}, \mathrm{F}$, Cl, Br e I , e a diferença entre os valores calculados e os experimentais ficou em média 0,1 para a AE e $4,5 \mathrm{~kJ} / \mathrm{mol}$ para a AP, mostrando ser a metodologia empregada confiável. Numa comparação com cálculos G2 e G3, a técnica mostrou-se ainda mais vantajosa em relação ao tempo de processamento computacional, principalmente para sistemas contendo Cl, Br ou I, onde o pseudopotencial tem efeito significativo.

Figlodemmenics

Agradeço ao CNPq (471159/2006-9 e 305325/2006-0) e à FAPESP (2006/04228-2) pelo apoio financeiro.

[^6]
Study of As(III) ADSORPTION ON GIBBSITE USING THE DFTB METHOD

Augusto F. Oliveira ${ }^{1}$ (PG)*, Hélio A. Duarte ${ }^{1}$ (PQ)
${ }^{1}$ Grupo de Pesquisa em Química Inorgânica Teórica (GPQIT), DQ/ICEx - UFMG - Belo Horizonte, MG - Brazil. augustof@ufng.br

Keywords: arsenic, gibbsite, adsorption, DFTB.

fimodiction

Arsenic is one of the heavy elements that are harmful to the health and, consequently, have environment implications. It has attracted the attention of environmentalists due to its high mobility, toxicity and broad distribution. Although anthropogenic activities - e.g., mining - have added important impact, most of the environmental problems related to arsenic is due to its natural mobilization, especially as As(III).
Immobilization of arsenic can be achieved, among other ways, by adsorbing it on minerals such as gibbsite, $\gamma-\mathrm{Al}(\mathrm{OH})_{3}$, which is a major component of bauxite and has expressive surface area.

In the present work we investigate the adsorption of $\mathrm{H}_{3} \mathrm{AsO}_{3}$ on gibbsite using the density-functional based tight-binding method (DFTB) ${ }^{1}$, implemented in the DFTB+ code ${ }^{2}$.

DFTB is a simplification of the Kohn-Sham (KS) density-functional method by means of tight-bindinglike approximations and minimal atomic basis sets.
The adsorption complexes were modeled using finite cluster as well as periodic slab models. All geometries were relaxed with the conjugate gradient algorithm until the forces were $3 \cdot 10^{-4}$ a.u. or less.

Monodentate-mononuclear (mm), monodentatebinuclear ($m b$), bidentate-mononuclear ($b m$) and bidentate-binuclear (bb) adsorption complexes (figure 1) have been modeled using a finite cluster and a periodic slab model (figure 2). In figure 1 the hydrogen atoms between parentheses are present when adsorption occurs by a non-dissociative ($n d$) mechanism, whereas they are absent when an Arrhenius acid-base ($a b$) adsorption takes place. Both mechanisms were considered in this work.

Considering a $10 \mathrm{kcal} \cdot \mathrm{mol}^{-1}$ accuracy for DFTB, our results point $n d-b b$ and $a b-b b$ among the most energetically favored complexes for both, cluster and slab models. In the cluster, ab-mm was also low in energy, whereas nd-bm was the third most stable structure for the slab model.

Concerning geometry, experimental EXAFS measurements ${ }^{3}$ have pointed the As-Al and As-O distances to be $3.00 \AA$ and $1.78 \AA$. With the cluster model we find $n d-b b$ to agree well with these values, however, when going to the periodic slab its As-Al distance becomes $0.54 \AA$ higher than EXAFS
measurements, while the $n d-b m$ reaches a good agreement with the experiment. The $a b-b b$ adsorbate presents nearly the same As-Al and As-O interatomic distances in both models: 3.27 and $1.80 \AA$, respectively, which are reasonably close to the experimental values.

mm

$m b$

$b m$

$b b$

Figure 1. Coordination modes of the As (III) on gibbsite.

Figure 2. Cluster and periodic slab models of gibbsite surface with $n d-b b$ adsorbate.

OOMCHLIOMS

Among the complexes with the lowest energies, $a b-b b$ is the only one which showed essentially the same geometric parameters in both surface models used. Moreover, the As-Al and As-O distances found in $a b-b b$ reasonably agree with experimental EXAFS data.

However, the geometric variation observed for the complexes when going from the cluster to the periodic slab model suggest that either long range surface effects strongly influence the geometry or there are several close energy minima for our models.

In order to increase the reliability of our conclusions, molecular dynamics calculations, also using DFTB method, are currently being executed.

CNPq, CAPES and FAPEMIG.

[^7]
THE ELECTRONIC WETTING BEHAVIOR OF WATER ON THE FULLERENE SURFACE UNDER AMBIENT CONDITIONS.

Roberto Rivelino ${ }^{1}(\mathbb{P Q})^{*}$, Fernando de Brito Mota ${ }^{1}(\mathbb{P Q})$. Email: rivelino@ufba.br
${ }^{1}$ Instituto de Física, Universidade Federal da Bahia, 40210-340 Salvador, BA, Brazil
Palavras Chave:Fullerene, Thermal effects, Band gap, MC/QM simulation

Introduction

In this work we examine the electronic properties of the hydrated C_{60} fullerene under ambient conditions using a sequential Monte Carlo/quantum mechanics (MC/QM) simulation. In our procedure, the average electronic properties of the first hydration shell of C_{60} equilibrate for ca. 40 uncorrelated configurations of the fullerene aqueous solution. We obtain a systematic redshift of 0.8 eV in the band gap of the hydrated system, which is mainly attributed to the thermal fluctuations of the aqueous environment.

As calculated from the simulation, 63 water molecules on average are present in each configuration representing the first solvation shell of fullerene, i.e., our system of interest corresponds to structurally different clusters of the $\mathrm{C}_{60} @\left\{\mathrm{H}_{2} \mathrm{O}\right\}_{63}$ type (Figure 1). This result is rather similar to that obtained in our previous investigation using the SPC potential for describing the aqueous medium; although the hydrating water molecules form a more well ordered shell around C_{60} with the TIP5P model. After the MC simulation, the electronic calculations are performed at the DFT level.

By using the MC/DFT procedure, the average band gap of the hydrated system is calculated as $1.07 \pm 0.28 \mathrm{eV}$ with LDA and $1.11 \pm 0.31 \mathrm{eV}$ with GGA. The two levels of DFT also give good estimates for the HOMO-LUMO gap of C_{60} in vacuum, i.e., 1.88 and 1.86 eV , respectively. For comparison, this energy gap determined for C_{60} aggregates from direct forbidden optical transitions data is 1.77 eV . The hydrated system displays a systematic red-shift of 0.8 eV from the isolated fullerene at 0 K using LDA or GGA approaches. This coincidence for both DFT levels clearly ensures that we are dealing with converged results. However, this shift is not an effect caused by the polarization of the surrounding solvent on the solute. Instead, the main contribution for this shift is due to structural fluctuations of the hydrating water around C_{60} at room temperature.

Figure 1. Snapshot of the first hydration shell of C_{60}.

We have used a very efficient sequential MC/DFT scheme to examine the effects of hydration on the electronic properties of C_{60} under ambient conditions. The structures of the hydrated fullerene are properly generated by atomistic MC simulation using a realistic LJ potential. In this sense, our procedure avoids the lack of dispersion energy inherent to ab initio molecular dynamics simulations based on DFT. The fact also in our favor is that, at finite temperature, dispersion interactions play a much smaller role in the stability of the two subsystems. Then, we obtain reliable average electronic properties of the hydrated system, converging rapid and systematically with LDA or GGA calculations.

This work has been partially supported by Fapesb and CNPq.

[^8]
A INFLUÊNCIA DE UM BOM CONJUNTO DE FUNÇõES DE BASE, CORRELAÇÃO ELETRÔNICA E DO FATOR DE CONVERGÊNCIA EM PROPRIEDADES ÓPTICAS NÃo-LINEARES PARA A MOLÉCULA DE HF.

Diego F. da S. Paschoal ${ }^{1}$ (IC) ${ }^{*}$, Hélio F. Dos Santos $^{1}(\mathrm{PQ})$, Marcello F. Costa ${ }^{1}$ (PQ)
*diego_paschoal@yahoo.com.br
${ }^{1}$ NEQC: Núcleo de Estudos em Química Computacional, Departamento de Química - ICE, Universidade Federal de Juiz de Fora.
Palavras Chave: ab initio, funções de base, polarizabilidade, hiperpolarizabilidade, momento de dipolo.

Infocturab

Propriedades elétricas, como polarizabilidade e hiperpolarizabilidades, são fortemente dependentes do método utilizado. Nesse contexto, métodos altamente correlacionados com funções de base estendidas fornecem, na maioria das situações, resultados satisfatórios. Entretanto, esses níveis de teoria são restritos a sistemas pequenos. Uma alternativa no sentido de dimensionar o custo e benefício do nível de teoria, é balancear a base de funções. Neste trabalho estudamos a molécula de HF, utilizando um conjunto de funções de base EPRIII*, ajustado para reproduzir propriedades como momento de dipolo, polarizabilidade e hiperpolarizabilidade. A influência da correlação eletrônica e do fator de convergência no cálculo SCF das energias foram também analisados, realizando cálculos em diversos níveis de teoria; HF, MP2, MP3, MP4(SDQ), CCSD e CCSD(T).

Whambly

Foi utilizado o conjunto de funções de base EPRIII*, com a inclusão de funções primitivas extras, cujos expoentes são apresentados na Tabela 1.

Tabela 1. Expoentes das funções primitivas acrescentadas no conjunto de funções de base EPR-III para o F e para o H .

H	$\xi_{p}=0,103$		
F	$\xi_{d}=12,978$	$\xi_{d}=1,736$	$\xi_{d}=0,096$
	$\xi_{d}=0,301$	$\xi_{f}=0,1765$	

Nosso estudo mostra a importância da otimização da função de base, não só com o objetivo de obter um baixo valor de energia, como também na obtenção das propriedades de interesse. Na Tabela 2 é mostrado o valor das propriedades elétricas calculadas nos níveis Hartree-Fock e $\operatorname{CCSD}(\mathrm{T})$. O melhor resultado obtido na referência [1] foi com um conjunto de 174 funções de base. Mostramos que com um conjunto menor de funções de base (87 funções de base), conseguimos reproduzir as propriedades de interesse com um menor custo
computacional. Podemos notar também uma pequena diferença dos valores com a inclusão da correlação eletrônica.
A contribuição vibracional para a polarizabilidade total foi também calculada, uma vez que esta é importante para a descrição correta das propriedades desejadas ${ }^{2,3}$, como a polarizabilidade média e a anisotropia. Como pode ser visto na Tabela 2, os resultados também estão em excelente acordo com os relatados na referência [1].

Tabela 2. Valores para as contribuições vibracional e eletrônica da polarizabilidade total, polarizabilidade média e anisotropia. Os valores apresentados entre parênteses são referentes aos obtidos na referência [1].

Método	$\alpha_{z z}^{\mathrm{e}}$	$\alpha_{z z}^{\mathrm{v}}$	$\alpha_{z z}$	$\left\langle\alpha^{\mathrm{e}}\right\rangle$	$\Delta \alpha^{\mathrm{e}}$
HF	5.548	0.222	5.770	4.810	1.107
	(5.750)	-	-	(4.910)	(1.270)
CCSDT	6.590	0.160	6.750	5.823	1.150
	(6.360)	-	-	(5.600)	(1.140)

* $v=$ vibracional; $e=$ eletrônica

Nosso trabalho apresenta um estudo bem delineado de propriedades elétricas para a molécula de HF. Os resultados obtidos estão próximos aos valores teóricos encontrados na literatura com um conjunto de funções de base bem menor que o reportado na mesma. Estas propriedades são muito sensíveis à aplicação de campos elétricos e ao fator de convergência SCF. Serão mostrados também, valores obtidos para o momento de dipolo e primeira hiperpolarizabilidade.

AGradechmenios

CNPq, FAPEMIG.

[^9]
QSAR MULTIVARIADO DE INIBIDORES DE HIV-INTEGRASE: CARBOXAMIDAS.

Eduardo Borges de Melo ${ }^{1,2}$ (PG), Márcia Miguel Castro Ferreira¹ (PQ)*.

${ }^{1}$ Inst. De Química/UNICAMP; ${ }^{2}$ Farmácia/Univ. Est. do Oeste do Paraná (UNIOESTE). *marcia@iqm.unicamp.br Palavras Chave: HIV, AIDS, integrase, QSAR, PLS.

Introducão

Apesar dos avanços no tratamento da AIDS, ainda há grande necessidade de novos antiretrovirais para o combate a infecção pelo HIV. Um dos novos alvos terapêuticos em estudo é a enzima HIV-integrase, uma das três enzimas virais essenciais ao ciclo replicativo do HIV^{1}.

O objetivo deste trabalho foi realizar um estudo QSAR com um conjunto de 33 carboxamidas (fig. 1) descritas por Petrocchi et al ${ }^{2}$ como inibidoras in vitro da reação de transferência de fita promovida pela HIV-integrase.
(

Os arquivos de entrada foram construídos a partir do arquivo DOTRUZ obtido no CSD^{3} e otimizadas por MM+ no HyperChem 7, seguido de otimização pelos métodos AM1 e Ab initio - HF/6-31G* no GAUSSIAN 03. Dos arquivos de saída foram obtidos descritores eletrônicos e termodinâmicos.

Parâmetros estéricos, de solubilidade e topológicos foram obtidos de vários programas, totalizando 87 variáveis. A seleção foi realizada pela matriz de correlação e pela Análise Hierárquica de Agrupamentos, HCA. Para a construção dos modelos foi utilizado método de Mínimos Quadrados Parciais, PLS, nos dados autoescalados.

O melhor modelo com 4 variáveis latentes (LVs), $59,88 \%$ de informação total e um outlier retirado, apresentou SECV de 0,6661, Rcal 0,9055 e Rval 0,7969 . As LVs foram formadas pelos descritores apresentados na tabela 1.

Para previsão foi utilizado um conjunto de cinco compostos selecionados dentre aqueles que apresentaram Leverage baixo e resíduos de Student variados. O erro médio de previsão foi de 10,98\% (Rprev 0,9235) o que foi considerado aceitável para um modelo de QSAR. Os resultados são detalhados na tabela 2.

Dentre as variáveis selecionadas, estão a razão de aromaticidade do substituinte R (ArRatio_R) destaca-se, pois fortalece a hipótese de uma importante interação hidrofóbica aromática nesta região ${ }^{4}$. A presença da carga parcial do oxigênio (qO1) que, quanto mais negativa, mais potente o
Tabela 1. Descritores selecionados, vetores de regressão (VR), LV's e contribuição especifica de cada descritor em cada LV

Descritore \mathbf{s}	VR	LV1	LV2	LV3	LV4
Parachor	0,4641	0,6586	$-0,1099$	$-0,4528$	$-0,2001$
X2Av	0,1810	0,0201	0,2585	$-0,1081$	0,8278
Ovalidade	0,2552	0,2309	$-0,1415$	0,3929	0,1389
ArRatio_R	0,4716	0,3504	0,1849	0,6000	$-0,2640$
V_ASA	0,3508	0,2141	0,3724	0,0763	0,0883
CF	$-0,4251$	$-0,4209$	-	0,2210	$-0,1934$
HOMO	0,1819	0,3510	-	$-0,0184$	0,1168
qO1	$-0,3540$	$-0,1399$	-	$-0,0872$	0,1244
qC1	0,1651	0,1549	$-0,2965$	0,4542	0,3339

Tabela 2. Resultado da previsão do modelo

Composto* *	pIC50 medido	pIC50 previsto	Resíduo	Erro (\%)
$\mathbf{4}$	7,07	6,53	0,53	7,56
$\mathbf{1 5}$	7,70	6,77	0,93	12,05
$\mathbf{1 7}$	4,78	6,05	$-1,27$	26,57
$\mathbf{2 2}$	5,60	5,94	$-0,34$	6,02
$\mathbf{3 6}$	6,79	6,61	0,18	2,69

*numeração dos compostos é a mesma utilizada na ref. 2.
inibidor, fortalece a hipótese ${ }^{5}$ do mecanismo de ação envolver coordenação com o cofator metálico Mg^{+2}. A presença do HOMO (energia do orbital molecular ocupado de maior energia) também fortalece a hipótese do ataque nucleofílico ao Mg^{+2}. Também há grande destaque para os descritores estéricos, indicando que o tamanho/forma dos inibidores influenciam a atividade.

Comichisoes

Pode-se concluir que os resultados fortalecem algumas das hipóteses sobre o mecanismo de ação dos inibidores de HIV-integrase. Porém, os fatores estéricos também têm grande influência, aumentando a importância da forma ou flexibilidade do sítio-ativo.

FAPESP (M.M.C.F.) e UNIOESTE (E.B.M.)

[^10]
Análise Conformacional e Interações Estereoeletrônicas em Mono-Haloacetonas e Tioacetonas

Jakelyne V. Coelho ${ }^{\mathrm{a}}$ (IC), Felipe R. Souza ${ }^{\mathrm{a}}$ (IC), Matheus P. Freitas ${ }^{\mathrm{a}, \boldsymbol{} \text { (}}$ (PQ).
${ }^{a}$ Departamento de Química, Universidade Federal de Lavras, C.P. 3037, 37200-000, Lavras, MG - Brasil. e-mail: matheus @ ufla.br
Palavras Chave: análise conformacional, hiperconjugação, halo-acetonas, halo-tioacetonas

DTLIO10] Gerge

Cetonas e tiocetonas α-substituídas são modelos úteis para avaliar efeitos que governam os equilibrios conformacionais de moléculas mais complexas.

O objetivo desse trabalho é avaliar teoricamente os efeitos que regem o equilíbrio conformacional de acetonas e tioacetonas mono-halossubstituídas, bem como comparar o efeito entre os halogênios (F , Cl, Br e l) e entre os sistemas $\mathrm{C}=\mathrm{O}$ e $\mathrm{C}=\mathrm{S}$ no isomerismo rotacional.

Os rotâmeros mais estáveis dos compostos em estudo foram determinados a partir dos mínimos nas superfícies de energia potencial (Fig. 1 e 2), obtidas em nível B3LYP/6-31g(d,p), (B3LYP/LANL2DZ para I). Os cálculos foram realizados utilizando o programa Gaussian 03W. ${ }^{1}$ Otimizações para os rotâmeros cis e gauche (cis e anti para os derivados de F) foram realizadas em nível B3LYP/aug-cc-pVTZ (aug-cc-pVTZ-PP para I), fornecendo as diferenças de energia da Tabela 1.
Tabela 1: $\Delta \mathrm{E}_{c-g}\left(\mathrm{kcal} \mathrm{mol}^{-1}\right)$ para os compostos em estudo $\Delta \mathrm{E}_{c-a}$ para os derivados de flúor.

	\mathbf{F}	$\mathbf{C l}$	$\mathbf{B r}$	\mathbf{I}
Cetonas	2,32	1,47	1,58	1,81
Tiocetonas	1,83	1,56	1,54	3,93

Pelas PES, pode-se observar que o mínimo de energia global desloca, tanto nas acetonas como nas tioacetonas, para um menor ângulo diedro X -C$\mathrm{C}=\mathrm{Y}(\mathrm{X}=$ halogênio, $\mathrm{Y}=\mathrm{O} / \mathrm{S}$), de acordo com o tamanho do halogênio. Isto se deve às repulsões γ entre CH_{3} e halogênio, isto é, quanto maior o halogênio, maior será a repulsão com o grupo metila e, portanto, menor $\theta_{x-c-c=\gamma \text {. Adicionalmente, quanto }}$ mais próximo de 90° for $\theta_{X-C-C=Y}$, mais efetivo será o overlap entre os orbitais σ_{c-x} e $\pi^{*}{ }_{c=y}$. Esta interação atrativa (hiperconjugação) favorece a forma gauche e é mais favorável na ordem $1>\mathrm{Br}>\mathrm{Cl}>\mathrm{F}$. Cálculos NBO^{2} suportam essas hipóteses, mostrando uma crescente energia de hiperconjugação $\sigma_{C-X} \rightarrow \pi^{*}{ }_{C=Y}$ na ordem $1>\mathrm{Br}>\mathrm{Cl}>\mathrm{F}$. No caso dos derivados de flúor, uma interação $L P_{F} \circ \circ^{*} \mathrm{C}$-H(metila) (ligação de H intramolecular) estabiliza a forma anti.

Figura 1. PES para as halo-acetonas.

Figura 2. PES para as halo-tioacetonas
Pelos resultados da Tabela 1, observa-se que os equilíbrios conformacionais de cetonas e tiocetonas têm perfis similares quando $X=F, \mathrm{Cl}$ e Br . Porém, quando $X=I$, a forma gauche na tioacetona é muito mais estabilizada do que na acetona, devido à grande repulsão entre S e I na forma cis e à importante interação hiperconjugativa $\sigma_{C-I} \rightarrow \pi^{*} \mathrm{C}=\mathrm{S}$ ($9,06 \mathrm{kcal} \mathrm{mol}^{-1}$, contra $7,83 \mathrm{kcal} \mathrm{mol}^{-1}$ na acetona).

F Fine cimentos

Os autores agradecem à FAPEMIG pela bolsa de IC e apoio financeiro (CEX 415/06).

[^11]
CALCULATIONS OF OPTICAL ROTATION FROM DENSITY FUNCTIONAL THEORY

Antônio Canal Neto* (PQ), Reinaldo Centoducatte (PQ), and Francisco Elias Jorge (PQ)
Departamento de Física, Universidade Federal do Espírito Santo, 29060-900 Vitória, Espírito Santo
canal@cce.ufes.br

Keywords: optical rotation, density functional theory, Gaussian basis sets. experimental values are underestimate, whereas for 2 the opposite occurs,
iv) the best mean absolute deviations among theoretical and experimental results were obtained with the B3LYP and B3P86/ADZP models [71.9 and $70.8^{0} /\left(\mathrm{dm} . \mathrm{g} / \mathrm{cm}^{3}\right)$, respectively].

1

2

3

Figura I. Stereochemical configurations.
Table I. Variation of $[\alpha]{ }_{0}{ }^{\text {a }}$ with density functional for molecules 1, 2, and 3.

Method ${ }^{\text {b }}$	1	2	3
B1LYP/ADZP	16.55	115.96	288.22
B3P86/ADZP	1.38	113.59	306.47
B3PW91/ADZP	-1.57	131.95	300.93
B3LYP/ADZP	17.73	117.96	291.09
G96PW91/ADZP	-32.64	160.24	318.06
MPW1PW91/ADZP	2.17	128.02	296.68
PBE1PBE/ADZP	10.60	131.07	303.07
HF/ADZP	-13.84	118.84	292.61
SIC/Vp ${ }^{2}$	-43.9	181.3	294.2
B3LYP/6-311++G(2d,2p) ${ }^{1}$	-11.49	117.32	-
Expt. ${ }^{1,4}$	57.6	81.0	430.0

Condulus ond

The ADZP basis sets ${ }^{3}$ and a wide variety of functionals were used to calculate ORs of three rigid chiral molecules. Our results show the importance of the choice of functional and equilibrium geometry in calculating OR. The B3LYP functional appears to be the most appropriate to calculate OR. The structure must be minimized at a high computational level and almost indistinguishable from that used to compute OR.

CAPES

[^12]
BROOKS TERM: LINK BETWEEN AD HOC AND AB INITIO TREATMENTS OF ORBITAL MAGNETISM WITHIN DENSITY FUNCTIONAL THEORY

Juliana M. Morbec ${ }^{1 *}$ (PG), Klaus Capelle ${ }^{1}$ (PQ)
${ }^{1}$ Departamento de Física e Informática, Instituto de Física de São Carlos, Universidade de São Paulo, Caixa Postal 369, 13560-970, São Carlos, SP, Brazil
*imorbec@yahoo.com.br

Orbital magnetism, density functional theory, Brooks term, strong magnetic field.

Thloovichor

Electronic-structure calculations for magnetic systems are commonly performed within the framework of spin density functional theory (SDFT). ${ }^{1}$ However, since SDFT accounts only for spin polarization, these calculations give the orbital magnetic moment induced by spin-orbit coupling, up to 50% too small compared to experiment. ${ }^{2}$

An alternative to solve this problem consist in including the so-called Brooks term or orbital polarization term ${ }^{3,4}$ in the SDFT KohnSham Hamiltonian. This procedure has improved the description of magnetic properties of solids. Nevertheless, the Brooks term is not an explicit density functional and its inclusion in SDFT calculations is not based on a Hohenberg-Kohn theorem.

In the present work, this term is deduced from current density functional theory (CDFT), ${ }^{5,6}$ thus establishing a link between the treatment of orbital magnetism using the Brooks term and that using CDFT. This link provides a theoretical foundation for the use of the Brooks term in KohnSham calculations, and establishes this term as an approximation to the CDFT exchangecorrelation functional.

Density Functional Theory (DFT) ${ }^{7}$ is a formulation of many-body quantum theory which provides a systematic way to map the many-body problem onto a single-body problem, treating the electronic density $n(r)$ as principal variable. Practical DFT consists in the selfconsistent solution of nonlinear equations of independent particles (the Kohn-Sham equations) that replace the linear equation of interacting particles (Schrödinger equation).

The success of DFT has had in calculations of the electronic structure of materials stimulates attempts to apply its formalism to more general systems, for example systems in the presence of strong magnetic fields. However, the original formulation of DFT is
unable to treat the interaction of magnetic fields with electrons because the original HohenbergKohn theorem does not hold in the presence of magnetic fields.

To treat with external magnetic fields, two generalizations of DFT were developed: SDFT ${ }^{1}$ and CDFT. ${ }^{5,6}$ SDFT deals with the interaction of magnetic fields with electronic spin, by including the Zeeman term in the Hamiltonian and considering the ground-state observables as functionals of the charge density $n(r)$ and spinmagnetization density $\boldsymbol{m}(r)$. CDFT takes into account the coupling of the magnetic field to the orbital currents and establishes that ground-state observables are functionals of the charge density $n(r)$ and paramagnetic current density $\boldsymbol{j}_{p}(r)$. Therefore, CDFT is a promising approach to treat systems in the presence of strong magnetic field.

For systems where the orbital magnetism is due to an open d-electron shell, the Brooks term describes a shift in orbital energy in terms of a Racah parameter ${ }^{8}$ and the average orbital angular moment for the m_{s}-spin subsystem.

Since CDFT treat the orbital magnetism in open-shell atoms, the aim of this present work is to establish a relation between the operator that corresponds to this energy shift and the CDFT Hamiltonian.

This work is supported by FAPESP and CNPq.

[^13]
ESTUDO COMPARATIVO DA ESTABILIDADE TERMODINAMMICA DE ISÔMEROS DA GluTATIONA EM SOLUÇÃO AQUOSA UTILIZANDO QM/MM SEQÜENCIAL.

Fábio Pedruci (IC), Eduardo de Faria Franca (PG) e Luiz Carlos Gomide Freitas* (PQ).
Laboratório de Química Teórica, Departamento de Química, Universidade Federal de São Carlos. Caixa Postal 676, 13565-905 - São Carlos - SP - Brasil. * gomide@dq.ufscar.br

Palavras Chave: Glutationa,QM/MM Seqüencial, Dinâmica Molecular, Calor de Formação, Energia de Solvatação. estar relacionada com outros fatores que não a estabilidade termodinâmica em solução. Uma possível explicação pode estar na ação de enzimas proteolíticas.
Figura 1: Glutationa Canônica (acima) e
Glutationa é um tripeptídeo hidrossolúvel linear constituído pelos aminoácidos glicina, ácido glutâmico e cisteína, com importante função antioxidante Apresenta-se nas formas reduzidas, GSH, e oxidada, GSSG, sendo esta obtida através de uma ligação S-S envolvendo grupos -S-H das cisteínas. O inusitado é que no tripeptídeo utilizado na natureza, a adição da cisteína é realizada através do radical do ácido glutâmico, dando origem ao isômero natural, em contraposição ao aqui denominado canônico, obtido através da ligação peptídica normal ${ }^{1}$. Objetivando comparar a estabilidade termodinâmica destes compostos, realizamos simulações de dinâmica molecular com GROMACS ${ }^{2} /$ OPLS 3 para gerar conformações do isômero natural e do canônico da glutationa em fase aquosa. Geometrias destes tripeptídeos foram utilizadas para calcular calor de formação e energia livre de hidratação com o programa AMSOL ${ }^{4}$. Estes e outros resultados foram utilizados para comparar a estabilidade relativa das formas natural e canônica do tripeptídeo em solução aquoso. Na Figura 1 apresentamos geometrias da forma canônica e natural destes tripeptídeos,

Valores médios obtidos para o calor de formação e energia livre de hidratação das duas formas de glutationa são apresentados abaixo,

Calor de Formação ΔH_{f}

Glutationa Natural: -195 kcal/mol Glutationa Canônica: - $170 \mathrm{kcal} / \mathrm{mo}$ Energia Livre de Solvatação, $\Delta \mathbf{G}_{\mathbf{f}}$ Glutationa Natural: $-120 \mathrm{kcal} / \mathrm{mol}$ Glutationa Canônica - $155 \mathrm{kcal} / \mathrm{mol}$ Definindo a energia total como a soma ($\Delta \mathrm{H}_{\mathrm{f}}+$ $\Delta \mathbf{G}_{\mathrm{f}}$), observa-se que a forma canônica é $10 \mathrm{kcal} / \mathrm{mol}$ mais estável em solução. Os valores de RMSD obtidos foram de 0.19 nm (natural) e de 0.23 nm (canônica), o que permite inferir que existe pouca diferença na flexibilidade destas duas cadeias em solução. Logo, a predominância da forma natural nos processos bioquímicos deve

Natural (abaixo)

Resultados termodinâmicos obtidos com QM/MM seqüencial para o isômero canônico e o natural da Glutationa não são conclusivos para explicar a predominância do isômero natural nos processos bioquímicos. Dados recentes indicam que peptídeos pequenos são destruídos por enzimas proteolíticas. Logo, diferenças estruturais inerentes ao isômero natural devem dificultar o reconhecimento do mesmo pelas peptases intracelulares e, conseqüentemente, viabilizando a utilização deste tripeptídeo nos processos bioquímicos.

Os autores agradecem à FAPESP e CNPq pelo auxilio financeiro.

[^14]
THE ISOTOPIC DIPOLE MOMENT OF MONODEUTERATED WATER

*Denise Assafrao ${ }^{1}$ (PG), José Rachid Mohallem ${ }^{1}$ (Pq)
${ }^{1}$ Laboratório de Átomos e Moléculas Especiais, ${ }^{2}$ Departamento de Física, ICEx, Universidade Federal de Minas Gerais dassafrao@fisica.ufmg.br

Palavras Chave: Isotopic Dipole Moments, Monodeuterated Water.

The observation of deuterated molecules, the so called hydrogen isotopologues, has received much attention in astrophysics and has been important in many other fields of molecular sciences .
An adiabatic variational approximation [1] is used here to study the monodeuterated water molecule, HDO, accounting for the isotopic effect. The isotopic dipole moment, pointing from D to H, is then calculated for the first time, yielding (1.5 ± 0.1) $\times 10-3$ Debye, being helpful in the interpretation of experiments [2].

Nosel 1 TS

To calibrate our approach, we started calculating the isotopic dipole moment of HD on different levels of electronic calculations. The first tests show us a small variation with methods, namely SDCI, MP2 and CCSD. On the other hand, we noted a strong dependence on the basis set. We verified that no single basis set can account for the exact behavior of μ versus R, reported in Thorson et al [3] and Ford and Browne [4], for all R. We thus designed a special basis set to reproduce the behavior of $\mu(\mathrm{R})$ around the equilibrium geometry, see figure 1.

We then turn to HDO, performing SDCI, MP2 and CCSD calculations of its dipole moment pointing from D to H. We use our designed basis set for H and D, and the aug-cc-pVTZ [5] basis set for oxygen. As shown in figure 2, the atomic coordinates were taken with the oxygen atom at the origin and the two hydrogen isotopes in the ZX plane, Z being the symmetry axis of H 2 O . For the equilibrium geometry of HDO obtained here, that is, $\theta=104.3^{\circ}, \mathrm{ROH}=1.822$ a.u. and $\mathrm{ROD}=1.821$ a.u., we found the CISD value of $\mu_{\mathrm{x}}=1.468 \times 10-3$ Debye. Considering the difference of about 3% from SDCI to CCSD or MP2, as showed in the figure 3, and assuming an identical basis set error as for HD, yielding a total error of 6%, we propose $\mu_{\mathrm{x}}=(1.5 \pm 0.1) \times 10-3$ Debye as the isotopic dipole moment of HDO at equilibrium geometry, about twice as large as that for HD.

[^15]

Figura 1. Comparison of the isotopic dipole moment of HD obtained in this work (continuous line) and the exact calculation (dotted) [4].

Figura 2. The HDO molecule with the coordinate frame XY used in this work and the a and b inertial axes considered in experiments. The isotopic dipole moment μx is also shown (not to scale)

Figura 3. Isotopic dipole moment of HDO versus bond angle for three methods.

We have obtained the isotopic moment dipole for the HDO molecule within different electronic levels with good convergence of the results. Theoretical evaluation of quantities can open interesting possibilities concerning rotational spectroscopy of molecules that have no net dipole in their normal composition, but can display a small dipole moment upon deuteration. This possibility looks particularly interesting to astrophysics.

Supported by CNPq, Capes and Fapemig.

Aluminosilicate Nanotubes: ImOGOLITE

Luciana Guimarães (PG), ${ }^{\text {¹ }}$ Andrey N. Enyashin (PQ), ${ }^{2}$ Thomas Heine (PQ), Hélio A. Duarte(PQ), ${ }^{1}$ Gotthard Seifert (PQ) ${ }^{2}$

*ucianaguimaraes@ufmg.br
1-Grupo de Pesquisa em Química Inorgânica Teórica, DQ, UFMG- 31.270-901 Belo Horizonte, MG, Brazil
2-Department of Physical Chemistry, Technische Universität Dresden, D-01062 Dresden, Germany 3-Institute of Solid State Chemistry, RAS, 620041 Ekaterinburg, Russia
Key-words: Inorganic Nanotubes, strain energy, DFTB, aluminosilicate, XRD, electronic properties

Introduction

Aluminosilicate mineral imogolite is composed of single walled nanotubes (NTs), naturally occurring in soils of volcanic origin with a stoichiometry of $(\mathrm{HO})_{3} \mathrm{Al}_{2} \mathrm{O}_{3} \mathrm{SiOH}^{1}$ (Figure 1). The main feature of these tubes is their monodispersiveness, which makes them unique compared to "synthetic" nanotubes and attractive for the design of nanomaterials with well-defined physicochemical properties. ${ }^{2}$ Internal and external hydroxyl groups offer interesting applications as proton conductors or catalysts.
We calculated structure, stability, electronic and mechanical properties of imogolite nanotubes using the self-consistent charge density-functional based tight-binding (SCC-DFTB) method. Periodic boundary conditions were applied to the cells along tubes axes. Zigzag $(8,0) \ldots(19,0)$ and armchair $(5,5) \ldots(14,14)$ imogolite tubes with diameters ranging from 14 to $40 \AA$ have been studied.

Figure 1 - Axis view of Imogolite nanotube

The highest stability of all studied imogolite tubes has $(12,0)$ chirality. In contrast to conventional nanotubes, the stability decreases for larger radii (Figure 2).

Figure 2. Calculated strain energies $E_{\text {str }}$ as a function of the radius R for zigzag and armchair NTs.

These results are in full agreement with experimental data, as shown by comparison with the simulated XRD spectra. The Young's modulus of imogolite nanotubes are about 240 GPa , similar to those of other inorganic nanotubes ($\mathrm{MoS}_{2}, \mathrm{GaS}$, chrysotile). An analysis of the electronic densities of states shows that all imogolite tubes, independent on their chirality and size, are insulators with a band gap of $\sim 10 \mathrm{eV}$.

FPMCunalusions

A minimum in the strain energy is observed for $(12,0)$ NT, not detected for carbon and inorganic NTs. Armchair NTs, not detected in experiments, were also investigated, with $(8,8)$ configuration as the most stable, but less stable then zigzag $(12,0)$ NT. Our results extend the theoretical understanding of imogolite NTs, in perspective of potential applications.

The authors acknowledge financial support from CAPES, in cooperation with DAAD, FAPEMIG and CNPq.

[^16]
Structural properties of Aluminosilicate layer: Protoimogolite

Luciana Guimarães (PG), ${ }^{* 1}$ Mathias Rapaciloi (PQ), ${ }^{2}$ Andrey N. Enyashin (PQ), ${ }^{2,3}$ Thomas Heine (PQ), ${ }^{2}$ Hélio A. Duarte(PQ), ${ }^{1}$ Gotthard Seifert (PQ) ${ }^{2}$
*lucianaguimaraes@ufmg.br
1-Grupo de Pesquisa em Química Inorgânica Teórica, DQ, UFMG- 31.270-901 Belo Horizonte, MG, Brazil
2-Department of Physical Chemistry, Technische Universität Dresden, D-01062 Dresden, Germany, 3-Institute of Solid State Chemistry, RAS, 620041 Ekaterinburg, Russia

Key-words: Protoimogolite, Imogolite, SCC-DFTB, M.O. and geometry optimization,

Introduction

Imogolite is a mineral composed of naturally aluminosilicate nanotubes. It is found in soils of volcanic origin and can also be synthesized. The structure of imogolite was proposed by Cradwick et al. ${ }^{1}$; the tube walls consist of silanol groups ($\equiv \mathrm{Si}-\mathrm{OH}$) connected to a gibbsite octahedral framework. Protoimogilite is an aluminosilicate with the same stoichiometry of imogolite: $(\mathrm{OH})_{3} \mathrm{Al}_{2} \mathrm{O}_{3} \mathrm{SiOH}$. The term protoimogolite is used to define the product obtained when the closure of aluminosilicate layer into a tube does not occur, and protoimogolite as growing sheet is a precursor to imogolite. Although the closure does not occur in protoimogolite, does the layer bends spontaneously? And if so, which layer size is necessary to start this bending?
In order to investigate the behavior of protoimogolite layer and also contribute to the understanding of imogolite formation, we carried out Self-Consistent-Charge Density-Functional based Tight Binding calculations (SCC-DFTB) on initially planar protoimogolite models. To avoid technical problems encountered with the traditional solving of the electronic system, we have developed a method which optimizes MO coefficients and nuclear position simultaneously.

Results and Discussion

1. Developed Method

In the SCC-DFTB method, the electronic system is solved self-consistently in a Roothaan like scheme. For some molecules, like planar protoimogolite layer, this procedure fails to converge due to oscillations of the electronic density. This problem disappears if the electronic energy is searched by direct minimization. In that purpose, we performed a Car Parrinello like dynamics with adaptative time step. A fictitious thermostat removes kinetic energy to the degrees of freedom identified to be close to a minimum.

2-Protoimogolite

The simulations were performed for planar protoimogolite models: stripes, with different
lengths, and rectangular layer (Figure 1). Dangling bonds on oxygen atoms were saturated with hydrogen or hydroxyl groups.
The simulations show for all models studied, spontaneous bending of the initially planar layers forming curved structures, as U shape, due to the geometrical mismatch of bond lengths. Structural changes are compared and discussed. The same spontaneous bending is not observed in gibbsite layer.

Figure 1- Planar protoimogolite models: rectangular layer and stripe (highlighted).

Comarions

Spontaneous bending forming curved structures are observed for planar protoimogolite models. It occurs due to the misfit caused by bonding orthosilicate anion in gibbsite sheet, resulting in shortening of $\mathrm{O}-\mathrm{O}$ distances around AlO_{6} octahedral site.
From the computational point of view, the new optimization procedure is faster than standard steepest descent. Taking advantage of the high level of sparsity in big systems is expected to make this process scaling linearly with the system size.

Achnownoromem

CAPES, in cooperation with DAAD, FAPEMIG and CNPq.

[^17]
ESTUDO TEÓRICO QUÍMICO-QUÂNTICO DE METALOPORFIRINAS PARA ATUAREM NA ELETROCATÁLISE DE O \mathbf{O}_{2} PARA APLICAÇÃO EM CÉLULAS COMBUSTÍVEIS

Cleuton de S. Silva (PG) ${ }^{1 *}$, Kelson M. T. de Oliveira (PQ) ${ }^{1}$, Raimundo R. Passos (PQ) ${ }^{1}$
*cleuton@walla.com
1- Universidade Federal do Amazonas, Laboratório de Química teórica e computacional, Av. Gal. Rodrigo Octávio Jordão Ramos, 3000 - Coroado, Setor Sul do Campus Universitário, 69077-000 Manaus, AM.
Palavras Chave: Porfirinas, eletrocatálise, b3lyp.

Uma das grandes preocupações que afligir a nossa sociedade é a preocupação com aquecimento global, que se deve a queima de combustível fosseis, para suprir ir as necessidades energéticas da nossa sociedade. Uma das alternativas para diminuir o problema do aquecimento é a substituição das atuais fontes de energia, por novas alternativas de fontes energéticas, como por exemplo, as células combustíveis que são menos poluentes que fontes de energia tradicionais.

Uma célula combustível pode ser considerada como uma tecnologia que utiliza o hidrogênio e o oxigênio, tendo como grande objetivo a geração de eletricidade com alta eficiência, gerando também vapor d'água quente resultante do processo químico na célula a combustível. Pode-se dizer que a grande importância de uma célula combustível está na sua alta eficiência e na ausência de emissão de poluentes quando se utiliza o hidrogênio puro.

O grande problema das células eletroquímicas, esta no processo da quebra das ligações de O_{2}, os atuais eletrodos que são feitos de platina têm dificuldade para quebra o O_{2}, isso acaba dificultando o processo eletroquímico.

Uma das alternativas para melhoria do processo na quebra da ligação de O_{2}, é uso de metaloporfirinas como catalisadores, para então aumentar a eficiência da célula' combustível, onde as porfirinas podem ser usadas para melhorar os atuais catalisadores.

Foram realizados cálculos em DFT, com Funcional b3lyp com uma base de 3-21G*, em plataforma windows, no programa Gaussian ${ }^{\text {TM }}$ 2003. Vários metais foram utilizados, sendo que os metais Ni^{+2}, $\mathrm{Si}^{+4}, \mathrm{Sn}^{+4}, \mathrm{Ge}^{+4}$ apresentaram os melhores resultados. As porfirinas com estes metais (Fig 01) apresentaram grande interação com a molécula de O_{2}, a ponto de haver quebra da ligação $\mathrm{O}-\mathrm{O}$, especialmente no caso do átomo de silício, o se mostra interessante no processo de eletrocatálise.

(a)
o

(b)

Figura 1. (a) Metaloporfirina interagindo com $\mathrm{O}_{2} \mathrm{e}$ (b) Metaloporfirina após a quebra da ligação O_{2}

Tabela 1. Distâncias interatômicas (em \AA) entre o metal da porfirina e a molécula de O_{2}.

M	$\mathrm{M}-\mathrm{O}$	$\mathrm{O}-\mathrm{O}$
Ni^{+2}	1,902	1,480
Si^{+4}	1,690	1,530
Sn^{+4}	2,036	1,520
Ge^{+4}	1,840	1,538

Os resultados mostram que os metais utilizados no modelo, são capazes de quebrar a ligação dupla da molécula de O_{2}, tendo como base o valor de uma ligação dupla de O_{2} (em torno de $1,21 \AA$). Os valores encontrados são muito superiores com os metais utilizados, como se pode ver pela tabela 1, esses resultados mostram que metaloporfirinas são capazes de atuar no processo de eletrocatálise, se mostrando como viáveis alternativas.

Os resultados estruturais mostram que as metaloporfirinas formadas com $\mathrm{Ni}^{+2}, \mathrm{Si}^{+4}, \mathrm{Sn}^{+4}$. Ge^{+4}, são capazes de quebrar a ligação $\mathrm{O}-\mathrm{O}$, e pode ser utilizado para promover eletrocatálise em células combustíveis.

Fundo de Amparo a Pesquisa no Estado do Amazonas (FAPEAM), Conselho Nacional de Pesquisa (CNPq), CAPES
${ }^{1}$ Ticianelli, E. A.; Camara, G. A.; Santos, L. G. R. A.; Quim. Nov., 2005, 28, 664.
${ }^{2}$ Collman, J. P.; J. Am. Chem. Soc, 1980, 102, 6027.
${ }^{3}$ Collman, J. P.;, Boulatov, R.; Sunderland C. J.; Shiryaeva I. M.; Berg K. E., J. Am. Chem. Soc., 2002, 124, 1067.
${ }^{4}$ Wendt, H.; Gotz, M.; Linardi, M.;, Quím. Nov., 2000, 23, 538

CONTRACTED GAUSSIAN BASIS SETS FOR DOUGLAS-KROLL-HESS CALCULATIONS

Francisco E. Jorge (PQ) ${ }^{*}$, Antônio Canal Neto (PQ), Giuseppi G. Camilleti (PG).

Departamento de Física, Universidade Federal do Espírito Santo, 29.060-900, Vitória, ES.
*jorge@cce.ufes.br
Key words: contracted basis set, $\operatorname{CCSD}(T)$, relativistic effect.

ThMoramion

In the field of quantum chemistry there is an increasing interest in incorporating relativistic effects into calculations. The best approach to incorporate relativistic effects would be to perform calculations using the fully relativistic Dirac Hamiltonian. The Douglas-Kroll-Hess (DKH) method ${ }^{1,2}$ has been shown to recover most of the scalar relativistic effects at a considerable smaller computational cost.
In this work, in order to incorporate systematically the scalar relativistic effects from the DKH Hamiltonian, we have recontracted the double ${ }^{3}$, triple and quadruple ${ }^{4}$ zeta quality plus polarization function ($X Z P, X=D, T$, and Q) basis sets for the elements $\mathrm{H}-\mathrm{Ar}$ and the DZP^{5} basis set for $\mathrm{K}-\mathrm{Kr}$ recently developed by Jorge et al. From the recontracted basis sets, DKH second order scalar relativistic (DKH2) effects on the ionization energies of the first-, second-, and third-row atoms were calculated.

The atomic calculations were carried out with the Gaussian 03 code. To re-optimize the contraction coefficients of the $X Z P^{3-5}$ basis sets, a subroutine was developed by our research group and, then, coupled to the Gaussian 03 program.
It is known that the use of contraction coefficients generated using the nonrelativistic (NR) Schrödinger Hamiltonian for elements beyond firstrow in the periodic table will produce erroneous results ${ }^{6}$. Therefore, we have developed 'DK contracted' XZP basis sets that incorporate the radial changes in the wave function due to relativistic contraction and expansion of core and valence orbitals. The exponents are taken from the nonrelativistic $X Z P^{3-5}$ basis sets. We used the same contraction scheme as in the original contracted basis sets, i.e., only the values of the contraction coefficients were changed.
In Table I, NR and relativistic coupled-cluster with single, double, and perturbative triple excitation [CCSD (T)] ionization energy calculations of the halogenes are presented. The NR calculations were done using the standard published contraction coefficients ${ }^{3,5}$, i.e., with the basis set defined as DZP-NR. For the DKH2 calculations, we used the
contraction coefficients generated using the DKH2 Hamiltonian (DZP-DKH2 basis set). These results were compared with the experimental data ${ }^{7}$.
Table I shows that sufficient accuracy can be obtained with standard basis set for F [see relativistic effects in parentheses], but for Br , one verifies that it is indispensable to take into account the relativistic effects. The third-row corrections are approximately four and three times larger than the values for the first- and second-row atoms, respectively. This increase in the magnitude of scalar relativistic correction from first- and secondto third-row elements was as expected.

Table I. Ionization energies (in eV) calculated in this work using $\operatorname{CCSD}(\mathrm{T})$ in combination with the DZP-NR and -DKH2 basis sets. The scalar relativistic effects are noted in parentheses.

Atom	DZP-NR	DZP-DKH2	Experimental 7
F	18.368	$18.354(-0.014)$	17.430
Cl	12.969	$12.952(-0.017)$	12.973
Br	11.526	$11.469(-0.057)$	11.820

We have constructed accurate and reliable basis sets for the atoms from H to Kr to carry out DKH atomic and molecular calculations. From these basis sets, we have calculated the scalar relativistic effect of DKH2 at the $\operatorname{CCSD}(T)$ level on the ionization energies for the first-, second-, and thirdrow atoms. It is found that for third-row elements, it is necessary to include scalar relativistic corrections in the calculations.

CNPq, CAPES

[^18]
HIPERPOLARIZABILIDADE SEMI-EMPÍRICA DE OLIGOACENOS

Marconi Bezerra da Silva Costa ${ }^{1 *}$ (IC), Antonio Carlos Pavão ${ }^{1}$ (PQ).
${ }^{1}$ Universidade Federal de Pernambuco, Centro de Ciências Exatas e da Natureza, Departamento de Química Fundamental, 50670-901, Recife, Brasil.
*marconi.costa@ufpe.br

Palavras Chave: hiperpolarizabilidade, oligoacenos, AM1/TDHF.
pares doador/receptor (2D/2R); um grupo doador e dois grupos receptores ($\mathrm{D} / 2 \mathrm{R}$); dois grupos doadores e um grupo receptor (2D/R); dois grupos receptores (2R); dois grupos doadores (2D); um grupo receptor (R).

O grupo receptor é o dicianoetenil $\left(\mathrm{CHC}(\mathrm{CN})_{2}\right)$, e o grupo doador é a dimetilamina $\left(\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}\right)$.

Na figura 2 é apresentado o gráfico da segunda hiperpolarizabilidade estática em função do número de anéis nos sistemas, para as diferentes combinações de grupos D/R.

Figura 2. Segunda hiperpolarizabilidade estática para os sistemas contendo diferentes combinações de grupos D/R. ' n ' é o número de anéis.

Dentre as diferentes combinações de grupos D / R investigadas, a mais eficiente apresenta dois grupos receptores e dois grupos doadores (2D/2R). β apresenta um crescimento linear com o número de anéis, enquanto que γ apresenta um crescimento exponencial.

PIBIC/UFPE/CNPq.

[^19]
Fatores de impacto na Magnitude das Hiperpolarizabilidades β e γ de Oligoacenos. Um Estudo Quimiométrico.

Marconi Bezerra da Silva Costa ${ }^{1 *}$ (IC), Antonio Carlos Pavão ${ }^{1}$ (PQ).
${ }^{1}$ Universidade Federal de Pernambuco, Centro de Ciências Exatas e da Natureza, Departamento de Química Fundamental, 50670-901, Recife, Brasil.
*marconi.costa@ufpe.br
Palavras Chave: hiperpolarizabilidade, quimiometria, oligoacenos.

Thl formean

A pesquisa de novos materiais orgânicos com coeficientes ópticos não lineares otimizados é fundamental para o desenvolvimento de dispositivos mais eficientes para uso em optoeletrônica e fotônica ${ }^{1}$. Materiais orgânicos emergiram como uma importante classe de materiais ópticos não lineares, que oferecem tanto oportunidade para a pesquisa básica quanto para aplicações tecnológicas ${ }^{2}$.

Neste trabalho, foram modelados oligômeros doador/receptor do poliaceno: do benzeno ao decaceno. As estruturas foram completamente otimizadas com o hamiltoniano AM1 (Austin Model I), e o cálculo das hiperpolarizabilidades β e γ foi realizado através do método TDHF (TimeDependent Hartree-Fock), como implementado no código computacional MOPAC2000 ${ }^{3}$. Para a análise multivariada dos dados foram considerados os seguintes parâmetros: o gap HOMO-LUMO de energia, o momento de dipolo no estado fundamental, o potencial de ionização, o número de anéis no sistema e o número de elétrons π.

Na figura 1 é apresentada a curva de dispersão para os descritores teóricos selecionados.

Figura 1. Curva de dispersão para os descritores teóricos dos sistemas investigados.

Verifica-se uma alta correlação positiva de β e γ com o número de anéis na ponte, com o momento de dipolo e com o número de elétrons π. Observa-se ainda uma alta correlação negativa de β e γ com o gap HOMO-LUMO e com o potencial de ionização. As componentes PC1 e PC2 explicam mais de 93\% da variância.
Os resultados estão de acordo com o modelo simplificado de dois níveis baseado em teoria de perturbação, que prevê uma relação inversa entre β e o gap HOMO-LUMO.

Na figura 2 á apresentado o gráfico da PC1 versus PC2.

Figura 2. Gráfico da PC1 versus PC2. Número de anéis nos sistemas: 1 anel, 2 anéis, 3 anéis, 4 anéis, 5 anéis, 6 anéis, $\mathbf{7}$ anéis, 8 anéis, 9 anéis e 10 anéis, respectivamente.

(0) $0101 / 4 \mathrm{CT} 4$

Os parâmetros de maior impacto na magnitude das hiperpolarizabilidades β e γ para esta classe é o número de anéis no sistema e o gap HOMOLUMO de energia. Outros fatores como simetria, força dos grupos doador/receptor e planaridade da cadeia também devem ser considerados.

PIBIC/UFPE/CNPq.

[^20]
ESTUDO DAS HIPERPOLARIZABILIDADES β E γ DE DERIVADOS DO TETRAETENILETENO

Karina A. Barros* (IC), Ana Elizabete de A. Machado (PQ).
Departamento de Química Fundamental, CCEN, Universidade Federal de Pernambuco, 50670-901, Recife, Brasil.
Karina.abarros@ufpe.br
Palavras Chave: Hiperpolarizabilidades β e γ, materiais ópticos não lineares.

4\% Minlodneato

A pesquisa de novos materiais que apresentam propriedades ópticas não lineares é de fundamental importância para o desenvolvimento de novas tecnologias ${ }^{1}$. Tykwinsk et al. ${ }^{2}$ demonstraram que séries de moléculas derivadas do tetraetenileteno (TEE), que são constituídas por ligações π-conjugadas (duplas e triplas ligações), apresentam valores experimentais elevados da hiperpolarizabilidade γ. Em adição, apresentam estabilidade química em atmosfera típica de laboratório, e uma alta estabilidade térmica.

Neste trabalho foram modelados derivados do TEE (Fig. 1) para a otimização das respostas não lineares β e γ, através da introdução de grupos doador(D) e receptor (R) de elétron na estrutura deste sistema.

Os valores das magnitudes β e γ foram obtidos através da metodologia AM1/TDHF (Austin I/Time Dependent Hartree-Fock) ${ }^{3,4}$.

Os grupos substituintes selecionados neste trabalho são o metil $\left(\mathrm{CH}_{3}\right)$, o fenil $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)$, a fenilanilina ($\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}$), a dimetilanilina ($\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}$), a dietilanilina ($\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}$), a dipropilanilina ($\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}$), a dicosilanilina ($\mathrm{C}_{46} \mathrm{H}_{80} \mathrm{~N}$), o dicianoetil $\left(\mathrm{C}_{3} \mathrm{HN}_{2}\right)$, o metoxi $\left(\mathrm{OCH}_{3}\right)$, o etoxi $\left(\mathrm{OC}_{2} \mathrm{H}_{5}\right)$, o silicio-isopropil [Si(i-Pr) $)_{3}$, o dicianoetenil $\left(\mathrm{C}_{6} \mathrm{HN}_{2}\right)$, a formila (COH), e o metoxi-metila $\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}\right)$.

A introdução dos grupos D e R nos derivados (sistemas 2-13) investigados polarizou a estrutura do sistema TEE, resultando em valores elevados para as hiperpolarizabilidades β e γ em contraste com o observado para o sistema 1, isto é, o TEE não substituído. Os sistemas 2 e 10 apresentam as maiores magnitudes da hiperpolarizabilidade β (Fig. 2). Os grupos substituintes do sistema 2, que é derivado da estrutura III, são o metil, o fenil, o silício-isopropil e o dicianoetenil. Para este sistema, o valor calculado de β é 1269.10^{-30} esu a 1770 nm . O sistema 9 , derivado da estrutura II, tem o melhor desempenho em relação à γ, cujo valor é 265285.10^{-36} esu a 1378 nm ; este sistema contém os grupos dicosilanilina e o dicianoetenil.

Figura 2. Valores AM1/TDHF da hiperpolarizabilidade β.

(I)

(III)
Figura 1. Estruturas dos sistemas investigados.

Conclusóes

Os resultados obtidos são promissores, e demonstram que os derivados de TEE modelados apresentam potencial uso para a manufatura de dispositivos opto-eletrônico e fotônico.

W. Armarermilatos

Propesq/UFPE, CNPq, FACEPE.

[^21]
ESTUDO DA PRIMEIRA E SEGUNDA HIPERPOLARIZABILIDADE PARA DERIVADOS DE TETRAETENILETENO

Karina A. Barros ${ }^{1 *}$ (IC), Ana Elizabete de A. Machado ${ }^{2}(\mathrm{PQ})$,Antonio Carlos Pavão (PQ) Karina.abarros@ufpe.br

Palavras Chave: Óptica não linear, hiperpolarizabilidade β e γ.

THACOMCEQ

A pesquisa de novos materiais que apresentam propriedades ópticas não lineares é de fundamental importância para o desenvolvimento de novas tecnologias ${ }^{1}$. Propriedades como: a transparência, a estabilidade, elevada suscetibilidades, a resistência térmica e a processabilidade são de fundamental importância para a fabricação de dispositivos ópticos não lineares. Tykwinsk et al ${ }^{2}$, demonstram que os derivados de Tetraetenileteno (TEE), apresentam estabilidade térmica e possui comportamento inerte a atmosfera de laboratório. Estas moléculas orgânicas são constituídas por ligações π conjugadas (duplas e triplas ligações) que influência na polarização do sistema, contribuindo para os valores elevados das hiperpolarizabilidades β e γ. Neste trabalho foram modelados derivados do tetraetenileteno (TEE) para otmização de resposta não linear β e γ, e investigado a influência de pares doador (D) e receptor (R) de elétrons no valor destas magnitudes. Os grupos substituintes investigados neste trabalho são: o metil $\left(\mathrm{CH}_{3}\right)$, o fenil $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)$, a fenilanilina ($\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}$), a dimetilanilina $\left(\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}\right)$, a dietilanilina ($\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}$), a diproppilanilina $\left(\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{~N}\right)$, a icosilanilina $\left(\mathrm{C}_{46} \mathrm{H}_{80} \mathrm{~N}\right)$, o dicianietil $\left(\mathrm{C}_{3} \mathrm{HN}_{2}\right)$, o metoxi $\left(\mathrm{OCH}_{3}\right)$, o etoxi $\left(\mathrm{OC}_{2} \mathrm{H}_{5}\right)$ o silicio-isopropil [Si (i-Pr) $)_{3}$, o dicianoetenil $\left(\mathrm{C}_{6} \mathrm{HN}_{2}\right)$, a formila (COH), e o metoxi-metila $\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}\right)$. As respostas de β e γ são obtidas através da metodologia AM1/TDHF (Austin I/Time Dependent Hartree-Fock) ${ }^{4}$.A metodologia foi avaliada em relação à β e a γ para uma serie de moléculas orgânicas conjugadas do tipo doador receptor ou D/R.Que foram caracterizadas experimentalmente na literatura ${ }^{\text {1a,1b,5 }}$.

A introdução do par D / R nos sistemas investigados resultou em valores elevados para hiperpolarizabilidades de β e γ, em comparação com os resultados obtidos para o sistema sem os substituintes D e R. O segundo e o décimo segundo sistemas foram os que apresentaram, maiores magnitudes nas respostas das hiperpolarizabilidades.Os grupos substituintes utilizados nestas estruturas foram:o metil $\left(\mathrm{CH}_{3}\right)$, o fenil $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)$, o Silicio-isoprpil $\mathrm{Si}(\mathrm{i}-\mathrm{Pro})_{3}$ e o dicianoetenil $\left(\mathrm{C}_{3} \mathrm{HHN}_{2}\right)$. Onde foi obtido o valor de
86.10^{-30} esu para o β estático e 1308. 10^{-36} esu para γ estático. A estrutura não substituída apresenta o valor de $0,2.10^{-30}$ esu para β estático e para γ o valor de 564.10^{-36} esu. Demonstrando desta forma a influência do par D/R no valor das magnitudes das β e γ.

Figura 1. Valores das hiperpolarizabilidades de $\beta_{0}\left(10^{-30}\right.$ esu) estático, a $1060 \mathrm{~nm}, 2480 \mathrm{~nm}$ e a 2060 nm .

Propesq/UFPE, CNPq, FACEPE.

[^22]
MECANISMO DE DECOMPOSIÇÃO DO PERÓXIDO DE HIDROGÊNIO PELO IODETO.

Guilherme Ferreira de Lima*(IC) ${ }^{1}$, Hélio Anderson Duarte (PQ) ${ }^{1}$,Rodinei Augusti(PQ) ${ }^{1}$ ellza Damázio(PG) ${ }^{1}$
guilhermeferreira@ufmg.br
1. Grupo de Pesquisa em Química Inorgânica Teórica, Depto de Química-ICEx, UFMG. Palavras Chave: $\operatorname{CCSD}(\mathrm{T}), I I \mathrm{OOH}$ e I_{2} 。

Hhrodycao

Uma reação muito comum usada nos cursos de graduação em química é a decomposição da água oxigenada na presença de iodeto em meio ácido. Recentemente, com a finalidade de entender melhor o mecanismo, realizou-se o estudo dessa reação por espectrometria de massas (MS) e MS-MS. Na análise por massas, observou-se a presença de espécies de razão massa carga 287, o que sugere a espécie $[I-I-O-O-H]^{-}$. Observou-se também outra espécie com razão massa carga 254, o que sugere a espécie I_{2}^{-}. Esse trabalho tem como objetivo verificar por cálculos ab initio a formação dessas espécies.

Merouoole

Calculou-se o ΔG para a reação de formação do [$I-I-O-O-H]^{-}$por DFT, MP2, MP4, CCSD e CCSD (T). Para o cálculo DFT usou-se o funcional PBE e para todos os métodos usou-se conjunto de funções de base $6-311++G(d, p)$. Para os elétrons mais internos do iodo usou-se o pseudopotencial LANL2DZ com o conjunto de funções de base descontraído. O mesmo procedimento foi feito para avaliar diferentes formas de decomposição do $[I-I-O-O-H]^{-}$.

Resulrabe emiscussao

A espécie $[I-I-O-O-H]^{-}$, surge devido a reação: $\quad \mathrm{OOOH}+I^{-} \longrightarrow[I-I-O-O-H]^{-}$
Os cálculos de energia para essa reação mostram um ΔG de -32.72, $-25.04,-23.52,-22.20$ e $-24.92 \mathrm{Kcal} \mathrm{mol}^{-}$ 1, pelos métodos PBE, MP2, MP4SDQ, CCSD e $\operatorname{CCSD}(\mathrm{T})$ respectivamente. Esses resultados mostram que a formação da espécie $[\mathrm{I}-\mathrm{I}-\mathrm{O}-\mathrm{O}-\mathrm{H}]^{-}$é plausível no estado gasoso, em acordo com os dados obtidos pela espectrometria de massas. Avaliou-se na seqüência, as energias livres de Gibbs para as possíveis fragmentações do composto formado em (1). A figura 1 esquematiza as rotas de decomposição analisadas. As energias mostradas foram obtidas por $\operatorname{CCSD}(\mathrm{T})$ e a tabela 1 mostra os comprimentos de ligação para os diversos compostos de iodo ilustrados na figura 1.

Figura 1: Canais de fragmentação para o [IIOOH] por CCSD(T).
Os resultados mostram que o canal de fragmentação mais favorável necessita de apenas $13,4 \mathrm{kcal} \mathrm{mol}^{-1}$ para ocorrer e leva à formação da espécie $I_{2}^{-} \square$. Este resultado corrobora com a observação experimental da formação da espécie de razão massa carga 254.

Composto	Ligação/A			
	$\mathrm{I}-\mathrm{I}$	$\mathrm{I}-\mathrm{O}$	$\mathrm{O}-\mathrm{O}$	$\mathrm{O}-\mathrm{H}$
HOOII^{-}	3.058	2.178	1.444	0.962
IOO^{-}.	2.994	2.266	1.301	-
HOO°	-	-	1.326	0.971
IIO^{-}	3.195	2.028	-	-
I_{2}^{-}.	2.822	-	-	

Tabela 1: Comprimento de ligação de compostos de iodo obtidos por CCSD.

Os resultados teóricos confirmam a formação da espécie [lIOOH]- em fase gasosa e que a fragmentação desse composto irá formar preferencialmente a espécie $I_{2}^{-}{ }^{\circ}$. Estes resultados estão em acordo com os resultados de espectrometria de massas. O mecanismo da reação de decomposição da água oxigenada na presença de iodeto será discutido.

Molecemimentos
CNPq, FAPEMIG, CAPES

Angiotensinâ-(1-7): Umíá Análise Estrutural e de Solvatação Usando Dinâmica Molecular

Guilherme Ferreira de Lima*(IC) ${ }^{1}$, Hélio Anderson Duarte (PQ) ${ }^{1}$ e Thomas Heine(PQ) ${ }^{2}$
guilhermeferreira@ufmg.br
2. Grupo de Pesquisa em Química Inorgânica Teórica, Depto de Química - ICEx, UFMG.
3. Technische Universität-Dresden.

Palavras Chave: Dinâmica Molecular, DFTB e Angiotensina-(1-7).

Angiotensina-(1-7) é um heptapeptídeo de grande importância no organismo. Ela é responsável pelo controle da pressão sanguínea ${ }^{1}$ atuando como vasodilatador. A estrutura primária desse peptídeo é Asp-Arg-Val-Tyr-Ile-His-Pro. A atividade biológica de um peptídeo está normalmente relacionada com a sua conformação. Esse trabalho tem como objetivo fazer uma análise estrutural da Angiotensina-(1-7) usando dinâmica molecular na superfície de BornOppenheimer.

Wrionemooma

A molécula da Angiotensina-(1-7) foi otimizada e inserida em uma caixa de $55 \AA$ com 5564 moléculas de água. Um esquema híbrido, QMMM foi utilizado, sendo o soluto descrito por DFTB ${ }^{2}$ e o solvente por $U F F^{3}$. Foram usadas condições periódicas de contorno e um ensemble microcanônico NVE, a uma temperatura de 300 K .

Para definir a conformação de um peptídeo é comum, em bioquímica, usar os ângulos de torção Ψ e Ф. A tabela 1 mostra os ângulos de torção obtidos por dinâmica molecular para os resíduos de aminoácidos.

Tabela 1: Ângulos de torção em grau (${ }^{\circ}$) para os resíduos da Ang-(1-7)

Ângulo	DC-SCC- DFTB/MM MD	Ângulo	DC-SCC- DFTB/MM MD
$\Psi 1$ (Asp-Arg)	24 ± 129	$\Phi 4$ (Tyr-Ile)	-101 ± 19
$\Psi 2$ (Arg-Val)	36 ± 66	$\Psi 5$ (Ile-His)	74 ± 126
$\Phi 2$ (Arg-Val)	-104 ± 117	$\Phi 5$ (lle-His)	-95 ± 47
$\Psi 3$ (Val-Tyr)	77 ± 127	$\Psi 6$ (His-Pro)	35 ± 56
$\Phi 3$ (Val-Tyr)	-122 ± 55	$\Phi 6$ (His-Pro)	25 ± 42
$\Psi 4$ (Tyr-Ile)	28 ± 63	$\Phi 7$ (Pro)	-73 ± 20

A tabela 1 mostra que a Ang-(1-7) é uma molécula que apresenta grande flexibilidade, sem uma conformação bem definida. Isso é confirmado pelos dados de dicroísmo circular. A tabela 1 mostra também que a menor variação angular ocorre no resíduo da tirosina. Este parâmetro termodinâmico é importante para explicar a preferência da β ciclodextrina (β-Cyd) para se incluir no resíduo de tirosina. A perda de entropia devido a menor flexibilidade do composto de inclusão é diminuída, favorecendo a inclusão da tirosina na β-Cyd. A figura 1 mostra o espaço configuracional ocupado pela molécula de Ang-(1-7), o que dá uma idéia sobre a sua mobilidade.

Figura1:Espaço configuracional da Ang-(1-7).

A análise estrutural e das ligações de hidrogênio intra- e intermoleculares serão discutidas em detalhes. Resultados da simulação do composto de inclusão Ang-(1-7): β-Cyd serão também brevemente discutidos.

PRONEX, CNPq, FAPEMIG, CAPES
1.Santos, R. A. S.; Campagnole-Santos, M. J.; Andrade, S. P. Regulatory Peptides 2000, 91, (1-3), 45-62.
2. Elstner, M.; et al., Physical Review B 1998, 58, (11), 7260-7268.
3. Rappe, A. K.; et al., Journal of the American Chemical Society 1992, 114, (25), 10024-10035.

ESTUDO COMPUTACIONAL DE DERIVADOS DA ARTEMISININA COM ATIVIDADES ANTIMALÁRICAS

Ruth C. O. Almeida*(IC), Osmarina P. P. Silva ${ }^{1}(P G)$, Williams J. C. Macêdo ${ }^{1}$ (PG), Helieverton G. Brito ${ }^{1}$ (IC), Fábio M. Rosa ${ }^{1}(I C)$, Cleydson B. R. Santos ${ }^{1}(\mathbb{P G})$, Ricardo M. Miranda ${ }^{1}(\mathrm{PG})$, Marcos A. B. Santos ${ }^{1}(\mathrm{PG})$, Anderson M. Marques ${ }^{1}$ (PG), José C. Pinheiro ${ }^{1}(\mathrm{PQ})$ E-mail: catarine@ufpa.br
${ }^{1}$ Laboratório de Química Teórica e Computacional, Faculdade de Química ,Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, CP 101101, 66075-110, Belém, PA, Amazônia, Brasil.

Palavras Chave: Antimalárico, Plasmodium falciparum, Potencial Eletrostático Molecular, PCA

A dificuldade em eliminar o vetor transmissor da malária tem fomentado pesquisas em todo mundo baseadas no desenvolvimento de fármacos mais potentes, principalmente, contra o P. falciparum. Dentre os compostos atualmente estudados estão os derivados da artemisinina que contem o anel 1,2,4-trioxano, responsável pela sua atividade. O potencial eletrostático molecular (MEP) tem sido uma importante ferramenta para analisar processos de reconhecimento de uma molécula por outra, como interações do tipo droga-receptor ${ }^{1}$.
A proposta deste trabalho é estudar, computacionalmente, derivados da artemisinina com atividades antimaláricas contra o P. falciparum. Os compostos estudados foram testados in vitro contra cepas K1 do P. falciparum ${ }^{2,3}$.
Os cálculos moleculares foram realizados com o método HF/3-21G como implementado no Gaussian 98; os MEPs foram visualizados com o programa Molekel, e a análise exploratória dos dados com o programa Pirouette.

A Figura 1 mostra a artemisinina (a) e seu mapa de MEP (b). Nessa figura, como pode ser notada, a região que envolve o anel trioxano na artemisinina está destacada em vermelho e corresponde ao potencial negativo. Acredita-se que é essa região da superfície de mapa de potencial que se liga com a proteína receptora.
(a)

Figura 1. (a) Artemisinina; (b) Mapa de MEP da artemisinina.

A análise dos componentes principais (PCA) foi feita , inicialmente, com 269 descritores que representam características eletrônica, hidrofílica e estérica dos compostos estudados. Todas as variáveis foram auto-escaladas de modo a torná-las comparáveis na mesma escala. Os compostos foram classificados em mais ($\log A R<0$) e menos $(\log A R \geq 0)$ ativos em PC1, sendo que cinco variáveis (HOMO-1, MDT, q1-carga no O1, a4ângulo de ligação entre os átomos do anel trioxano e $n C s$) foram responsáveis por essa separação. As
três primeiras PCs descrevem 92,68\% da informação total da seguinte forma: $\mathrm{PC} 1=57,21$; $\mathrm{PC} 2=20,18$; $\mathrm{PC} 3=15,29 \%$.
Na Figura 2 são mostrados: (a) os gráficos dos "scores" (PC1-PC2) e (b) o dendograma da análise hierárquica de "cluster" (HCA) para os 24 compostos derivados da artemisinina com atividade contra o P. falciparum. Na figura 2, os compostos mais ativos (2-16) estão situados à direita, enquanto os compostos menos ativos (1, 17-24), com exceção do composto 1 que mesmo sendo menos ativo foi classificado como mais ativo, estão à esquerda do gráfico. A PC1 pode ser expressa pela seguinte equação: $\mathrm{PC} 1=0,173 \mathrm{HOMO}-1$ $+0,339$ MDT $-0,519 q 1+0,55 a 4-0,53 n C s$. Desta equação compostos mais ativos podem ser obtidos quando valores de HOMO-1 menos negativos são combinados com altos valores de momento de dipolo (MDT), cargas mais negativas no O1, maiores ângulos de ligação entre os átomos do anel trioxano e menores quantidades de carbonos sp^{3} secundários (nCs).

Figura 2. (a) Gráfico dos "scores"; (b) Dendograma dos 24 compostos estudados.

O resultado de HCA é similar ao da PCA.

- Compostos, derivados da artemisinina, ativos têm MEP similares na superfície dos mapas em torno do anel trioxano.
- PCA e HCA classificaram os compostos em mais ativos (2-16) e menos ativos (1, 17-24). O composto 1 mesmo sendo menos ativo foi classificado como mais ativo.

CNPq, LQTC.

[^23]
THEORETICAL INVESTIGATIONS ON THE MOLECULAR ELECTRONIC STRUCTURE OF ETHILEN OXIDES - AN AB INITIO AND DFT STUDY.

Eder Severino Xavier* (PQ), Willian Ricardo Rocha (PQ) and Wagner Batista De Almeida (PQ) e-mail: eder@netuno.qui.ufmg.br.

LQC-MM Laboratório de Química Computacional e Modelagem Molecular. Universidade Federal de Minas Gerais Brazil

Palavras

oxide, ab initio, DFT, electronic structure

ThTHeruedo

The resulting products of the etoxilation reaction of hydroxilated compounds shows high commercial importance due its possible applications. The main reactant in that type of processes is the eten oxide (EO) an interesting intermediary substance widely used to promote several reactions that allows obtain for example glycols, ethilic ethers, ethanolamines, anionic surfactants among others. The annual global demand on that type of substance is around fourteen million tons and the USA production is among the bigest in the world, besides that the brazilian annual production ${ }^{1}$ is near 312.000 tons with the Oxiteno ${ }^{2}$ brazilian company on the leadership production position in the latin american scenary.
Nowadays the utilization of heterogenic catalysis way to obtain low mass derivatives from the ethoxilation of hydroxil compounds has receive large amounts of scientifc work and monetary investments mainly in the research places of the bigest players in the world like SHELL, DOW, BASF, UNION CARBIDE and MITSUBISHI. Today only technical informations are reported about catalysts performances.
The aim of this work is to contribute to clear the available information about the electronic molecular structure of reactants, transition state and products of etoxilation reactions as first step to make clear the way to produce a new catalyst.

Rosilferos cillecussa\%

We are foccusing our attention on the reaction of ethilen oxide with watter, catalized by hydrocloric acid. On the figure 1 is displayed the optimized structure of the ethilen oxide.

Chave:

ethilen
On the figure 2, we show the homo and lumo orbital picture of the optimized structure of the reactant ethilen oxid. The homo orbital is mainly formed by the combination of the carbons and oxigen p orbitals. As first approach we have made use of the $6-31 \mathrm{~g}(\mathrm{~d}, \mathrm{p})$ basis set at Hartree-Fock ab initio level of calculation and the same basis set in conjunction with the BLYP, BP86 and PBE exchange-correlation functionals at DFT level of calculations.

Homo

Lumo

TS

Figura 2. The homo and lumo orbitals of ethilen oxide and the transition state (TS) structure.

Tabela 1. Energy values calculated for the ethilen oxid molecular orbitals and the transition state (TS).

structure	HOMO	LUMO	TS
Energy* *	-20.296	-0.367	-150.928

Werncluboss
At this moment, we need more calculations to produce a more accurate picture of the total process. In order to use our designed catalyst we need to increase both, the electronic correlation and basis set.

The authors would like to thanks the Brazilian scientific support agencies: CNPq, FAPEMIG and Capes for the monetary support.

[^24]
THEORETICAL MODELLING OF CHARGE TRANSFER PROCESSES INVOLVING METALLOPHTHALOCYANINES:
 FePc...HYDRAZINE AND NiPc...CHLOROPHENOL
 Gloria I. Cárdenas-Jirón (PQ)

gcardena@usach.cl
Laboratory of Theoretical Chemistry, Faculty of Chemistry and Biology,
University of Santiago de Chile (USACH), Zip 40, mail 33, Santiago, CHILE
Palavras Chave: charge transfer, phthalocyanine, hydrazine, chlorophenol

|ITHem tIC

Charge transfer reactions where participate metallophthalocyanines (MePc) are usually well studied from electrochemistry viewpoint, and a little has been done from theoretical chemistry viewpoint. We have applied a theoretical methodology at B3LYP/LACVP(d) level of calculation, to study the charge transfer process in the gas phase ocurring in the systems: iron phthalocyanine (FePc) \cdots hydrazine $\left(\mathrm{N}_{2} \mathrm{H}_{3}\right)^{-1}$ (Figure 1) and tetrasulpho substituted nickel phthalocyanine (NiTSPc) \cdots chlorophenol(CP)
(Figure 2).

Figure 1. Molecular structures of iron(II) phthalocyanine ($\mathrm{Fe}(\mathrm{II}) \mathrm{Pc})$ and the anionic hydrazine species $\left(\left[\mathrm{N}_{2} \mathrm{H}_{3}\right]\right)$.

Using the models previously applied to the hydrazine oxidation mediated by Co (II) Pc^{1}, we studied the same type of reaction but now mediated by Fe (II)Pc. We built an energy profile along the reaction coordinate, and we identified the oxidation of four electrons from $\left[\mathrm{N}_{2} \mathrm{H}_{3}\right]^{1}$ toward Fe (II)Pc. At difference with respect to happened with cobalt, the reaction with iron showed to be a fully through-bond charge transfer mechanism. Charge transfer descriptors (spin density, electronic population, condensed Fukui function) showed a participation of the iron atom along the oxidation process. These results suggest an explanation of the experimental results, a higher catalytic activity is observed for Fe (II)Pc in comparison with Co (II)Pc. The oxidation for a set of six chlorophenols mediated by NiTSPc ${ }^{3}$ was studied. In order to identify which electronic structure gives account of the charge transfer from CP toward NiTSPc, we analyzed
four different conditions for both CP and NiTSPc, CP as anion and as a radical species (oxidized species), and for NiTSPc the $\mathrm{Ni}(I I)$ and $\mathrm{Ni}($ III $)$ species (oxidized form). The obtained results showed that the charge transfer occurs for the anionic form of CP in interaction with the $\mathrm{Ni}(\mathrm{III})$ species, and that the amount of charge transfer is dependent of the CP structure, in agreement with experimental results ${ }^{4}$.

Figure 2. Molecular structures of tetrasulpho substituted nickel(II) phthalocyanine (NiTSPc) interacting with 2 -chlorophenol (CP).

Toncthercas

Theoretical methodologies showed to be able to identify the structural and electronic characteristics of the species involved along the oxidation processes. Further, they allowed quantify the charge transfer and to relate it with their molecular structure.

3 Wuladermichigs

The author thanks Projects FONDECYT Líneas Complementarias $\mathrm{N}^{\circ} 8010006$ and FONDECYT $\mathrm{N}^{\circ} 1060203$ from CONICYT (CHILE). It is also appreciated the computational time by Project DICYT-USACH Apoyo Complementario (CHILE).

[^25]
Deslocamentos Químicos de ${ }^{13} \mathrm{C}$ Em Alcalóides Aporfínicos. AVALIAÇÃO DO USO DO MODELO PCM.

Denis J. Gulin* (PG), Ana L. L. Lordello (PQ), Eduardo L. de Sá (PQ)
Departamento de Química, Universidade Federal do Paraná, Curitiba, Paraná, Brasil. deninho@quimica.ufpr.br Palavras Chave: alcalóides aporfínicos, RMN, PCM

TMad moral

Embora os princípios gerais e algoritmos de cálculo de blindagens nucleares estejam amplamente descritos na literatura, encontra-se ainda poucas publicações que trazem comparações entre diferentes modelos e conjuntos de bases aplicados a moléculas orgânicas de médio e grande portes. Encontra-se também que o nível de cálculo exigido para uma grande acurácia de resultados de cálculos de deslocamentos químicos (δ) é muito grande, geralmente chegando ao limite dos recursos computacionais comumente encontrados em laboratórios de Química Computacional. Zuschneid et al [1], por exemplo, publicaram que o melhor método para cálculo de δ para hidrocarbonetos pequenos é o MP2/cc-pVTZ.

Com isso em mente, este trabalho visa a avaliação do uso do modelo PCM em cálculos de δ para a determinação de um método de cálculo de acurácia razoável o bastante, considerando o custo-benefício pela qualidade dos resultados, para se poder englobar a determinação teórica de δ em análises rotineiras.

Conforme estudo anterior [2], o uso de conjuntos de bases de qualidade duplo zeta com o funcional B3LYP rende melhores resultados frente aos de qualidade triplo zeta, para cálculos de δ para a classe de compostos estudada. Assim, partindo-se das geometrias dos alcalóides obtidas por otimização em nível PCM/B3LYP/6-31G** foram calculadas as constantes de blindagens nucleares isotrópicas (em fase gasosa e em CHCl_{3}), utilizando-se a metodologia GIAO, em 3 níveis de teoria com conjuntos de bases de qualidade duplo zeta (6-31G, 6-31G** e LANL2DZ).

Figura 1. Estruturas dos alcalóides estudados
Os alcalóides aporfínicos estudados contêm o núcleo em comum apresentado na Figura 1, onde

R1 e R 2 podem ser H ou $\mathrm{H}_{3} \mathrm{C}$, enquanto que R 9 e R10 podem ser $\mathrm{H}, \mathrm{HO}, \mathrm{CH}_{3} \mathrm{O}$. A avaliação dos resultados obtidos se deu por comparações entre os δ experimentais encontrados na literatura e os δ calculados nos níveis de teoria citados. A análise dos δ calculados deu-se por avaliação de dados estatísticos extraídos de gráficos δ calculados x δ experimentais (Tabela 1), tais como coeficiente de correlação linear (R), desvio-padrão (DP), coeficientes linear (CL) e angular (CA) e também através do erro-padrão (EP).

Tabela 1. Intervalos para os parâmetros estatísticos retirados dos gráficos δ calculados (em nivel B3LYP/6-31G) $x \delta$ experimentais para os alcalóides estudados

*	CL	CA	R	DP	EP
(a)	-4,481	0,982	0,993	2,919	5,578
	a -2,892	a 0,999	a 0,998	a 5,089	a 6,807
(b)	-4,320	0,994	0,995	2,931	4.465
	a -2,690	a 1,019	a 0,998	a 4,275	a 5,617

Comparando-se os resultados deste trabalho com o estudo anterior [2], a inclusão de solvente (através do modelo PCM) nas etapas de otimizações de geometrias leva a melhores resultados para os cálculos de δ. Porém, quando comparados os resultados para os δ calculados na presença e na ausência do solvente (a partir de geometrias otimizadas em nível PCM/B3LYP/6-31G**), nota-se que o uso do PCM nesta etapa do cálculo não leva a melhoria nos resultados (Tabela 1). Assim, os resultados obtidos até aqui sugerem que a melhor opção está no uso do modelo do contínuo polarizável (PCM) somente na otimização de geometria, e não durante o cálculo de δ.

Abracemanios

À CAPES, CNPq, DQ-UFPR, PPGQ-UFPR.

[^26]
The calculation of electrostatic interactions between protons and molecules by atomic multipoles from the quantum Theory of ATOMS IN MOLECULES

Eduardo F.F. Rodrigues (IC), Eduardo L. de Sá (PQ), Roberto L.A. Haiduke (PQ)* haiduke@quimica.ufpr.br

Departamento de Química, Universidade Federal do Paraná, CP 19081, 81531-990, Curitiba, PR, Brazil.
Keywords: atomic multipoles, QTAIM, CHELPG charges, electrostatic interaction, electrostatic potentials.

The Quantum Theory of Atoms in Molecules (QTAIM) ${ }^{1}$ presents a unique way of partitioning regions of a molecule that belong to any of its atoms. This procedure is carried out through a topological analysis of the observable threedimensional molecular electronic density, searching for zero-flux surfaces. Hence, different atomic properties are accessible and atomic multipoles can be cited as important examples. An interesting characteristic of QTAIM is that molecular properties can be given as sums of atomic quantities as, for instance, the molecular dipole moment, that is composed of two sums: one in terms of atomic charges and another for atomic dipoles. However, a large number of studies still concentrates only on the usage of atomic charges. Although this way of treating common problems should be correct, the results are often incomplete due to the neglecting of other important electrostatic contributions. ${ }^{2}$

The objectives pursued here are the analysis and comparison of electrostatic interactions between protons and some simple linear molecules ($\mathrm{H}_{2}, \mathrm{HF}, \mathrm{HCl}, \mathrm{HBr}, \mathrm{HCN}, \mathrm{HNC}$, and CO) as predicted by QTAIM multipoles (charges, dipoles, and quadrupoles) and also by CHELPG charges in proton-molecule arrangements where a proton is located at points along the molecular axis in distances between 3 and $8 \AA$ from the terminal atoms. Polarization effects caused by the proton on molecular electronic densities are easily included by the recalculation of atomic multipoles in each proton-molecule arrangement.

Firstly, we analyze the molecular dipole moments given by atomic quantities. QTAIM molecular dipole moments are in satisfactory accordance with reference values (theoretical and experimental). It should also be noticed that the direction of the molecular dipole moments in HNC and CO is a result of the sum involving large atomic dipole moment components surpassing atomic charge contributions to these molecular quantities. Such result can be attributed in a large extent to an isolated electronic pair on Carbon in both these
molecules. However, the atomic dipole moment contributions are comparatively quite large and can not be neglected for the other molecules studied too. The agreement of CHELPG molecular dipole moments with the reference ones is always worse than those given by QTAIM multipoles, except for HF . The most compromising case is that of CO , for which molecule CHELPG charges predict a negligible dipole moment.

Furthermore, electrostatic potentials at the proton position as given by QTAIM multipoles, up to atomic quadrupoles, are always in better agreement with the theoretical reference values than those calculated with CHELPG charges. However, for HF and HCN the discrepancies between both formalisms is not so large. The cases in which significant differences were found, with poor electrostatic potentials derived by CHELPG charges, are identified as those involving large atomic dipole (CO and HNC) or atomic quadrupole contributions (H_{2} and HCl) to the electrostatic potentials. The polarization caused by the proton on molecules was found to be critical in the prediction of these potentials by atomic quantities.

QTAIM multipoles, up to atomic quadrupole moments, are better in reproducing the electrostatic interaction between a molecule and a proton than CHELPG charges for all the molecules studied, with large differences between both formalisms for H_{2}, $\mathrm{HCl}, \mathrm{HNC}$, and CO. Moreover, the polarization effects caused by the proton were very important for the description of these interactions.

The authors acknowledge Dr. Roy Edward Bruns (IQ-UNICAMP) for computational resources.

[^27]
Estrutura Eletrônica e Reatividade da flumequina

Denis J. Gulin ${ }^{1}$ (PG), Carla Sirtori ${ }^{2}$ (PG), Ana M. L. Agüera ${ }^{2}$ (PQ), Sixto M. Rodríguez ${ }^{2}$ (PQ), Roberto L. A. Haiduke ${ }^{1}$ (PQ), Eduardo L. de Sá ${ }^{1}$ (PQ) (edulsa@quimica.ufpr.br)
${ }^{1}$ Departamento de Química, Universidade Federal do Paraná, Centro Politécnico, Cx. Postal 19081, CEP 81531-990, Curitiba, Paraná. E-mail: edulsa@quimica.ufpr.br
${ }^{2}$ Departamento de Hidrogeología y Química Analitica, Universidade de Almeria, Ctra. Sacramento s/n, La Cañada de San Urbano 04120 - Almería - Espanha
Palavras Chave: flumequina, QTAIM, Superfícies de Potencial,

As fluoroquinolonas são antibióticos sintéticos, que atuam na inibição da DNA-girase e topoisomerase $I V$, impedindo a replicação e transcrição do DNA de bactérias, por isto apresentam uma ampla aplicação clínica e veterinária. O uso de fluoroquinolonas em animais de corte e em aquacultura tem gerado grande preocupação, pois o seu excesso no meio ambiente tem contribuído para o aumento da resistência bacteriana a estes antibióticos, fato que é agravado por sua baixa degradabilidade ${ }^{1}$. Um estudo mecânico-quântico da estrutura molecular da flumequina seria valioso na elucidação de mecanismos de degradação e no desenvolvimento
 de métodos de separação e quantificação desta substância em águas resíduais. Este trabalho objetiva a determinação das cargas

Figura 1. Estrutura da flumequina atômicas de Mülliken e QTAIM ${ }^{2}$, calculadas por B3LYP/LANL2DZ, e das superfícies de potencial eletrostático derivado da função de onda molecular (true electrostatic potential) da flumequina (uma fluoroquinolona tricíclica), representada na Figura 1.

Figura 2. Superfície de potencial eletroștático da flumequina gerado pelo programa molden ${ }^{3}$

Tabela 1. Cargas atômicas de Bader e Mülliken calculadas para os principais átomos da molécula de flumequina.

Átomo	Bader	Mülliken	Átomo	Bader	Mülliken
F	$-0,54$	$-0,23$	C_{13}	$+0,26$	$+0,01$
N	$-0,94$	$-0,18$	O_{14}	$-0,93$	$-0,37$
C_{3}	$+0,25$	$+0,03$	C_{15}	$+1,18$	$+0,19$
C_{8}	$-0,33$	$-0,29$	O_{16}	$-0,94$	$-0,30$
C_{9}	$-0,01$	$+0,01$	O_{19}	$-0,93$	$-0,42$
C_{10}	$+0,65$	$+0,14$	H_{21}	$+0,67$	$+0,40$
${ }^{\text {* A numeração dos átomos é mostrada na Figura 1 }}$					

A análise da Figura 2 mostra que a região na molécula de flumequina mais susceptível a um ataque eletrofilico é aquela composta pelos grupamentos carboxila e carbonila, e que o H_{21}, que participa de uma ligação de hidrogênio intramolecular, apresenta-se com um elevado caráter ácido. Apesar das cargas sobre os átomos de NeF se apresentarem consideravelmente negativas, somente o Flúor se encontra próximo a uma região de potencial eletrostático negativo, o que pode ser explicado pelo fato de que o nitrogênio encontra-se próximo de vários átomos de carbono cuja carga positiva varia de $+0,01$ até $+0,34$. A discordância entre as cargas atômicas calculadas pelos métodos de Mülliken e Bader é enfática para os átomos mais centrais na flumequina.

—ull endusors

Regiões da molécula de flumequina mais susceptíveis a ataques eletrofilicos foram mapeadas por cálculos de cargas atômicas e de superfícies de potencial eletrostático.

ter rocmmantos

CNPq, CAPES, Prof. R. E. Bruns (IQ-UNICAMP), PPG-Química/UFPR.

[^28]
TERMODINÂMICA DA REAçÃO DE OXIDAÇÃO DE DIMETILSULFÓXIDO EM FASELÍQUIDA

Leonardo Baptista (PG) ${ }^{1, *}$, Edilson Clemente da Silva (PQ), Graciela Arbilla (PQ)

Departamento de Físico-Química, Universidade Federal do Rio de Janeiro, Instituto de Química, CT Bloco A sala 408,
Ilha do Fundão, Rio de Janeiro 21945-900
*e-mail: baptista@iq.ufrj.br
Palavras Chave: Oxidação do DMSO, IEFPCM, termodinâmica, fase-líquida

IIT1000 De 00

O dimetilsulfóxido (DMSO) é um intermediário muito importante no mecanismo de oxidação de sulfeto de dimetila (DMS) por radicais OH na atmosfera. Esperase que, na atmosfera, o DMSO seja oxidado pelo radical OH em fase homogênea e heterogênea na presença de gotas de nuvens e do aerossol atmosférico, de acordo com o mecanismo proposto no Esquema 1. O objetivo deste trabalho é a análise dos parâmetros estruturais e termodinâmicos da reação de oxidação em fase líquida.

Esquema 1: Mecanismo de oxidação do dimetil sulfóxido pelo radical hidroxila

A termodinâmica do processo foi analisada segundo três aproximações distintas: Reação em fase gasosa assistida por moléculas do solvente (considerando cinco esquemas de microsolvatação), reação em fase líquida em um meio contínuo polarizável e a combinação do meio contínuo polarizável com uma molécula explícita do solvente. Todo o estudo foi realizado em nível MP2/6-311G**, o efeito do solvente foi incluído utilizando o formalismo de equações integrais do modelo contínuo polarizado, IEFPCM. Todo o estudo foi realizado utilizando o pacote Gaussian 03.

Os valores calculados de ΔG da reação de formação dos complexos fracamente ligados e dos produtos de cada canal de oxidação estão listados na Tabela 1. Ao considerarmos moléculas do solvente como assistentes do mecanismo em fase gasosa, pode-se observar dois perfis distintos: a) A formação dos dois complexos se torna endoérgica quando as moléculas de água estão interagindo com o DMSO; b) Os dois canais de oxidação são favorecidos devido à ligação de hidrogênio entre as moléculas do solvente e o radical OH . No caso do solvente como um meio contínuo, os resultados obtidos para a termodinâmica são similares à reação em fase
gasosa sem moléculas de água ${ }^{1}$. Foi observado que a orientação das moléculas do solvente em relação aos reagentes exerce uma grande influência na geometria das espécies que participam do mecanismo e na termodinâmica do processo. Logo, não é possível ignorar a influência das interações específicas entre soluto e solvente no mecanismo de oxidação.

Tabela 1 : Valores calculados de ΔG de reação para a formação dos complexos fracamente ligados e dos produtos de cada canal de oxidação. Valores em $\mathrm{kcal} \mathrm{mol}^{-1}$

	Complexos fracamente ligados	Produtos
	Primeiro esquema de microsolvatação	
Adição	3,37	-15,11
Abstração	0,01	-14,53
	Segundo esquema de microsolvatação	
Adição	-2,97	-18,81
Abstração	-3,34	-15,27
	IEFPCM	
Adição	3,42	-7,61
Abstração	2,54	-14,21
	IEFPCM combinado com o primeiro esquema de microsolvatação	
Adição	7,29	-8,60
Abstração	4,66	-14,77
	IEFPCM combinado com o segundo esquema de microsolvatação	
Adição	-3,41	-18,02
Abstração	-2,72	-22,63

A termodinâmica do mecanismo de oxidação do DMSO foi estudada e avaliada a importância das interações específicas entre soluto e solvente para o mecanismo. Para esta reação não é possível ignorar a influência das interações específicas entre soluto e solvente, devido as alterações observadas nos parâmetros termodinâmicos e estruturais.

\square Whitarallichluos

A CAPES, CNPq e FAPERJ pelo suporte financeiro ao projeto e a Dra. Clarissa de Oliveira da UFRRJ pelo auxilio dado a este trabalho.

[^29]
Theoretical calculations of the uv-vis absorption spectrum of KAEMPFEROL IN METHANOLIC SOLUTION.

Tarciso S. de Andrade-Filho*(PG), Tamires C.S. Ribeiro(IC), Brenda B. Moreira(IC) and
Jordan Del Nero(PQ). tarciso@ufpa.br
Departamento de Física, Universidade Federal do Pará, 66075-110 Belém, Pará, Brazil.

Keywords: Kaempferol, Sequential Monte Carlo/quantum mechanical approach, Solvent effects, Absorption spectrum

Flavonoids have been shown to possess a range of biological activities that are consistent with them contributing to the protection afforded by a diet rich in fruit and vegetables against degenerative diseases such as diabetes, cardiovascular diseases and cancer. Flavonols is a subset of related structures within the flavonoids, are present in human diets predominantly as Kaempferol (KP). Obviously the theoretical study of KP activities for possible medical or chemical interest implies the necessity of understanding the activities of KP in solution. Thus, to understand the behavior of KP in methanolic solution in this modeling we performed a systematic study of the solvent effects on the $\pi \rightarrow \pi^{*}$ transition of Kaempferol molecule using the sequential Monte Carlo/quantum mechanical (S-MC/QM) approach. NVT Monte Carlo (MC) simulation was implemented to generate the structures of the molecular liquid with all non-core electrons. The first solvation shell calculation involves the ensemble average of 125 quantum mechanical (QM) calculations corresponding to one KP as solute surrounded by 33 MeOH solvent molecules and the $\pi \rightarrow \pi^{*}$ transition energy calculations were performed by the QM INDO methodology with an adequate anti-symmetric wave function. We used the autocorrelation function of the energy to sample only independent or statistically relevant configurations. The KP molecule is described quantum mechanically using the hybrid B3LYP density functional and $6-31+G^{* *}$ basis set. The density functional theory calculation was performed by Gaussian 98 program and the MC simulation was performed with the DICE program.

The study of hydrogen bonds (HBs) has been a central topic in chemistry and biology and it is now attracting considerable interest in physics. In this work, in 125 MC configurations we found 306 HBs formed between KP and MeOH. This gives an average of 2.5 HBs formed. We found for that out of the 1.6% configurations analyzed KP makes no HBs with MeOH but in 3.2% of configurations it forms one, in 53.6% it forms two, in 32.8% it forms three, in 8.0% it forms four and
in 0.8% of the configurations KP forms five HBs with MeOH . The the gas phase $\pi \rightarrow \pi^{*}$ transition energy is obtained as 351.1 nm . Unfortunately, this transition is not known experimentally. The $\pi \rightarrow \pi^{*}$ average transition energy of KP is obtained as $353.2 \pm 0.27 \mathrm{~nm}$ due to one HB. For two, three, four and five HBs, the $\pi \rightarrow \pi^{*}$ average transition energies are obtained as $354.4 \pm 0.19,354.9 \pm 0.31,353.4 \pm 0.12$ and 355.2 ± 0.25 nm , respectively. On average, the HB shell $\pi \rightarrow \pi^{*}$ average transition energy is obtained as $354.7 \pm 0.28 \mathrm{~nm}$ which is accordingly to the experimental result of KP in MeOH . For the first solvation shell 125 QM calculations of the $\pi \rightarrow \pi^{*}$ transition were performed and their calculated values were averaged out. The analysis of the statistical convergence is demonstrated in Fig. 1. It can be seen that the average transition energy is obtained as $358.6 \pm 0.34 \mathrm{~nm}$ which is in better agreement to the experimental result of KP in MeOH $(360 \mathrm{~nm})$ than that obtained with the HB shell.

Figure 1. Statistical convergence of the average value of the $\pi \rightarrow \pi^{*}$ transition energy of KP in MeOH

In this work we analyzed the solvent effects on the $\pi \rightarrow \pi^{*}$ electronic transition of KP in MeOH through the S-MC/QM approach. The structural analysis of the solution revealed that KP can form up to 5 HBs with MeOH . An all-electron calculation of the $\pi \rightarrow \pi^{*}$ transition of KP within the first solvation shell gives an average transition energy of $358.6 \pm 0.34 \mathrm{~nm}$, which is in good agreement with the solution experimental result of 360 nm.

Work supported by PIBIC/CNPq and CAPES agencies.

[^30]
ESTUDO COMPUTACIONAL DAS PROPRIEDADES ELETRÔNICAS E ESTRUTURAIS DAS SUPERFÍCIES (10İO) E (1120) DO ZNO.

Naiara Letícia Marana ${ }^{1}$ (IC)*, Júlio Ricardo Sambrano (PQ)
namarana@fc.unesp.lor
Grupo de Modelagem e Simulação Molecular, UNESP, Bauru, SP, CEP 17033-360, Brasil.

Palavras Chave: ZnO, DFT, varistor, wurtzita, CRYSTAL

Thinoducate

O óxido de zinco (ZnO) cristaliza-se preferencialmente em uma estrutura hexagonal do tipo wurtzita que tem se tornado alvo de inúmeras pesquisas devido as suas várias aplicações tecnológicas tais como células fotovoltáicas, varistores ${ }^{1}$, catálise, sensores de gás e quimisssorção. Devido as grandes versatilidades do ZnO , fez-se um estudo computacional das propriedades eletrônicas e estruturais das superfícies não-polares ($10 \overline{1} 0$) e ($11 \overline{2} 0$).
A simulação foi desenvolvida com o programa CRYSTAL03 aplicando-se a Teoria do Funcional de Densidade (DFT) à modelos periódicos com o funcional B3LYP associado ao conjunto de funções de base 631G* para os átomos de Zn e O.

Resultados e Discuscao

Inicialmente minimizou-se a energia total da célula unitária em relação aos coeficientes dos orbitais mais externos dos átomos de Zn e O. Numa segunda etapa otimizou-se os parâmetros de rede a e c e parâmetro interno u, que foram comparados com os dados experimentais ${ }^{2}$ (em parênteses), sendo os valores calculados: $\boldsymbol{a}=3,259 \AA(3,25 \AA), \boldsymbol{c}=5,205 \AA(5,207 \AA)$ e $u=0,382(0,385 \AA)$, Os resultados indicam um acréscimo de $0,27 \%$ para o parâmetro a, um decréscimo de $0,03 \%$ para o parâmetro ce $0,77 \%$ para o parâmetro u.
A escolha do número de camadas foi realizada considerando a energia de superfície que é definida como $E_{\text {sup }}=1 / 2 A\left(E_{\text {slab }}-n E_{\text {bulk }} / 2\right)$, em que $E_{\text {slab }}$ è a energia do slab correspondente, n o número de unidades de ZnO contidas neste slab, $E_{\text {bulk }}$ a energia total do cristal e A é a área referente ao bulk.
Desta forma, avaliou-se as superfícies com $8,10,12$, 14, 16 e 18 camadas, as energias foram calculadas, observando-se que houve uma convergência: $1,72 \mathrm{eV}$ e $1,65 \mathrm{eV}$ para as superfícies (10 $\overline{1} 0$) e (11 $\overline{2} 0$) respectivamente.As propriedades eletrônicas são descritas em função da estrutura de bandas, densidade de estados e gap.
Analisando-se a densidade de estados observou-se uma maior contribuição dos orbitais $4 s$ e $2 p_{z}$ do Zn para banda de condução (BC) e dos orbitais $2 p$ do O para a banda de valência (BV).

O gap observado para as superfícies é direto entre os pontos Γ - Γ de $2,97 \mathrm{eV}$ e $3,08 \mathrm{eV}$ para ($10 \overline{\mathrm{1}} 0$) e ($11 \overline{2} 0$), respectivamente. Estes valores se apresentaram inferiores ao gap direto calculado para o bulk, $3,18 \mathrm{eV}$.

(a) superficie $(10 \overline{1} 0)$ e (b) superficie (11这0).

Conchirocs

As principais conclusões são descritas a seguir:
1- O band gap e energia de superfícies estão em concordância com os dados experimentais e teóricos dispostos na literatura.
2- A contribuição dos orbitais 4 s e $2 p_{z}$ do Zn são os que apresentam uma maior contribuição para a BC
3- Os orbitais $2 p$ para os átomos de O apresentam uma maior contribuição para a BV.
4- O gap é direto nos pontos $Г-\Gamma$ para o bulk e ambas superfícies.
5- A simulação desenvolvida demonstrou que o funcional B3LYP pode ser aplicado no estudo das propriedades eletrônicas e estruturais das superficies ($10 \overline{10} 0$) e ($11 \overline{2} 0$).

Agradectinentos

Fundação de Amparo a Pesquisa do Estado de São Paulo (FAPESP), Conselho Nacional de Desenvolvimento Científico e tecnológico (CNPq) e Universidade Estadual Paulista (Unesp).

[^31]
Estudo da Estabilidade de Buckyballs na Retirada de moléculas DE H_{2} ARMAZENADAS EM SEU INTERIOR

Julio Rodolfo P. lank (PG) ${ }^{1 *}$, Kelson M. T. de Oliveira (PQ) ${ }^{1}$, Moacir Comar Júnior (PG) ${ }^{1}$, Jamal S. Chaar ${ }^{1}$ (PQ), Saulo L. Silva ${ }^{1}$ (PQ), Marcos Eberlin² (PQ)
*jrgt@click21.com.br
1- Universidade Federal do Amazonas, Laboratório de Química teórica e computacional, Av. Gal. Rodrigo Octávio Jordão Ramos, 3000 - Coroado, Setor Sul do Campus Universitário, 69077-000 Manaus, AM.
2- UNICAMPs, Instituto de Química, Departamento de Química Orgânica. CP 6154. 13083-970 - Campinas, SP Palavras Chave: Buckyballs, hidrogênio, b3lyp, DFT, espectroscopia de massa,

Gráfico 01. Energias de barreira potencial necessária para a retirada da molécula de H_{2} de dentro das moléculas C58 e C56, com e sem recomposição da buckyball.

A molécula de H_{2} é facilmente expulsa do sistema $\mathrm{Cn} @ \mathrm{H}_{2}$ quando são retirados dois fragmentos C_{2} sem que haja reestruturação da buckyball. Com a recomposição da nanoestrutura, o H_{2} só é expulso quando atinge C_{14} A diferença na barreira de energia para a retirada de H_{2} na estrutura $\mathrm{C} 56 @ \mathrm{H}_{2}$ pode ser comparada às energias de barreira para a retirada do C58, com e sem recomposição da buckyball. Se houver apenas a retirada de um fragmento C_{2} a barreira potencial a ser vencida, mesmo sem recomposição da buckyball, é proibitiva. Caso seja fornecido energia em torno de 300 Kcal , além da energia necessária para retirar um fragmento C_{2}, é possível expulsar o H_{2} após a retirada de apenas dois átomos de carbono.

Wurraterilithios

FAPEAM, CAPES.

[^32]
QSAR AND MEP STUDY OF THE 3-BENZAZEPINE NEW DERIVATIVES

Elierge B. Costa(PG) ${ }^{1 *}$, Williams J. C. Macedo(PG) ${ }^{1}$, Saulo L. Silva(PQ) ${ }^{1}$, Fábio J. B. Cardoso(PG) ${ }^{1}$, Ruth C. O. Almeida(IC) ${ }^{1}$, Osmarina P. P. Silva(PG) ${ }^{1}$, Helieverton G. Brito(IC) ${ }^{1}$, Fábio M. Rosa(IC) ${ }^{1}$, João E. V. Ferreira(PG) ${ }^{1}$, Antônio F. Figueirredo(PG) ${ }^{1}$, Ricardo M. Miranda(PG) ${ }^{1}$, José C. Pinheiro(PQ). ${ }^{1}$. eliergebc@yahoo.com.br
Laboratório de Química Teórica e Computacional, Departamento de Química, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, CP 101101, CEP 66075-110 , Belém, Pa, Amazônia, Brasil.
Keywords: Benzazepines, Chemometric methods, ab initio methods.

The compounds obtained from 3-benzazepine series are potent and selective when bound to 5$\mathrm{HT}_{2 \mathrm{C}}$ receptor used in the obesity treatment. The benzazepine series was first studied with the synthesis of 8-bromo-7-methoxy-1methylbenzazepine(Fig.1) and its derivatives with activity in the $5-\mathrm{HT}_{2 \mathrm{C}}$ receptor against obesity. In the present work ab initio quantum chemical and chemometric methods such as PCA (Principal Component Analysis), HCA (Hierarchical Cluster Analysis) and PLS (Partial least square) using GAUSSIAN 98, PIROUETTE program respectively, were used on these compounds in order to plan new 8-bromo-7-methoxy-1-methylbenzazepine derivatives. The MEP maps were computed from the electronic density and displayed by using the MOLEKEL 4.3 software of new proposed derivatives that allowed to relate structure and activity with the $5-\mathrm{HT}_{2 \mathrm{C}}$ receptor.

Figure 1. 8-bromo-7-methoxy-1-methylbenzazepine

All the compounds were modeled using GaussView program and complete geometry optimization with the ab initio Hartree-Fock (HF) method using 3$21 G^{*}$ basis set was performed. Futhermore, molecular descriptors were calculated using the Dragon program. At first, the PCA and HCA analysis were performed on 26 benzazepines compounds and they have shown that the HOMO1, charge in carbon 11 (QC11), information content index (ICO) and R maximal autocorrelation of lag 2 / weighted by atomic masses (R2m+) descriptors are of fundamental importance to separate the compounds between their high and less active features in the PC1. The first three principal components (PCs) describe 93.21% of the original information for the 26 molecules (Fig.2a). The HCA analysis gives results, which are very similar to those obtained in PCA as one can see in dendogram depicted in Fig. 2b.

a

Figure 2. a) PC1-PC2 scores plot for the 26 compounds .b)HCA dendogram for 26 compounds. The QSAR model was built using PLS method for 26 compounds (Training set) with three principal components explaining 83.52% of the total variance. The PLS quality model ($\mathrm{pEC50}=-0.2524$ HOMO-1 + 0.3255 QC11 + 0.3488 ICO +0.3405 $R 2 m+$) was evaluated for $Q^{2}=0.84, \quad R^{2}=0.90$, SEP=0.30 and $F=47.25$ and obtained for 26 molecules of intern validation. The regression model was applied to predict the unknown activities of 20 benzazepines derivatives new compounds. The new derivatives were designed considering the least values of HOMO-1, combining with the high values of QC11, ICO and R2m+ (see the above model). Through the observation of the maps of the MEP of two of the new proposed compounds we observed that the inclusion of electron-donor groups in the C2 position revealed an increase of the biological activity of the compounds 1 and 2 according to the size of the substituting group and the similar maps in such region (see Fig. 3).

Figure 3. MEP of two of the new proposed benzazepine derivatives.

The model used in the present work can provide a useful tool to predict the activity of the new compounds and also to design new compounds with high activity because the model is robust and satisfactory. The use of the QSAR model along with the MEP maps can provide a valuable insight during the experimental processes of syntheses and biological evaluation of the studied compounds.

[^33]
Efeitos do Solvente sobre o Espectro Eletrônico de íons Metálicos Em Solução Aquosa Utilizado Simulação Híbrida (S-MC/MQ).

Charles M. Aguilar(PG) ${ }^{*}$, Wagner B. De Almeida(PQ), Willian R. Rocha(PQ)
Laboratório de Química Computacional e Modelagem Molecular (LQC-MM), Departamento de Química, ICEx, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG 31.270-901, Brasil
*charles@netuno.qui.ufmg.br

Palavras Chave: S-MC/MQ, Espectro Eletrônico, Íons de Metais de Transição

Reações de hidratação e hidrólise de ions metálicos em solução aquosa representam um modelo fundamental na reatividade e mobilidade destas espécies em ambiente aquático e sistemas biológicos. Assim, muitos processos biológicos dependem da presença de ions metálicos como cofator (participantes em vitaminas) ou, como participantes ativos difusos em componentes usados como agentes diagnósticos ou terapêuticos em ampla variedade de afecções e desordens metabólicas ${ }^{1}$. A modelagem do processo de solvatação de ions de metais de transição e complexos metálicos em solução e o entendimento do efeito do meio solvente sobre as propriedades espectroscópicas representa hoje um desafio. O desenvolvimento de potenciais de interação ion-solvente, a possibilidade de diferentes multiplicidades de spin para o íon metálico, o comportamento dinâmico do meio, o efeito das diferentes camadas de solvatação e processos de troca de ligantes envolvendo moléculas do solvente na segunda camada de solvatação são fenômenos importantes que ocorrem quando um complexo ou íon metálico é imerso em solução e representam desafios adicionais a serem considerados. Neste trabalho utilizamos a metodologia de simulação seqüencial Monte Carlo/Mecânica Quântica (S-MC/MQ) ${ }^{2}$, para avaliarmos o efeito do meio solvente sobre o espectro eletrônico de íons de metais da primeira série de transição. O estudo do ín Fe^{2+} em solução aquosa será mostrado.

Resullouose elscissan

Utilizou-se simulações de Monte Carlo (ensemble NpT) com métodos quânticos (simulação híbrida S-MC/MQ), onde o potencial clássico de interação intermolecular de pares de Lennard-Jones foi desenvolvido e usado para a amostragem do espaço de fase com a geração de diferentes configuraçães do complexo $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$. A escolha das configurações a serem utilizadas para cálculos quânticos foi feita utilizando-se as funções de correlação da energia, selecionando somente configurações que contribuam para a média total, estatisticamente relevantes. O número de moléculas do solvente utilizadas foi obtido através da análise da função de correlação de pares, $g(r)$. Esta nos indicou
que para a primeira camada de solvatação do íon Fe^{2+} em água há 6 moléculas de água coordenadas, em acordo com os dados experimentais e atestando a qualidade do potencial de interação utilizado. Os cálculos quânticos foram feitos mediantes duas aproximaçães: (1) introduzindo o solvente como cargas puntiformes onde as posições foram orientadas pela simulação, e, (2) incluindo o solvente explicitamente. O espectro eletrônico do $\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ foi avaliado utilizando-se a Teoria do Funcional de Densidade Dependente do Tempo (TDDFT). Os resultados seguem na tabela abaixo.

Tabela 1: Comprimentos de onda para as transições $d \rightarrow d(e m n m)$.

$\lambda_{\text {transicão }}{ }^{*}$	B3LYP/LANL2DZ		Exp. ${ }^{4}$
λ_{1}	Gas.	Liq.	1204,8
	995,90	$1222,1 \pm 10,4$	
	825,19	$1035,9 \pm 11,9$	

COMIM MSOES

Os resultados S-MC/MQ, obtidos para o ion Fe^{2+} em solução aquosa nos mostra que a inclusão de somente a primeira camada de solvatação é suficiente para descrever as transições $\mathrm{d} \rightarrow \mathrm{d}$ do íon. Adição da segunda camada não muda os resultados. A estrutura obtida em fase gasosa representa uma média das estruturas no líquido. Portanto, para processos que não ocorrem transições de transferência de carga Metal \rightarrow Ligante, o espectro obtido em fase gasosa se assemelha com o obtido em solução. O estudo das ligações de hidrogênio entre as camadas de solvatação, bem como o uso de diferentes funcionais serão apresentados e discutidos.

Elomechimenios

CNPq, FAPEMIG e CAPES.

[^34]
ESTUDO DO MECANISMO DE INIBIÇÃO DE CORROSÃO DE DERIVADOS PIRIDÍNICOS POR MÉTODOS DFT E QSPR

Alexandre N. M. Carauta (PQ) $)^{1 *}$, José W. de M. Carneiro (PQ) ${ }^{1}$, Martha T. de Araújo (PQ) ${ }^{2}$,
Elizandra C. S. Elias (PG) ${ }^{3}$, Erika C. A. N. Chrisman (PQ) $)^{3}$, Peter R. Seidl (PQ$)^{3}$ e Sonia M. C. de Menezes
(PQ) ${ }^{4}$ e llson P. Baptista (PQ) ${ }^{4}$
${ }^{(*)}$ E-mail: ancarauta@uol.com.br.
1.Departamento de Química Inorgânica, Instituto de Química, Universidade Federal Fluminense.
2.Departamento de Físico-Química, Instituto de Quimica, Universidade Federal Fluminense.
3.Departamento de Processos Orgânicos, Escola de Química, Universidade Federal do Rio de Janeiro.
4.CENPES-PETROBRAS.

PALAVRAS-CHAVES: derivados piridínicos, corrosão, DFT, QSPR.
Modelos da superfície metálica com 5, 7 e 11 átomos de ferro com uma ou duas camadas foram criados a partir dos parâmetros geométricos obtidos a partir de dados de RX da literatura. Dois modelos estudados com 7 átomos de ferro são mostrados na figura abaixo.
Técnicas de análises QSPR são atualmente bem estabelecidas e freqüentemente empregadas para correlacionar propriedades físico-químicas simples ou complexas com a estrutura molecular, representada por uma série de descritores.
Este trabalho tem por objetivo investigar o mecanismo de interação entre derivados piridínicos, que são utilizados como inibidores de corrosão, e um tipo específico de aço.
Um conjunto de 8 compostos derivados da piridina foi submetido a cálculos MM/QM (Monte Carlo - MMFF/ AM1) para obtenção dos parâmetros estruturais (descritores). Para o desenvolvimento sistemático das equaçães multilineares QSPR foi utilizado o método Heurístico. Modelos de superfície metálica representados por diferentes números de átomos de ferro foram calculados utilizando o método DFT (uB3LYP/LANL2Dz) e sua interação com a piridina e seus derivados segue sendo avaliada.
A melhor correlação obtida pela metodologia QSPR foi entre a eficiência de inibição (EF) calculada e descritores quanto-mecânicos relativos à carga (P), conforme mostra a equação da reta abaixo com os respectivos parâmetros estatísticos.

$$
\begin{aligned}
& E F=112,08(\pm \mathbb{1} 1,04) P-127,93(\pm 16,72) \\
& R 2=0,9449 \quad F=102,98 \quad S 2=21,87 R 2_{\text {CROSS }}= \\
& 0,9285
\end{aligned}
$$

(A)

Figura 1 - Modelos com 7 átomos de ferro com duas camadas (A) e uma camada (B).
A correlação obtida entre a eficiência e o parâmetro P sugere que o processo de quimissorção parece ser o mais importante. Estudos da simulação da deposição dos inibidores a partir de várias orientações sobre essas superficies estão sendo realizados a fim de tentar identificar qual o mecanismo preferencial de interação.

INHIBITION OF ENZIMATIC ACTIVITY OF PLA 2 FROM C. ADAMANTEUS VENOM BY DIPYRONE AND 1-PHENYL-3-METHYL-5-PYRAZOLONE

S. L. da Silva ${ }^{1, *}(P Q)$, Andrana K. Calgarotto ${ }^{2}$ (PG), Victor Maso ${ }^{2}(P G)$, Clebson L. Veber ${ }^{3}$ (PG), José A.F.P. Villar 3 (PG), Alfredo R.M. Oliveira ${ }^{3}$ (PG), Jamal S. Chaar ${ }^{1}(\mathrm{PQ})$, Moacyr Comar Jr. ${ }^{1}$ (PQ), K.M.T. Oliveira ${ }^{1}$ (PQ), S. Marangoni ${ }^{2}(\mathrm{PQ})$
${ }^{1}$ Depto de Química, ICE, Universidade Federal do Amazonas - UFAM, Manaus, AM., 69077-000, Brazil., ${ }^{2}$ Depto de Bioquímica, IB, Universidade Estadual de Campinas - UNICAMP, Campinas, S.P., 13100-000, Brazil, ${ }^{3}$ Depto de Química, SCE, Universidade Federal do Paraná - UFPR, Curitiba, PR., 81531-990, Brazil. *biomol2@hotmail.com
Palavras Chave: PLA ${ }_{2}$; dipyrone; PMP; molecular modeling; OPLS

Phosphlipases A_{2} (PLA 2) are enzymes that act over cell membrane phospholipids release arachidonic acid (AA), precursor of proinflammatory eicosanoids (prostaglandins (PGs) and leukotrienes (LTs)).Non-steroidal antiinflammatory drugs (NSAIDs) reduce the conversion of AA in PGs, but not LTs. The high levels of LTs are directly linked to adverse effects in the gastric and renal tracts as observed in patients that use NSAIDs. Dipyrone is a NSAID utilized as analgesic, antipyretic and anti-inflammatory drug by inhibition of ciclooxygenases. In this work we studied of the influences of dipyrone (DIP) and other analog compound (1-phenyl-3-methyl-5pyrazolone - PMP) on PLA 2 . The kinetic behavior of the PLA_{2} from snake venom was studied. Finally, we utilized molecular modeling to understanding the enzymatic behavior and verify the possible points of interaction of DIP and PMP with this PLA $_{2}$.

Wlethoololog

The measures of enzymatic activity were performed using the substrate (4-nitro-3-octanoyloxy-benzoic acid). The molecular models utilized a crystalline structure of C. atrox PLA_{2} (1PP2-PDB). The molecules of DIP and PMP were inserted inside of the active site of this PLA_{2} and the geometry of a spherical region of $14 \AA^{3}$ containing the inhibitor and all the active site was optimized through the molecular mechanics method OPLS (Optimized Potential for Liquid Simulations) until a RMS gradient of $10^{-4} \mathrm{kcal} \AA^{-1} \mathrm{~mol}^{-1}$.

The results of enzymatic kinetics essays in presence and absence of DIP and PMP inhibitors have shown that both compounds are able to inhibit the enzymatic activity of PLA , h $_{2}$ however the DIP is a more efficient inhibitor than PMP. The molecular models that were obtained in this work show that the high efficiency of PLA_{2} inhibition by dipyrone is due to its favorable positioning inside of the
enzyme's active site. The DIP occupy a region very near of the $\mathrm{PLA}_{2} \mathrm{~s}$ catalytic site, thus it favors the binding through hydrogen bonds of DIP sulfonate and amino groups to Asp 49 and Gly 30 amino acids, respectively. The PMP is linked to the PLA just by hydrophobic interactions and two water molecules (HOH 162 e HOH 201) occupy the same sulfonate and amino groups region of DIP. The binding of DIP to Asp 49 and Gly 30 of PLA $_{2}$ forms a more stable complex that avoid the substrate to enter in the active site and also destabilize the ligand loop of calcium. These two effects make the dipyrone a more efficient inhibitor of PLA_{2} than PMP

Gonclusions

The molecular modeling helped understanding the difference between the inhibitions provoked by DIP and PMP. The pirazolonic and aromatic rings, from both inhibitors occupy the hydrophobic region formed by amino Leu 2, Phe 5, lle 9 acids. Furthermore the oxygen atom of cetone group is oriented, in both models, to the \square-amino group from the chain side of Lys 69. In the PLA_{2} calciumdependent catalytic region, the Asp 99 and His 48 amino acids activate a water molecule and, through the basic general catalysis, hydrolyze the phospholipid. The calcium is coordinated by Tyr 28, Gly 30, Gly 32 and Asp 49 amino acids and it is the responsible for polarization and correct positioning of the phospholipid sn2 ester carbonyl, providing an adequate region for the nucleofilic attack from the water molecule. Clinical studies showed that dipyrone seems to present a small antiinflammatory effect in concentrations normally utilized in human beings, but not any deep study was made about dipyrone and $\mathrm{PLA}_{2} \mathrm{~s}$. These results shown that dipyrone can competitively inhibit the PLA_{2} and can serve as basis to develop new chemical structures that can possibly inhibit selectively the PLA_{2}.

FAPEAM, CNPq and CAPES

CONFORMATION ANALYSIS OF SUBSTITUTED 1,4-BE' as Links in Metal-Organic Frameworks (MOF

Elisa S. Leite ${ }^{1, *}(\mathrm{PQ})$, Claudia F. Braga ${ }^{1}(\mathrm{PQ})$, Philippe H. Hünenbe

${ }^{1}$ Departamento de Química Fundamental - UFPE, Recife - PE -Brazil; ${ }^{2}$ Switzerland. *elisaleite@ufpe.br

Key Words: IRMOF, link, internal rotational barrier, conformational analysis, O/v.

Metal-organic frameworks (MOFs) are becoming an important class of materials because their potential use in gas storage, in separations, as well as controlled reaction media. Usually the organic parts are benzene links that led to the isoreticular MOFs (IRMOFs) series, which has different links with its reticular structure and metallic unit maintained.

It is known that small changes in the links can lead to quite different structures. One of the main reasons is the conformational changes due to the substituents in the benzene ring. Thus, the conformational analyses of substituted 1,4benzenedicarboxylates in the IRMOF and isolated have been performed.
 benzenedicarboxylate, brome-1,4-benzenedicarboxylate, cyclobutane-1,4-benzenedicarboxylate, tetra-methyl-1,4-benzene-dicarboxylate and tetrabrome-1,4-benzene-dicarboxylate since they yield the IRMOF-1, $-2,-6,-18$ and -992 . Also, these links cover the most expected cases. The conformational analysis consisted on the rotation of the benzene ring with respect to both dicarboxylate groups using the B3LYP/6-311++G** method. The conformational analyses of the IRMOFs were performed on an unit cell capped with CH_{3} groups using the two layer ONIOM method with the B3LYP/6-31G* and AM1 methods for the high and low layers. The benzene ring in the high layer was rotated with respect to the carboxylates.

Figure 1. IRMOF-1 structure, 0° and 90° conformers. Balls and sticks represent the high layer.

Note that there are competitive effects responsible for (de)stabilizing a given conformation,
namely, conjugation of tur benzene ring, steric repulsic. substituents with the carboxylate alu. coordination of the carboxylate groups WIL.
For the isolated links we found that the links i, and 6 have a planar conformation, whereas links 18 and 992 a perpendicular one. In addition, the barrier to internal rotation are very large for links 1 (40), 6 (3), 18 (70) and 992 (120), where the numbers in parenthesis are the barrier values in kJ mol^{-1}. For link 2 the barrier is around $10 \mathrm{~kJ} \mathrm{~mol}^{-1}$. These results are consistent with the observed crystalline structure of these IRMOFs as well as the randomness of the crystal structure of IRMOF-2.

For the links in the IRMOFs, we found the same conformational stability as the isolated ones. Also, the coordination of the carboxylate groups with Zn (II) does not affect significantly the barrier values, which decrease approximately $10 \mathrm{~kJ} \mathrm{~mol}^{-1}$: probably due to the localization or charge donation from the carboxylate to $\mathrm{Zn}(\mathrm{II})$.

It is noteworthy that the barrier values as well as the effects of the coordination with $\mathrm{Zn}(\mathrm{II})$ are quite dependent on the basis sets used. Indeed, additior of diffuse and/or polarization functions lower the barriers and reverse the effects of the coordination Consequently, the transferability of the results fror the isolated links to the links in the IRMOFs has tc be performed with great caution.

A correlation has been found between the barrier values and the aromatic character of the benzene ring as given by the NICS (nucleus. independent chemical shifts) index.

New IRMOFs proposed with sulfur atoms instead of the oxygen and carbon atoms in the carboxylate groups, which also were analyzed anc show promising rigidity for affording crystallin structures.

Different substitutions in the links lead to quite distinct rotational barriers. Mono bulky substituents yield almost free rotation, whereas unsubstituted o tetra-substitutions yield rigid conformers.

FACEPE, CAPES and CNPq.

」AB INITIO DE SEÇÕES DE CHOQUE RAMAN DE BANDAS DE , AÇÃO E OVERTONES

،o N. Vidal ${ }^{1 *}$ (PG) e Pedro A. M. Vazquez ${ }^{1}$ (PQ)
idal@iqm.unicamp.br
-Q-IQ-UNICAMP, CP 6154, CEP 13084-862, Campinas, SP.
Palavras-Chaves: Espectroscopia Raman, Teoria de Resposta Linear, Intensidades Raman, Bandas de Combinação e Overtones, Teoria da Polarizabilidade de Placzek.

mimarne

Em estudos anteriores ${ }^{1,2}$ de intensidades do espalhamento Raman, relativos às transições fundamentais, métodos ab initio dependentes do tempo, em particular o CCSD/LRT e o CASSCF/LRT, mostraram-se bastante apropriados na descrição desta propriedade, observando-se uma concordância quantitativa entre os valores calculados e os medidos das intensidades Raman absolutas. O sucesso destes métodos na previsão das polarizabilidades dinâmicas, bem como de suas derivadas primeiras com relação as coordenadas normais, motivou-nos a estudar derivadas da polarizabilidade de ordem superior, relacionadas às bandas de combinação e sobretons binários. Para tanto, nosso programa para cálculo de espectros Raman, PLACZEK, foi modificado para incluir a chamada anarmonicidade elétrica do potencial, que dá origem as transições de combinação e sobretons, além da anarmonicidade mecânica do potencial, por meio de Transformações de Contato, a fim de melhorar a descrição das funçães de onda vibracionais envolvidades nestas transições. Utilizando o método CCSD, com funções de base de Sadlej e aug-cc-pVTZ, as seções de choque Raman do acetileno e seus isotopômeros deuterados foram calculadas para uma energia de excitação de $514,5 \mathrm{~nm}$ e comparadas com os valores medidos disponíveis.

Na Tabela I são coletados os valores das seções de choque Raman referentes a alguns sobretons do acetileno, calculados com e sem correções de anarmonicidade para as funções de onda vibracionais, assim como os valores observados para as seções de choque desta molécula.

Tabela I. Valores calculados e observados ${ }^{3}$ para as componentes isotrópica e anisotrópica das seções de choque Raman dos sobretons binários de $\mathrm{C}_{2} \mathrm{H}_{2}$, (em $10^{-35} \mathrm{~m}^{2} \mathrm{sr}^{-1}$) para uma energia de excitação de $515,5 \mathrm{~nm}$.

	$2 v_{4}\left(\sum^{+}{ }_{g}+\Delta_{g}\right)$		$2 v_{s}\left(\Sigma^{*}{ }_{g}+\Delta_{g}\right)$	
	$1230 \mathrm{~cm}^{-1}$		$1449 \mathrm{~cm}^{-1}$	
	Iso	Ani	Iso	Ani
	CCSD/Sadlej-pVTZ			
Harm	1.378684	0.181786	0.919378	0.363328
Anarm	0.437854	0.342524	0.005768	0.021290
Exp	0.39(6)	0.12 (3)	$0.025(5)$	0.03(4)
	CCSD/aug-cc-pVTZ			
Harm	1.333464	0.165225	0.762515	0.306667
Anarm	0.615013	0.035828	0.001572	0.008659
Exp	0.39(6)	0.12(3)	0.025(5)	0.03(4)

WMandicers

Os resultados obtidos até o presente momento mostram uma melhor concordância entre valores calculados e experimentais para as bandas de combinação e sobretom mais intensas, que são da ordem de um milésimo do valor das transições fundamentais mais fortes. As correções para a anarmonicidade mecânica, pouco importantes nos sistemas cujas transições fundamentais foram estudadas anteriormente ${ }^{1,2}$, mostram-se indispensáveis para obter-se uma boa concordância com as intensidades medidas, principalmente para as bandas de sobretons.

LNV agradece ao CNPq (processo 141888/20040) pela bolsa de estudo concedida.

[^35]
USO DO MÉTODO AB INITIO MULTICONFIGURACIONAL CASSCF NO ESTUDO DE INTENSIDADES RAMAN RESSONANTES VIBRACIONAIS.

Luciano N. Vidal ${ }^{1 *}$ (PG) e Pedro A. M. Vazquez ${ }^{1}$ (PQ)
* Invidal@iqm.unicamp.br
${ }^{1}$ DFQ-IQ-UNICAMP, CP 6154, CEP 13084-862, Campinas, SP.
Palavras-Chaves: Espectroscopia Vibracional, Raman Ressonante, Intensidades Raman, Termo-A de Albrecht, CASSCF, Teoria da Resposta Linear.

ThTH(0) 1 18 0

No tratamento teórico das intensidades Raman าão ressonantes, o valor médio do momento dipolar induzido é expresso como uma soma sobre estados eletrônicos contendo denominadores do tipo " $\omega_{i}-\omega_{e x}$ ", onde ω_{i} é a diferença entre as energias do estado excitado $i \mathrm{e}$ do fundamental e ω_{ex} a energia de excitação. Na condição de ressonância, há uma grande intensificação do espalhamento Raman, devido ao pequeno valor da diferença $\omega_{i}-\omega_{\mathrm{ex}}$, e, por conseguinte, um termo da soma sobre estados predomina perante os demais. O desenvolvimento teórico do Efeito Raman Ressonante leva em consideração esta informação e passa a expressar a polarizabilidade eletrônica utilizando um número muito reduzido de estados excitados ou, mais comumente, somente o estado eletrônico ressonante é empregado na descrição da polarizabilidade. O formalismo teórico atualmente em uso para o estudo do Efeito Raman Ressonante foi desenvolvido por Albrecht ${ }^{1}$, que separa o tensor polarizabilidade em quatro termos, de importância decrescente, conhecidos como Termos A, B, C e D de Albrecht. Em virtude da predominância do primeiro termo sobre os demais, além da dificuldade teórica e computacional para lidar com os demais, os estudos das intensidades Raman ressonantes limitam-se ao uso do termo A. Para o cálculo de intensidades relativas a partir deste termo, é necessário determinar dois tipos de parâmetros: (1) As freqüências dos modos normais nos estados eletrônicos fundamental e ressonante e (2) O deslocamento do poço de energia potencial entre estes estados, expresso nas coordenadas normais do estado fundamental, Δ_{k}.
O presente estudo, relativo a molécula $\mathrm{H}_{2} \mathrm{O}$, utiliza o método CASSCF para otimizar as geometrias dos estados fundamental e excitado, além do cálculo analítico da matriz de constantes de força em ambos os estados, permitindo que as intensidades Raman ressonantes sejam determinadas.

No estudo desta propriedade, inicialmente devese identificar o estado eletrônico Raman ressonante, cuja transição deve ser permitida e, ademais, deve possuir uma intensidade apreciável. Para tanto, cálculos $\operatorname{CASSCF}(8,8)$, com funções de base aug-cc-pVTZ, utilizando a teoria da resposta linear, foram executados para determinar as energias e forças de oscilador dos estados excitados Raman ressonantes da água. Dois estados excitados foram selecionados para o cálculo das intensidades Raman ressonantes, um ${ }^{1} \mathrm{~A}_{1}$ em 121 nm ou outro ${ }^{1} \mathrm{~B}_{1}$ em 159 nm , cujas intensidades relativas, bem como os valores da função Δ_{k}, foram coletados na Tabela I.

Tabela I. Valores $\operatorname{CASSCF}(8,8)$ obtidos para $\Delta_{k} \mathrm{e}$ para a relação entre as intensidades Raman ressoantes dos modos totalmente simétricos de $\mathrm{H}_{2} \mathrm{O}$ nos estados excitados ${ }^{1} \mathrm{~A}_{1}$ e ${ }^{1} \mathrm{~B}_{1}$.

Estado	$\Delta_{\mathrm{k}}\left(v_{1}\right) /$ bohr	$\Delta_{\mathrm{k}}\left(v_{2}\right) /$ bohr	$\mathrm{I}\left(v_{2}\right) / \mathrm{I}\left(v_{1}\right)$
${ }^{1} \mathrm{~A}_{1}$	-0.8381	1.2814	0.4496
${ }^{1} \mathrm{~B}_{1}$	-0.1606	0.0194	0.0028

No presente momento, estamos trabalhando em metodologias para o cálculo de integrais de Franck-Condon, envolvidas na expressão da polarizabilidade na condição de ressonância, como o método de rotação da matriz de constantes de força de estados excitados de Dunschinsk, para que se possa determinar também as intensidades das transições vibracionais relativas a modos não totalmente simétricos, bem como valores absolutos das seções de choque Raman ressonantes.

LNV agradece ao CNPq (processo 141888/2004$0)$ pela bolsa de estudo concedida.

[^36]
CÁLCULO DE PROPRIEDADES ELETRÔNICAS QUE AUXILIAM NO ESCLARECIMENTO DO MECANISMO DE OXIDAÇÃO DE FÁRMACOS.

Paula Homem-de-Mello*,1 (PQ), Renata A. Toledo ${ }^{2}$ (PQ), Mauro C. Santos ${ }^{1}$ (PQ), Luiz H. Mazo ${ }^{3}$ (PQ) e Hugo B. Suffredini ${ }^{1}(P Q)$ *paula.mello@ufabc.edu.br
${ }^{1}$ Universidade Federal do ABC, Santo André, SP; ${ }^{2}$ Embrapa Instrumentação Agropecuária (CNPDIA), São Carlos, SP;
${ }^{3}$ Instituto de Química de São Carlos, Universidade de São Paulo (USP), São Carlos, SP.
Palavras Chave: oxidação, nortriptilina, DFT.

-

Estudos eletroquímicos foram realizados, pela primeira vez, para o anti-depressivo nortriptilina ${ }^{1}$. Verificou-se, porém, que o caráter hidrofóbico do material eletródico é fundamental para que o fármaco possa ser analisado (Figura 1).

Figura 1: Espectros de impedância eletroquímica em solução de nortriptilina $5.6 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}$ realizadas em eletrodos de (a) diamante (DDB) e (b) poliuretano e grafite. $E=0,95 \mathrm{~V}$ vs $\mathrm{Ag} / \mathrm{AgCl}$.

Na figura 1, é possível observar que o material hidrofílico (a) não apresenta processos faradaicos na região estudada, enquanto que o material compósito (b) apresenta uma resistência de transferência de carga limite para a oxidação do fármaco (i.e. cerca de $400 \mathrm{k} \Omega \mathrm{cm}^{-2}$), possibilitando o estudo do anti-depressivo. Desta forma, o objetivo deste trabalho é de utilizar cálculos baseados na Teoria do Funcional da Densidade (DFT) para esclarecer a forma em que ocorre a oxidação da nortriptilina.

Para a otimização da geometria e o cálculo das propriedades foi utilizado o funcional B3LYP, a base 6-31G(d) e IEF-PCM (Integral Equation Formulation version of the Polarizable Continuum Model) para simular o solvente (água), conforme implementado no Gaussian 03. Esta metodologia apresentou bons resultados para o estudo de outras moléculas tricíclicas ${ }^{2}$. A ausência de frequências imaginárias foi utilizada para assegurar que a estrutura obtida se trata de um mínimo.
A Figura 2 apresenta (a) o vetor momento de dipolo e (b) as cargas derivadas do potencial eletrostático (CHELPG). O sistema de anéis se encontra dobrado ao meio. O vetor do dipolo é orientado ao longo da cadeia alifática e es cargas atômicas indicam uma expressiva separação de cargas entre os primeiros átomos das cadeias alifáticas (sendo um deles ligados ao anel), enquanto esperava-se que a maior concentração
de carga positiva se desse sobre o átomo de nitrogênio.

Figura 2: Estrutura otimizada da nortriptilina: (a) vetor momento de dipolo e (b) cargas atômicas.

É importante também, avaliar o HOMO (Figura 3) em um processo de oxidação, uma vez que é este orbital molecular que perde elétrons. O HOMO da nortriptilina tem contribuições principalmente dos átomos dos anéis, ou seja, da parte apolar da molécula, indicando que esta região deveria interagir com o eletrodo para que a oxidação ocorresse.

Energia $\mathrm{HOMO}=-0,22 \mathrm{eV}$
Figura 3: Representação gráfica para o HOMO da nortriptilina.

donecheose

As propriedades calculadas indicaram que, embora a molécula estudada apresente uma região bastante polar, para que ela se oxide é necessário que a região apolar, onde o HOMO se localiza, interaja com o eletrodo. Desta forma, é essencial a utilização de um material eletródico apolar para ser possível a realização dos estudos eletroquímicos.

A E.E. Fileti e A.B.F. da Silva pelo suporte computacional, ao CNPq e à Fapesp pelo financiamento.

[^37]
Investigação teórica dos precursores da formação de IMOGOLITA.

Camila R. Campos*(IC) ${ }^{1}$,Cláudia Z. Oseguera (IC) $)^{2}$, Conny C. Ferreira (IC) ${ }^{1}$, Hélio A. Duarte (PQ) ${ }^{1}$. camposcr@ufmg.br
1.Grupo de Pesquisa em Química Inorgânica Teórica, Depto de Química- ICEX, UFMG, 31270-901-BH,MG, Brasil
2. Universidad de Guanajuato, Guanajuato - México.

Palavras Chave: DFT, aluminosilicato, nanotubos, imogolita.
estão mostradas na Tabela 1. Esta interação pode levar a formação de água - neste caso há um grupo -OH em ponte entre os elementos Si e Al, Si-$(\mathrm{OH})-\mathrm{Al}-$, ou $\mathrm{H}_{3} \mathrm{O}^{+}$quanto há um grupo oxo em ponte entre os elementos - Si-O-Al. Estas duas possibilidades foram investigadas.

$\left[\mathrm{Al}_{2}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}_{8}\right]^{]^{+}}\right.$

$\mathrm{Si}(\mathrm{OH})_{4}$

Figura 1. Espécies químicas precursoras da Imogolita.

Tabela 1. Energia de reação para formação dos precursores da imogolita.

Forma de Interação	$\Delta \mathrm{E}(\mathrm{Kcal} / \mathrm{mol})$	$\Delta \mathrm{G}^{\text {Tot }}(\mathrm{Kcal} / \mathrm{mol})^{*}$
formação de Al-O-Si		
Monodentado binuclear Monodentado mononuclear	$-45,6$	$-37,6$
Bidentado binuclear	$-207,4$	$-213,7$
formação de Al-(OH)-Si	$-265,6$	
Monodentado mononuclear	$-216,2$	
Bidentado binuclear	$-46,2$	$-36,2$

* Estimativa da Energia de Gibbs a 300K. O ZPE está incluído.

Parâmetros estruturais e termodinâmicos das várias possibilidades de formação dos precursores foram obtidos. Baseando-se na energia livre de Gibbs, os mecanismos de formação mais favoráveis são aqueles cujos precursores são bidentado binuclear e monodentado mononuclear.

- Norracomedios

Às instituições CNPq, FAPEMIG e CAPES pelo apoio financeiro à pesquisa.

[^38]
Estudos de docking e cálculos quânticos aplicadoos à inibição de CISTEINO-PROTEASES POR TE(IV)-DIPNONAS.

Mauricio Vega-Teijido ${ }^{1,2}(\mathrm{PQ})^{*}$; Julio Zukerman-Schpector ${ }^{2}(\mathrm{PQ})$; Ignez Caracelli ${ }^{1}(\mathrm{PQ})$; Rodrigo L.O.R. Cunha ${ }^{3}$ (PD) e João V. Comasseto ${ }^{4}$ (PQ).
mauryvg@gmail.com
${ }^{1}$ BioMat - Departamento de Fisica, Faculdade de Ciências, UNESP, Bauru-SP. ${ }^{2}$ LaCrEMM, Departamento de Química, UFSCar, São Carlos-SP. ${ }^{3}$ Departamento de Biofísica, UNIFESP, São Paulo. ${ }^{4}$ Instituto de Química, USP, São Paulo.

Palavras Chave: docking, cisteíno-proteases, catepsina B, $\mathrm{Te}(I V)$

InHocticgalo

Recentemente Cunha et al. ${ }^{[1 \mathrm{a}]}$ mostraram que haletos orgânicos de $\mathrm{Te}(\mathrm{IV})$ são potentes inibidores da catepsina B humana (CatB), sendo a Te (IV)dipnona o-RT05 (Fig. 1) o segundo inibidor mais ativo desta série e 40 vezes mais potente que o inibidor teluroorgânico encontrado por Albeck et al. ${ }^{[1 \mathrm{~b}]}$. Neste trabalho uma série de 7 Te (IV)dipnonas foram estudada por docking flexível ${ }^{[2]}$. As estruturas cristalográficas de o-RT05, RT09 e pRT10 (Fig. 1), foram determinadas por difração de raio X e usadas na modelagem do resto da série. O alvo do docking foi a estrutura cristalográfica de código $\mathrm{PDB}^{[3]} 1 g m y$ (CatB+dipeptidilnitrila). Os resultados do docking de RT09 foram utilizados em estudos teóricos do mecanismo de inibição. Nível de teoria: Teoria do Funcional da Densidade; funções de base de Ahlrichs e ECP de Hay \& Wadt para $\mathrm{Te}, 6-31 \mathrm{G}^{*}$ para Cl e D 95 para C , O e $\mathrm{H}^{[4]}$.

Figura 1. Os 7 compostos dos estudos de docking.

A validação metodológica foi realizada por redocking do inibidor presente em 1gmy. Nos estudos de docking foi encontrado um padrão de ligação da família de $\mathrm{Te}(\mathrm{IV})$-dipnonas no sitio ativo. Os complexos apresentaram scores favoráveis e distâncias de 4 a $5 \AA$ entre o Te e o S da Cys29, os átomos envolvidos na reação de ligação covalente que acontece após a formação do complexo precursor ${ }^{[1]}$. Adicionalmente, na conformação ligada no sitio (Fig. 2), o Te apresenta uma interação secundária intermolecular com o O da carbonila da Gly198. As estruturas cristalinas dos ligantes apresentam esta mesma interação, mas intramolecular. Os cálculos quânticos predizem para RT09 uma diferença de aproximadamente $14,0 \mathrm{kcal} / \mathrm{mol}$ entre um mínimo local (próximo da
conformação no sítio) e o mínimo absoluto (próximo da conformação cristalográfica). A mudança envolve uma rotação simultânea de dois ângulos de torção: $\mathrm{Cl}-\mathrm{Te}-\mathrm{C} 1-\mathrm{C} 2$ e $\mathrm{Te}-\mathrm{C} 1-\mathrm{C} 2=\mathrm{C} 3$. Os cálculos quânticos (usando a correção de BSSE) do sistema $\mathrm{TeCl}_{3} \mathrm{CH}_{3}$ com o tripeptídeo Gly197-Gly198-His199 (modelado do complexo CatB+RT09) sugerem um valor de aproximadamente $-17,0 \mathrm{kcal} / \mathrm{mol}$ para a interação Te---O=C-Gly198, que compensaria a energia consumida na mudança conformacional, lembrando que no complexo completo existe a interação favorável Te---S-Cys29.

Figura 2. Complexo CatB+RT09. Em destaque Cys29 e Gly198.

Womernibers

Os estudos de docking mostraram um padrão de ligação da série de $\mathrm{Te}(\mathrm{IV})$-dipnonas, as diferenças achadas na série podem ajudar no desenho de novos compostos. Os cálculos quânticos nos sistemas-modelo sugerem um balanço energético favorável à ligação no sítio, mesmo que os ligantes assumam uma conformação que é um mínimo local e não o absoluto.

2. Momadeclirgilos

Fapesp, Fundunesp, Cenapad, CNPq e ChemAxon

[^39]
EFEITOS DA CORRELAÇÃO ELETRÔNICA NA DENSIDADE DE SPIN EM ÂNIONS RADICAIS DE INTERESSE ELETROQUÍMICO

Renaldo T. Moura Júnior (PG) ${ }^{1 *}$, Ricardo L. Longo (PQ) ${ }^{2}$
1 - Pós-graduação em Ciência de Materiais - Universidade Federal de Pernambuco, 50740-540, Recife-PE, Brasil. *renaldotmjr@gmail.com
2 - Departamento de Química Fundamental - Universidade Federal de Pernambuco, 50740-540, Recife-PE, Brasil
Palavras Chave: correlação eletrônica, densidade de spin, diferenças de densidades. análise feita com o CubeDif mostra que a inclusão explícita da correlação eletrônica (cálculos UMP2) contribui para o aumento da densidade de spin no carbono halogenado, já a inclusão implícita da correlação (cálculos UB3LYP) contribui para a distribuição da densidade de spin por toda a molécula. O composto 3 , apresentou resultados dependentes do modelo teórico aplicado, ou seja, densidade de spin localizada na região da olefina para os métodos UMP2 e UHF e densidade de spin localizada na região do carbono halogenado para o método UB3LYP. A análise feita com o CubeDif do composto 3 (figura 2b) mostrou que a inclusão da correlação eletrônica pelo método UMP2 contribui muito pouco para a densidade de spin. Ainda para o ânion radical 3, a contribuição da otimização da geometria (figura 2a), isto é, a diferença das densidades de spin calculadas com o método UMP2 nas geometrias das espécies neutra e aniônica, foi mais significativa que a da contribuição da correlação. O método B3LYP forneceu densidades de spin localizadas na região do carbono halogenado para o ânion radical 3, tanto na geometria da espécie neutra quanto aniônica.

Figura 2. Mapas de diferenças de densidades (0,004 ea ${ }_{0}^{-3}$) entre UMP2 e UHF.

A relaxação da geometria e a inclusão da correlação eletrônica são fundamentais para a descrição dos ânions radicais. Porém, a inclusão da correlação eletrônica (método MP2) contribui menos significativamente que a relaxação da geometria. O método da diferença entre as propriedades (dispostas em grade de pontos) é instrutivo na visualização dos efeitos da correlação eletrônica e da geometria nas mesmas, especialmente nas densidades de spin. Diferenças significativas existem entre os métodos UB3LYP e UMP2.

CAPES; CNPq

ESTUDO AB INITIO DA CISTEÍNA COMO INIBIDORA DA CORROSÃO METÁLICA

José Brito da Cruz ${ }^{1, \star}$ (IC), Francisco Franciné Maia Júnior ${ }^{2}$ (PG), Valder Nogueira Freire ${ }^{2}$ (PQ), Pedro de Lima Neto ${ }^{1}$ (PQ)
jbritocruz@gmail.com

1. Departamento de Química Analítica e Físico-Química, UFC, Campus do Pici, bloco 940, CEP 60455-970 Fortaleza, Ce, Brasil.
2. Departamento de Física, UFC, C.P. 6030, CEP 60455-900 Fortaleza, Ce, Brasil.

Palavras Chave: ab initio, cisteína, inibidor de corrosão.

Thillog Mo

O uso de inibidores de corrosão é um dos métodos mais práticos para proteção de metais contra a corrosão. De um modo geral, os inibidores comerciais são compostos orgânicos contendo átomos de N, S e O , muitas vezes tóxicos à saúde humana e prejudiciais ao meio ambiente. A eficiência de inibição depende: (a) da natureza e do estado das superfícies metálicas; (b) da composição química da superficie; (c) do tipo de eletrólito agressor; e (d) da estrutura química do inibidor. Além do mais, a estabilidade dos filmes de inibidores adsorvidos na superfície metálica depende das propriedades físicoquímicas da molécula inibidora, que são relacionadas a seus grupos funcionais, aromaticidade, possíveis efeitos estéricos, densidades eletrônicas dos grupos doadores de elétrons, tipo de meio corrosivo e natureza das interações entre o orbital π dos inibidores com o orbital d do metal [1,2]. Atualmente é crescente o interesse de aplicação de aminoácidos como inibidores de corrosão, dentre estes a cisteína.

Este trabalho apresenta um estudo ab initio da adsorção da cisteína à superfície de ferro. O modelo (Fig. 1) consiste de uma superficie 2×1 $\mathrm{Fe}(100)$ formada por quatro camadas de átomos Fe . As duas camadas atômicas mais profundas foram fixadas, enquanto as demais foram relaxadas. Os cálculos foram realizados dentro do formalismo da teoria do funcional da densidade (DFT) usando a aproximação da densidade local (LDA). Usamos uma base de ondas planas expandidas e energia de corte de 300 eV . A interação núcleo-elétron foi descrita com um pseudopotencial ultramacio com correção do núcleo. Por fim, usamos um grid Monkhorst-Pack $4 \times 2 \times 1$ para integração no espaço recíproco. O código CASTEP [3] foi utilizado.

A análise das cargas de Mulliken mostra uma transferência de 0.11 e da superfície de ferro para a molécula da cisteína. Na aproximação da cisteína à superfície de Fe (a distância foi medida em relação ao átomo de enxofre - S), passo inicial de uma reação química, observamos um mínimo em $2,1 \AA$ (Fig. 2). A diferença de energia entre os orbitais HOMO e LUMO foi de $-3,732 \mathrm{eV}$, favorecendo a adsorção da cisteína sobre a superficie metálica.

Figura 1. Esquerda: perfil lateral (plano ac) da supercélula utilizada no modelo teórico; Direita: HOMO (topo) e LUMO (baixo) da cisteína.

Figura 2. Energia de ligação em função da distância do átomo de enxofre à superfície de ferro.

Obtivemos resultados iniciais que mostram a possibilidade de adsorção não-covalente da cisteína à superfície de ferro.

Os autores agradecem ao CNPq, à CAPES e à FINEP. JBC agradece a bolsa PIBIC-UFC-CNPq.

[^40]
EXPERIMENTO IN SILICO PARA A FORMAÇÃO DE COMPLEXOS COVALENTES.

Ignez Caracelli ${ }^{1 *}(\mathrm{PQ})$; Julio Zukerman-Schpector ${ }^{2}(\mathrm{PQ})$; Rodrigo L. O. R. Cunha ${ }^{3}(\mathrm{PQ})$ e João V. Comasseto ${ }^{4}(\mathrm{PQ})$.
ignez@fc.unesp.br
${ }^{1}$ BioMat - Departamento de Física, Faculdade de Ciências, UNESP, Bauru, ${ }^{2}$ LaCrEMM, Departamento de Química, UFSCar, São Carlos, ${ }^{3}$ Departamento de Biofísica, UNIFESP, São Paulo, ${ }^{4}$ Instituto de Química, USP, São Paulo. Palavras Chave: docking, cisteíno-protease, catepsina B, telúrio.

Figura 1. Ligantes estudados.
Compostos de Te (IV) como o AS-101 ${ }^{[1]}$ foram estudados e mostraram atividade inibitória em relação à cisteino-protease catepsina B. Foi feito um estudo de docking do ligante (I) 1-cloro-2-tricloroteluro-3-fenil-propen-3-ol ${ }^{2}$ e do ligante (II) AS-101 (Figura 1) na cisteíno-protease catepsina B (1GMY, código PDB), utilizando a metodologia de aproximação de corpos rígidos.

ECSUTHogs E DISMISEMD

O estudo de docking foi realizado em três etapas. Em todas elas, o sítio de ligação foi estimado como uma esfera de raio $9 \AA$ em torno dos resíduos Ser28-Cys29-Trp30 da enzima. Na Figura 2 apresenta-se a distância do enxofre SG da Cys29 ao átomo de $\mathrm{Te}(\mathrm{IV})$ do ligante.
(a) Na primeira etapa, o docking foi realizado com o ligante neutro e para a formação dos complexos os cálculos envolveram contatos e campo de forças. O ligante posiciona-se de tal forma que a distância $\mathrm{Te} \cdots \mathrm{SG}=7.84 \AA$ (Figura 2a).
(b) Na segunda etapa, cálculos semelhantes foram realizados, mas com o ligante carregado, uma vez que um átomo de cloro, ligado ao Te, foi removido e nesse caso a distância Te...SG $=5.97$ Å (Figura 2b).
(c) A terceira etapa, foi realizada considerandose somente os contatos, com o ligante carregado. Neste caso, a distância Te...SG $=3.87 \AA$ (Figura 2c), é menor que a soma dos raios de van der Waals.
Devido ao seu tamanho, o ligante (I) interage com os resíduos Asn72, Gly73, Gly 74 e Tyr 75 de um lado da fita β do canal de acesso à Cys29, além do resíduo Gly198 da outra fita β, o que não acontece com o ligante (II). Os ligantes também

Figura 2. Etapas da formação do complexo.

Figura 3. Ligantes complexados na catepsina B fazem uma ligação covalente Te...SG.(Figura 3), o que pode ser importante para seu poder inibitório. ${ }^{2}$

Tionomeros.

Ambos os ligantes formam uma ligação covalente com o aminoácido catalítico Cys29. Observa-se porém que o ligante (I), que é maior que (III), interage com aminoácidos das duas fitas β (Figura 3), o que não acontece com (III). Este modo de ligação pode ser responsável pelo maior poder inibitório de (II).

AGIrgemmenilge

Fundunesp, FAPESP, CAPES, CNPq.

[^41]
O ESSENCIAL PARA O DOCKING.

Ignez Caracelli*(PQ)

ignez@fc.unesp.br
BioMat - Departamento de Física, Faculdade de Ciências, UNESP
Palavras Chave: docking, planejamento, experimento in silico, estrutura cristalográfica

Figura 1. Fluxograma de cálculos de docking

Os experimentos in silico estão se tornando cada vez mais populares. Cálculos de docking têm sido utilizados tendo como objetivos fazer screening virtual e/ou se entender mecanismos de reação. ${ }^{1,2}$ As aplicações são inúmeras. A indústria farmacêutica, por exemplo, com um alvo potencial para inibir, pode acelerar o lançamento de um fármaco estudando uma série de compostos e descartando outros já a partir de simulação computacional, economizando assim tempo e dinheiro. Outras aplicações são o estudo de interações proteína-proteína, DNA-ligante, DNAproteína. Na área de desenvolvimento de novos materiais o estudo de compostos orgânicos depositados em superfície também tem sido alvo de estudos de docking. ${ }^{3,4}$

Rasminelos cinhsulusero

Na Figura 1 pode ser observado um fluxograma que descreve as etapas essenciais do docking. Serão apresentados dois casos já estudados. ${ }^{1,2} \mathrm{O}$ primeiro caso relaciona-se com as enzimas glutationa redutase (GR) e tripanotiona redutase (TR) ${ }^{1}$. Para esse caso há uma análise da seleção das estruturas tridimensionais da proteína (no Protein Data Bank ${ }^{5}$): obtenção da unidade funcional, dos sítios avaliados para o estudo de formação de complexos, a presença de ligantes, o redocking (usando ligante "sem memória"), comparação com dados de atividade inibitória, comparação com dados bioquímicos, análise
gráfica dos complexos formados, uma explicação dos mecanismos de reação, uma correlação dos dados estruturais com atividade inibitória, a importância da presença de certos aminoácidos carregados nos sítios estudados. A análise envolveu diferentes famílias de ligantes (nitrofuranos, quinonas, fenotiazinas, etc). Os casos estudados foram planejados para a formação de complexos via interações fracas enzima-ligante. Apesar do estudo ter sido feito com a aproximação de corpos rígidos, pode-se "imitar" um procedimento de docking semi-rígido analisando confôrmeros dos ligantes.
Outro experimento in silico analisado foi relativo ao de uma cisteino-protease ${ }^{2}$ em que foi feito um planejamento para a formação de um complexo covalente. A análise das interações mostra a importância nesse sítio da presença de aminoácidos apolares, e relação entre o tamanho da cadeia principai do ligante e a atividade inibitória.
Os programas computacionais disponíveis se diferenciam nos conceitos fundamentais, na função "score" que utilizam e na possibilidade ou não de flexibilidade do ligante e/ou macromolécula. Um exemplo de "score" aparece na Figura 1, onde são consideradas as energias de van der Waals e energia eletrostática. Nos casos analisados ficam evidenciadas as decisões do pesquisador na preparação do receptor e do ligante, e posteriormente na diferenciação dos resultados verdadeiros dos falsos positivos e na visualização gráfica dos complexos.

Para os casos analisados fica claro que o sucesso do docking está em todas as escolhas feitas antes (receptor, alvo, mecanismos) e depois dos cálculos (interações, energias, repetições de orientações do ligante no sítio) e não nos programas computacionais utilizados.

Womerechmentos

Fundunesp, FAPESP, CAPES, CNPq.

[^42]
FACTS AND ARTIFACTS IN TE... $\pi=A R Y L$ INTERACTIONS.

Julio Zukerman-Schpector ${ }^{1}(P Q)^{*}$, Mauricio Vega-Teijido ${ }^{1,2}(P Q)$, Ignez Caracelli ${ }^{2}(P Q)$, Ionel Haiduc ${ }^{3}(\mathbb{P Q})$
iuliozs@smail.com
${ }^{1}$ LaCrEMM - Departamento de Química, UFSCar, São Carlos-SP.
${ }^{2}$ BioMat - Departamento de Física, Faculdade de Ciências, UNESP, Bauru-SP.
${ }^{3}$ Facultatea de Chimie, Univeristatea Babes-Bolyai, Cluj-Napoca, Romênia.

Palavras Chave: tellurium,lone pair, supramolecular interactions.

The organotellurium are an important class of compounds of intrinsic interest in their molecular and supramolecular structure. These compounds are seldom monomolecular in the solid state, and they tend to form additional Te...secondary bonds, leading to supramolecular self-assembly and self-organization. ${ }^{1}$ In a previous work ${ }^{2}$ we showed that Te... π interactions can in their own right serve as new bonding motifs for supramolecular self-assembly and as a tool for crystal engineering. It seems that the presence of a lone pair of electrons at tellurium is essential for the Te... π interactions to occur, as they can interact with the molecular orbitals of the aryl group. Following the ideas and methodology settled in 3 quantum chemistry calculations were used to gain some insight on the lone pair influence in the Te... π interactions.

The results of the calculations for the intermolecular Te... π interaction in $\mathrm{TeCl}_{2} \mathrm{Me}_{2}+$ Benzene showing different density envelopes are presented in Figure 1.

density envelope $=0.025$ a.u.

 Figure 1. Intermolecular interactions.

The results of the calculations for the intramolecular interaction showing different density envelopes are displayed in Figure 2. Figure 3 shows a Te...aryl close distance but there is no interaction (artifact).

Figure 2. Intramolecular interaction

Figure 3. Secondary bonding consequence

In some cases a charge transfer probably occurs both ways, from tellurium to vacant molecular orbitals (antibonding) of the aromatic moiety, which in turn can contribute by back-donation to the vacant d-orbitals of tellurium. As a result, short tellurium-phenyl centroid distances are observed, but in other cases this short distance is a consequence of another secondary bonding and not to lp - π-aryl interaction.

FAPESP, CNPq, CAPES, CENAPAD, ChemAxon

[^43]
Screening Virtual de sulfonamidas nos Sítios de ligação das Enzimas Glutationa Redutase Humana e de Plasmodium falciparum.

Sergio Ricardo Pizano Rodrigues ${ }^{1}$ (IC)*, Ignez Caracelli ${ }^{2}$ (PQ). *pizanorodrigues@gmail.com
${ }^{1}$ Licenciatura Plena em Ciências Biológicas, Depto de Ciências Biológicas, Faculdade de Ciências, UNESP, Bauru-SP
${ }^{2}$ BioMat, Departamento de Física, Faculdade de Ciências, UNESP, Bauru-SP

Palavras Chave: sulfonamidas, docking, malária

Abstract

Thtormato Uma resistência aos fármacos comumente utilizados emergente nos parasitas causadores da malária, Plasmodium falciparum, tem sido observada, fazendo surgir a necessidade da idealização de novos compostos antimalariais ${ }^{1}$. As sulfonamidas têm mostrado efeitos antimalariais ${ }^{2}$. O presente trabalho relata o screening virtual, via docking, para o estudo da formação dos complexos proteína-ligante de sete sulfonamidas (Figura 1) em sítios de ligação das enzimas glutationa redutase do P. falciparum (GRPf) e glutationa redutase humana (GRh), cujas coordenadas cristalográficas foram obtidas do Protein Data Bank (PDB). Os compostos-modelos foram obtidos no Cambridge Structural Database (CSD) para a modelagem molecular das sulfonamidas.

Resultoros ehscussao

Das sete sulfonamidas estudadas, apenas duas apresentaram resultados favoráveis à ligação com a enzima do parasita, GRPf, e preferencialmente no sítio da interface desta enzima - os compostos (1) e (7) (Figura 1). Ambos diferem das demais sulfonamidas por apresentarem quatro átomos compondo a cadeia alifática que liga os dois anéis desses compostos e pelos seus substituintes. Tal comprimento permite que estes dois compostos realizem interações nas duas extremidades com resíduos do sítio da interface. A porção sulfonamida dessas moléculas, com carga tipicamente negativa, interage com uma região do sítio da interface contendo aminoácidos de carga positiva - os resíduos de Lys228 e de Arg196. Na extremidade oposta destas moléculas, os resíduos Asn 456 e Asn456' realizam ligaçães de hidrogênio com o anel derivado de aldeído cíclico e com o anel benzênico das sulfonamidas (1) e (7), respectivamente. Desta maneira, um eixo para a ligação é fixado e a orientação no sítio é estabilizada. Estes resultados são importantes porque os demais compostos tiveram resultados favoráveis à ligação com a enzima humana (GRH), especialmente no sítio da interface desta.

Figura 1. Sulfonamidas utilizadas para o docking com as enzimas GRs.

Conamedes

Dos resultados obtidos neste trabalho, pode-se afirmar que os compostos da família das sulfonamidas não são os ligantes mais eficazes das GRs. No entanto, duas sulfonamidas se destacaram das demais, os compostos (1) e (7), e podem ajudar no entendimento dos mecanismos de ligação no sítio da interface da GRPf e no desenho de fármacos para este alvo. O estudo mostra que o mecanismo de inibição que pode ser esperado para essas sulfonamidas é o de inibição não-competitiva.

FAPESP e FUNDUNESP.

[^44]
ESTUDO TEÓRICO DE ESTRUTURA E PROPRIEDADES ÓPTICAS NÃO-LINEARES de Nanotubos de carbono de Parede única Modificados.

Antônio M. Da Silva Jri (IC)*, Ana Cláudia M. Carvalho ${ }^{2}$ (PQ), Geórgia M. A. Junqueira ${ }^{3}$ (PQ), Hélio F. Dos Santos ${ }^{1}$ (PQ)
(1) Núcleo de Estudos em Química Computacional - Departamento de Química - ICE - Universidade Federal de Juiz de Fora, (2) Departamento de Física e Química - ICE - Universidade Federal de Itajubá, (3) Departamento de Química Universidade de Coimbra - Portugal.

Nanotubos de Carbono, Óptica Não-Linear
*antonio.ufif@gmail.com

Introdução

De significativo interesse em diversas áreas, os Nantotubos de Carbono ${ }^{1}$ vem se mostrando um atrativo alvo para modificações químicas visando diferentes aplicações ${ }^{2}$. Nesse contexto, a inclusão de substituintes com potencial em óptica não-linear (ONL) pode ser interessante no sentido de obter novos materiais orgânicos com resposta ONL^{3}. Neste trabalho foi avaliada, teoricamente, a magnitude da primeira hiperpolarizabilidade (β) dada uma funcionalização química de nanotubos de carbono de parede única (SWNT), da quiralidade armchair $(5,5)$, com derivados do estilbeno ${ }^{4}$ (Figura 1).

Figura 1: SWNT funcionalizado com derivados do estilbeno ($\mathrm{R}=$ $\mathrm{NO}_{2}, \mathrm{Cl}, \mathrm{H}, \mathrm{OH}$ ou NH_{2}).

Utilizando a serie de estruturas $\mathrm{a}(5,5) \mathrm{C}_{30+10 \mathrm{x}} \mathrm{H}_{20}$, com x natural variando de 0 a 9 , buscou-se avaliar a influência de alguns níveis de teoria e funções de base na estrutura dos tubos. Os métodos avaliados foram: PM3, HF/ (CEP-4G, STO-3G, 6-31G(d)) e PBE/6-31G(D). Correlacionando os valores das distâncias médias C-C entre os métodos, através do coeficiente de correlação, para a série de estruturas, destacam-se os valores 0,994 e 0,540 para a comparação entre os pontos fornecidos pelos métodos PM3 \times PBE/6-31G(d) e CEP-4G X PBE/6-31G(d), respectivamente. Pode-se observar que o método semi-empírico PM3 demonstrou-se significativamente correlacionado com o método DFT de maior custo (PBE/6-31G(d)), com o qual o método HF/CEP-4G mostrou-se significativamente destoante.
Utilizando a geometria do método PM3 para a estrutura $\mathrm{C}_{170} \mathrm{H}_{20}$, avaliou-se a influência da inserção do ligante no valor da primeira hiperpolarizabilidade ($\beta_{\text {total }}$) (Figura 2a), com a versão espectroscópica do método ZINDO, utilizando a metodologia CI (ZINDO-S/CI).

Figura 2. (a) Valores de $\beta_{\text {total }}$ para o ligante livre e irpserido no tubo, relativos a diferentes grupamentos R. (b) Ilustração da diferença na magnitude da propriedade mencionada utilizando o grupamento NO_{2}.

Pode-se observar que existe uma significativa diferença entre os valores para a propriedade no ligante isolado em comparação com este inserido no tubo. Isto pode ser mais bem observado no gráfico de barras, no qual fica explícita a significativa diferença entre os valores (Figura 2b).

Conch Letoes

No que diz respeito às estruturas pode-se observar que o método PM3 mostrou-se significativamente correlacionado com o DFT de maior custo. Em relação à propriedade, a inserção do ligante na nanoestrutura potencializa a propriedade em uma ordem de grandeza.

FAPEMIG, CNPQ, CAPES, PROPESQ
${ }^{1}$ Iijima S., Nature, 354 (1991) 56.
${ }^{2}$ C. A. Furtado et al., J. Am. Chem. Soc., 128 (2004) 6095
${ }^{3}$ J. L. Brédas et al., Chem. Rev., 94 (1994) 243.
${ }^{4}$ Abraham Ulman, J. Phys. Chem., 92 (1991) 2385.

ESTUDO DA INFLUÊNCIA DA CORRELAÇÃO ELETRÔNICA E DAS FUNÇÕES DE BASE NAS INTENSIDADES TEÓRICAS I.V.

João V. da Silva Jr. (PG), Luciano N. Vidal (PG), Pedro A. M. Vazquez (PQ) ${ }^{1,{ }^{*}}$, Roy E. Bruns (PQ).
*vazquez@iqm.unicamp.br

${ }^{1}$ DFQ-IQ-UNICAMP, CP 6154, CEP 13084-862, Campinas, SP.
Palavras Chave: Espectroscopia IR, Intensidades Absolutas, Coupled Cluster Theory, TPA, correlação eletrônica.
Tabela I. Intensidades no infravermelho ($\mathrm{km} / \mathrm{mol}$)

A disponibilidade de implementações computacionais de métodos de estrutura eletrônica baseados na teoria Coupled Cluster, aliada ao grande êxito deste modelo na previsão de propriedades de sistemas moleculares, motivou-nos a implementar a metodologia dos Tensores Polares Atômicos para o cálculo de intensidades no espectro infravermelho, baseados em métodos Coupled Cluster, com o propósito de avaliar de maneira sistemática o efeito da inclusão da correlação eletrônica dinâmica sobre esta propriedade. Para tanto, o programa PLACZEK, desenvolvido por nosso grupo para cálculos de intensidades Raman, foi estendido para permitir cálculos de intensidades do espectro infravermelho, utilizando derivadas do momento dipolar elétrico provenientes de funções de onda CCS, CC2, CCSD e $\operatorname{CCSD}(\mathrm{T})$. A convergência de funções de base é analisada dentro da série de funções correlation consistent de Dunning cc-pV(D,T,Q,5)Z, além do efeito do acréscimo de funções difusas, por meio das ccpVTZ, aug-cc-pVTZ e d-aug-cc-pVTZ. O desempenho das funções polarizadas de Sadlej também é avaliado, para os conjuntos Z2Pol, Z3Pol e Sadlej-pVTZ, que são bases compactas desenvolvidas para o cálculo de propriedades elétricas, particularmente para os momentos dipolares elétricos e as polarizabilidades.

PForullumb chllecussab

O presente estudo abrangeu O . conjunto de moléculas HF, $\mathrm{H}_{2} \mathrm{O}, \mathrm{HCN}, \mathrm{CH}_{4}, \mathrm{CH}_{3} \mathrm{~F}, \mathrm{C}_{2} \mathrm{H}_{2}$ e $\mathrm{C}_{2} \mathrm{H}_{4}$, que possuem medidas experimentais de intensidades infravermelho absolutas. Estas intensidades foram calculadas com o programa PLACZEK, por meio de derivação numérica dos momentos dipolares elétricos Coupled Cluster, calculados pelo pacote de estrutura eletrônica $a b$ initio DALTON, v2.0. As intensidades das transições fundamentais da água, obtidas através de tensores polares atômicos numéricos, são listadas na Tabela I.
para $\mathrm{H}_{2} \mathrm{O}$ calculadas com funções de base ccpVTZ.

$v_{1}\left(\mathrm{a}_{1}\right)$	$v_{2}\left(\mathrm{a}_{1}\right)$	$v_{3}\left(\mathrm{~b}_{2}\right)$	
	$3657 \mathrm{~cm}^{-1}$	$1595 \mathrm{~cm}^{-1}$	$3756 \mathrm{~cm}^{-1}$
CCS	13,36	86,25	67,09
CC2	4,55	63,33	54,56
CCSD	4,35	66,23	45,57
CCSD(T)	3,24	63,78	42,45
Experimental	2,9	62,5	41,7

(V) 1 G $14 \leq 015$

Nossos resultados para as moléculas estudadas, mostram uma melhora progressiva nas intensidades $\mathbb{I R}$ calculadas, com respeito aos valores experimentais destas propriedades, quando percorremos a hierarquia CCS , CC2, CCSD, CCSD(T) e que o nível CCSD apresenta a melhor relação entre desepenho teórico e o custo computacional. Com respeito à convergência das intensidades na série cc-pVnZ $n=(D, T, Q, 5)$, a melhor relação foi apresentada pela cc-pVTZ. Foi observado um aumento das intensidades com o aumento de n, podendo os valores calculados exceder os valores observados experimentalmente. A base SadlejpVTZ (10s6p4d) \rightarrow [.5s3p2d] apresentou desempenho semelhante à cc-pVTZ (10s5p2d1f) \rightarrow [4s3p2d1f] a um custo computacional menor enquanto que as recontrações Z2Pol e Z3Pol (10s6p4d) \rightarrow [4s3p1d] mostraram um desempenho ligeiramente inferior a um custo computacional significativamente menor.

LNV e JVSJr agradecem ao CNPq (processo $141888 / 2004-0$) e à FAPESP (0651572-0) pelas bolsas de estudo concedidas. REB agradece à FAPESP o auxílio à pesquisa (06/53260-6).

GAUSSIAN BASIS SET OF DOUBLE ZETA QUALITY FOR ATOMS \mathbb{K} THROUGH $\mathbb{Z N}$: APPLICATION IN DFT CALCULATIONS OF MOLECULAR PROPERTIES

*Giuseppi G. Camiletti ${ }^{1}$ (PG), Sydney F. Machado ${ }^{2}$ (PG) and Francisco E. Jorge ${ }^{2}$ (PQ)
* giuseppicamilett@hotmail.com
${ }^{1}$ Faculdade de Aracruz, 180, Centro, Aracruz - ES, CEP 29190-000
${ }^{2}$ Departamento de Física, Universidade Federal do Espírito Santo, Vitória - ES, CEP 29060-900

Key words: DZP basis set; K to Zn; BP86 and B3LYP functionals; molecular properties

Intiodimion

Recently, Canal Neto et al. ${ }^{1}$ presented segmented contracted double zeta valence quality plus polarization function (DZP) basis set for the atoms from H to Ar. At the Hartree-Fock (HF) and MфllerPlesset second-order (MP2) levels, these sets were applied with success in calculations of energies, dissociation energy, harmonic vibrational frequency, and electric dipole moment of a set of diatomic molecules containing atoms of the first- and secondrow ${ }^{2}$.

The goal of the present work is the extension of the DZP basis set ${ }^{1}$ to third-row atoms ($\mathrm{K}-\mathrm{Zn}$). Combined with lighter atoms using the same basis set, this should increase the range of inorganic and organometallic chemistry that can be handled efficiently by modern quantum chemistry methods. Ground-vibrational-state dissociation energy (D_{0}), bond length (r_{e}), harmonic vibrational frequency $\left(\omega_{\mathrm{e}}\right)$, and dipole moment (μ_{e}) were calculated and compared with results obtained with the $6-31 G^{* *}$ basis set ${ }^{3,4}$ for eight molecules for which there is experimental data ${ }^{5}$ in the gas phase.

Lesulls ano oliscuisston

Initially, the s, p, and d exponents of the DZP set were fully-optimized at the HF level. Next, using the segmented contraction scheme, contracted Gaussian basis sets were constructed. Finally, polarization functions (d for K and Ca and f for $\mathrm{Sc}-\mathrm{Kr}$) were determined from correlated atomic calculations (MP2).

The Gaussian 03 program was used in density functional theory (DFT) molecular wave function calculations. As an example, for $\operatorname{CuF}\left({ }^{1} \Sigma^{+}\right)$, calculated and experimental ${ }^{5} D_{0}, r_{e}, \omega_{e}$, and μ_{e} results are presented in Table 1.

For the alkaline and transition metal compounds calculated in this work, the mean absolute percentage deviations among the results obtained with the BP86 (B3LYP)/DZP and $6-31 G^{* *}$ from the corresponding experimental dissociation energies are 12.21 (8.98) and 25.05 (10.12) \%, respectively. From these deviations, it is clear that the B3LYP/DZP dissociation energies are in better accord with the experimental
data than those calculated with the other models. For KF and transition metal compounds, the mean absolute deviations from experiment of DZP and 6$31 G^{* *}$ bond lengths are respectively 0.0252 and 0.0360 \AA at the BP86 level and 0.0292 and $0.0316 \AA$ at the B3LYP level. At any level of theory, the DZP set yields equilibrium structures which, on average, are better than those derived with the other basis set.

All calculated DZP harmonic vibrational frequencies are in better agreement with the experimental data than the corresponding ones obtained with $6-31 \mathrm{G}^{* *}$, and the mean absolute percentage deviations among the results obtained with the BP86 (B3LYP)/DZP and $6-31 G^{* *}$ approaches from experimental bond frequencies are 3.00 (3.17) and 9.88 (10.23) \%, respectively.

Considering dipole moment, the best agreement between theory and experiment is always obtained with the DZP basis set. For the DZP set, one verifies good agreement same for diatomics incorporating very electroposite (KF) third-row element.

GOTCI LSIOMS

In this work, the correlated basis set of double quality for H, He, and first- and second-row atoms ${ }^{1}$ has been extended to include the elements from K to Zn . For D_{0}, r_{e}, ω_{e}, and μ_{e} the DZP basis set provides results of higher accuracy than the $6-31 \mathrm{G}^{* *}$ basis set for B3LYP and BP86 calculations.

- Aconowedornems

CNPq, CAPES

[^45]Table 1. Experimental and calculated D_{0}, r_{e}, ω_{e}, and μ_{e} for the ground state of CuF.

Molecule	Method	Basis Set	$\mathrm{D}_{0}(\mathrm{~kJ} / \mathrm{mol})$	$\mathrm{re}_{\mathrm{e}}(\AA)$	$\omega_{\mathrm{e}}\left(\mathrm{cm}^{-1}\right)$	$\mu_{\mathrm{e}}(\mathrm{D})$
$\operatorname{CuF}\left(\Sigma^{+}\right)$	Expt. ${ }^{5}$		413.4 ± 13	1.7449	622.7	5.77
	BP86	DZP	411.7	1.7628	626.5	4.86
		$6-31 \mathrm{G}^{* * *, 4}$	548.8	1.6606	768.3	3.29
	B3LYP	DZP	372.8	1.7702	620.2	5.34
		$6-31 \mathrm{G}^{* * *} 3$	461.8	1.6655	769.4	3.77

Estudo teórico da hidrólise do Al(III) EM MEIO AQUOSO.

Conny C. Ferreira (IC) ${ }^{1}$, Camila R. Campos* $(I C)^{1}$,Cláudia Z. Oseguera (IC) ${ }^{2}$, Hélio A. Duarte (PQ) ${ }^{1}$.
conny@ufmg.br
1.Grupo de Pesquisa em Química Inorgânica Teórica, Depto de Química- ICEX, UFMG, 31270-901-BH,MG, Brasil 2. Universidad de Guanajuato, Guanajuato - México.

Palavras Chave: DFT, hidrólise, Al(III)

A hidrólise do alumínio (III) foi investigada extensivamente nos últimos 50 anos. ${ }^{1}$ As reações de oligomerização foram investigadas em detalhes. No entanto, é de consenso na literatura que a especiação química decorrente da hidrólise do $\mathrm{Al}(\mathrm{III})$ é muito complexo e as reações envolvidas muito lentas ${ }^{2}$.

De acordo com a literatura, as principais espécies formadas no processo de hidrólise são $\left[\mathrm{Al}_{2}(\mathrm{OH})_{2}\right]^{4+}$, $\left[\mathrm{Al}_{3}(\mathrm{OH})_{4}\right]^{5+}$, e $\left[\mathrm{Al}_{13}(\mathrm{OH})_{32}\right]^{7+}$. Em nosso trabalho estruturamos as reações a partir do $\mathrm{Al}(\mathrm{OH})_{3}$ e investigamos a formação do dimero, $\left[\mathrm{Al}_{2}(\mathrm{OH})_{2}\right]^{4+}$, do trímero, $\left[\mathrm{Al}_{3}(\mathrm{OH})_{4}\right]^{5+}$, e da espécie $\left[\mathrm{Al}_{6}(\mathrm{OH})_{18} .\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]$. Este último é um precursor da formação da gibbsita.

Neste trabalho, cálculos DFT^{2} foram realizados para compreendermos a interação do ion $\mathrm{Al}(\mathrm{III})$ com $\mathrm{H}_{2} \mathrm{O}$ avaliando-se as energias livres e constantes de equilibrio das reações de hidrólise.

VIEForologia

Todos os tautômeros e conformações das espécies formadas a partir da hidrólise do Al (III) em meio aquoso foram investigadas utilizando o método LCGTO-KSDFT (Combinação Linear de Orbitais Tipo Gaussian-Kohn-Sham- Teoria do Funcional de Densidade) implementado no programa deMon. pacote Gaussian 2003. A aproximação do Gradiente Generalizado para o funcional de troca-correlação (PBE) foi utilizada. Diferente conjuntos de funções de base - DZVP e TZVP - foram utilizados para todos os átomos. A energia de solvatação para as espécies mais estáveis foi estimada usando o método PCM/UAHF/6-31+G(d) implementado no pacote Gaussian 2003.

As espécies químicas $\left[\mathrm{Al}_{2}(\mathrm{OH})_{2}\right]^{4+},\left[\mathrm{Al}_{3}(\mathrm{OH})_{4}\right]^{5+}$, $\left[\mathrm{Al}_{6}(\mathrm{OH})_{18} .\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]$, foram modeladas conforme mostra a figura 1. O Al ${ }^{3+}$ apresenta número de coordenação 6 , os grupos - OH estão em ponte e moléculas de água foram adicionadas para completar a geometria octaédrica do íon.

A Tabela 1 mostra as energias livres de reação para a formação das espécies hidrolisadas de $\mathrm{Al}(\mathrm{III})$.

A energia livre de reação foi estimada tendo-se como reagente o $\mathrm{Al}(\mathrm{OH})_{3}$ e a $\mathrm{H}_{2} \mathrm{O}$. Dados recentes, obtidos em nosso laboratório ${ }^{2}$, demonstram que o íon Al^{3+} em solução não pode ser modelado a partir de uma única espécie hexacoordinada. Dados experimentais tem mostrado que o Al^{3+} em solução pode estar também na forma pentacoordenada. Por isso, decidiu-se utilizar como reagente a espécie $\mathrm{Al}(\mathrm{OH})_{3}$, cuja estrutura é possível de ser calculada de forma inequívoca.

Figura 1. Espécies químicas resultantes da hidrólise do $\mathrm{Al}(\mathrm{III})$.
Tabela 1. Energia de reação, em kcal/mol, estimado no nível de cálculo PBE/TZVP.

Espécie Formada	$\Delta \mathrm{E}$	$\Delta \mathrm{G}^{*}$
$\left[\mathrm{Al}_{2}(\mathrm{OH})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{8}\right]^{4+}$	115,9	$-12,0$
$\left[\mathrm{Al}_{3}(\mathrm{OH})_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{10}\right]^{5+}$	185,4	$-18,1$
$\mathrm{Al}_{6}(\mathrm{OH})_{18}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}$	$-401,5$	$-168,23$

$\Delta G=\Delta E+\Delta G^{\text {termico }}+\Delta G^{\text {solvatação }} ;$ inclui correções ZPE.

reansideracoce plime

A estabilidade das espécies estudadas foi investigada através de cálculos DFT. Análise estrutural e termodinâmica das espécies formadas será apresentada. O mecanismo de formação da gibbsita, em meio aquoso, será brevemente discutido.

4.

Às instituições CNPq, FAPEMIG e CAPES pelo apoio financeiro à pesquisa.

[^46]
ABSORPTION EFFECTS IN INTERMEDIATE-ENERGY ELECTRON SCATTERING BY HYDROGEN SULPHIDE

Luiz E. Machado ${ }^{1 *}(\mathrm{PQ})$, Lee Mu-Tao ${ }^{2}(\mathbb{P Q})$, Luiz M. Brescansin ${ }^{3}$ (PQ). *dlem@df.ufscar.br.
${ }^{1}$ Departamento de Física, UFSCar, 13565-905, São Carlos, SP
${ }^{2}$ Departamento de Química, UFSCar, 13565-905, São Carlos, SP
${ }^{3}$ Instituto de Fisica "Gleb Wataghin", UNICAMP, 13083-970, Campinas, SP

Key words: Absorption effects, electron scattering, hydrogen sulphide, cross sections

Most of the solid-based ab-initio theoretical methods developed for investigation on electronmolecule can only be successfully applied in the low incident energy range. Extension of their applications to the intermediate-energy range is limited by the numerous open inelastic scattering channels responsible for absorption effects that play important role on the collision dynamics. Therefore, in the last two decades several model absorption potentials have been proposed to include absorption effects into the scattering dynamics in a single-channel calculation framework.
Although most of these model-potential methods have shown to provide, in general, quite accurate differential (DCS), integral (ICS) and momentumtransfer (MTCS) cross sections for elastic electronmolecule collisions, most of the calculations have systematically underestimated the values of the grand-total (TCS) and total absorption (TACS) cross sections.

In a recent paper [1] our group has reported a modified version of the widely used Staszewska's version-3 model absorption potential [2]. We have proposed a scaling factor that should be applied on the original Staszewska's absorption potential. It was shown that such a simple modification is capable of providing significant improvement in the calculated TCS and TACS of intermediate-energy electron-molecule collisions, for a variety of targets. Here we apply our modified model absorption potential to study electron scattering by a polar molecule, hydrogen sulphide, in a wide incident energy range (1-500 eV). In Fig. 1 we compare calculated TACS for elastic $e^{-} \mathrm{H}_{2} \mathrm{~S}$, obtained using both the original Staszewska's and our modified model absorption potentials, with results from the literature [3-5]. Additional results of DCS, ICS, MTCS, TCS and TACS will be presented at the Symposium.

Figure 1. TACS for elastic $e^{-} \mathrm{H}_{2} \mathrm{~S}$ scattering. Solid line, calculated using the present modified absorption potential; dashed line, using the original Staszewska's absorption potential; dotted line, theoretical TACS of Joshipura and Vinodkumar [3] using the additivity rule; circles, experimental total ionizations cross sections (TICS) of Rao et al. [4]; squares, experimental TICS of Lindsay et al. [5]

Foniclicions

As in our previous work [1] for other targets, in the present work we have shown that our modified absorption potential is capable of providing accurate cross sections also for a polar molecule such as $\mathrm{H}_{2} \mathrm{~S}$

This work was partially supported by FAPESP, CNPq and FINEP.

[^47]
ESTUDO QUIMICO-QUÂNTICO SEMI-EMPÍRICO E AB INITIO SOBRE A ESTRUTURA ELETRÔNICA DE HÔRMIONIOS NÃO ESTERÓIDES E SUA ATIVIDADE CARCINOGÊRICA
 Cíntia Beatriz de Oliveira ${ }^{1 *}$ (PQ), Katya Maria de Oliveira Sousa ${ }^{1}$ (PQ)
 1 Unidade Acadêmica de Serra Talhada, Universidade Federal Rural de Pernambuco, Fazenda Saco, Caixa Postal 063, 56.900-000, Serra Talhada, PE, Brasil
 *e-mail: cintia@uast.ufrpe.br
 Palavras Chave: Modelagem molecular, dinâmica molecular, docking, hormônio tireóideo, estrógəno, câncer de mama.

1 गITox licelo

No presente trabalho, cálculos químico-quânticos serão aplicados para estudar a relação entre a estrutura química e a atividade biológica, para hormônios não esteróides, baseando-se nas pesquisas desenvolvidas por Saraiva [1], que realizou um estudo clínico e molecular sobre a relação entre câncer de mama e doenças tireoidianas. Apresentaremos alguns resultados para os hormônios estradiol (E2) e a triiodotironina (T3), no sentido de relacionar sua estrutura eletrônica com a atividade carcinogênica. Esta pesquisa vem sendo realizada em colaboração com o grupo da Dr^{a}. Célia Regina Nogueira, do Depto. de Clínica Médica da Faculdade de Medicina da Universidade Estadual Paulista, que investiga a possibilidade do hormônio tireoideano também se ligar ao receptor de estrógeno, no câncer de mama e em outros tecidos. Todos os cálculos foram feitos utilizando-se os programas HyperChem 7.0 e Gaussian 98.

\square Resulinome elliscussab

Os resultados obtidos foram baseados nos critérios de Barone e cols. [2], com relação à natureza e forma dos orbitais de fronteira, bem como suas energias. A partir destes critérios, nossos resultados revelam que, tanto para o E2 como para a T3, os orbitais se localizam nas mesmas regiões para cada molécula, sugerindo que os compostos são carcinogênicos. As formas dos orbitais HOMO e HOMO-1 são apresentadas na Figura 1.

Figura 1. Representação dos orbitais para o E2 nas formas (A) HOMO-1; B) HOMO; e T3 nas formas (C) HOMO-1; (D) HOMO.
De acordo com os dados da Tabela 1, o E2 apresenta atividade carcinogênica mais intensa, visto que a separação entre as energias de seus orbitais de fronteira é 3,8 vezes maior que o valor para a T3.

Tabela 1. Energias (em eV) dos orbitais HOMO, HOMO - 1 e a diferença entre eles (Δ) para o E2 e para a T3.

	HOMO	HOMO -1	Δ
E2	$-8,783$	$-9,561$	0,778
T3	$-8,834$	$-9,037$	0,203

Os critérios avaliados até agora nos foram úteis para relacionar estrutura eletrônica com atividade carcinogênica. Os resultados obtidos neste trabalho, juntamente, com a realização de cálculos futuros de modelagem e dinâmica molecular, com o propósito de elucidar o mecanismo de ligação do hormônio T3 ao receptor de estrógeno, nos permitirá esclarecer de forma determinante esse tipo de atividade. Este trabalho, também, tem a finalidade de alertar mulheres que apresentam doenças tireoideanas, principalmente o hipertireoidismo, a uma prevenção mais rigorosa contra o possível desenvolvimento de tumores na mama.

Agradecemos a Dra Célia Regina Nogueira e ao aluno de doutorado Sandro José Conde que nos forneceram informações sobre o hormônio tireoideano e o receptor de estrógeno e pelas valiosas discussões realizadas durante a execução deste trabalho.

[^48]
ESTUDO TEÓRICO DE REAÇÃO DE ESTERIFICAÇÃO EM ZMS-5.

Fernando S. da Silva ${ }^{1}$ (IC)*, João B. L. Martins ${ }^{2}$ (PQ), Elton A. S. Castro ${ }^{3}$ (PG).
Universidade de Brasília, Instituto de Química, CP 4478, Brasília, DF, 70904-970
diondu@gmail.com, lopes@unb.br, eltoncastro@unb.br
Palavras Chave: esterificação, zeólita, ZSM-5, semi-empírico.

Whinochrabo

Na maioria das reações de esterificação são utilizados catalisadores ácidos, que em geral são bastante eficientes. No entanto, há problemas com a utilização destes quanto a ocorrência de reações secundárias e a dificuldade de separar o catalisador após a reação. Neste sentido, catalisadores ácidos em fase sólida, como a ZSM-5 aparecem como alternativa para estas reações.

A reação de esterificação do ácido butanóico e do etanol foi estudado em ZSM-5 utilizando o método semi-empírico AM1..

Inicialmente foi estudada a primeira etapa da reação onde ocorre a protonação do ácido carboxílico utilizando a ZSM-5 como ácido catalisador.

Figura 1. Ácido Butanóico, etanol e o sítio ácido do catalisador.

Na primeira etapa o hidrogênio ácido da ZSM-5 aproxima-se da carboxila do ácido butanóico e a protonação do ácido carboxílico acontece como mostra a Figura 1.

Figura 2. Gráfico de energia (kcal.mol ${ }^{-1}$) para a primeira etapa da reação de esterificação.

A primeira etapa da reação correspondeu a um calor de formação de $32,92 \mathrm{kcal}_{\mathrm{kc}}^{\mathrm{mol}}{ }^{-1}$ e uma energia de ativação de $33,66 \mathrm{kcal} . \mathrm{mol}^{-1}$.

Estudos com o método híbrido ONIOM também foram realizados, utilizando três camadas de teoria: B3LYP/3-21G, AM1 e campo de força UFF.

Qolicillesores

O estudo teórico de uma reação de esterificação em um catalisador heterogênio como a ZSM-5 foi realizada com o método semi-empírico e ONIOM. O estado de transição foi calculado para a primeira etapa da reação.

Wabricechilimbes.

CNPq, PIC-UnB, Finatec.

[^49]
CÁLCULO DA ESTRUTURA ELETRÔNICA DE ALCÓXIDOS MONO- E BINUCLEARES DE VANÁDIO POR TDDFT

Alexandre Carli de Freitas(PG)*, Giovana Gioppo Nunes(PQ), Kátia Cristina Molgero Westrup(IC), Jaísa Fernandes Soares(PQ), Eduardo Lemos de Sá(PQ) - acf@quimica.ufpr.br
Departamento de Química, Universidade Federal do Paraná (UFPR), Centro Politécnico, 81531-990 - Curitiba, PR. Palavras Chave: TDDFT, Vanádio(IV), Espectro Eletrônico

Entre os objetivos alcançados pelo nosso grupo de pesquisa destaca-se o estudo das propriedades termocrômicas de alcóxidos de vanádio(IV), em particular de $\left[\left\{\mathrm{V}\left(\mathrm{OPr}^{i}\right)_{3}\right\}_{2}\left(\mu-\mathrm{OPr}^{\mathrm{j}}\right)_{2}\right](\mathrm{l})^{1}$, mostrado na Figura1. Estas propriedades termocrômicas também são acentuadas e proeminentes em outros alcóxidos de vanádio sintetizados recentemente ${ }^{2}$. Estas descobertas demandam um estudo teórico e experimental aprofundado que avalie, dentre outros aspectos, o potencial de aplicação tecnológica destes materiais. Para tanto se faz útil o uso dos métodos de simulação de estrutura e transições eletrônicas que utilizam a Teoria do Funcional de Densidade Dependente do Tempo (Time-Dependent Density Functional Theory, TDDFT). Estes métodos têm se mostrado bastante atrativos, devido à sua acurácia no cálculo de propriedades eletrônicas, aliada ao seu custo computacional relativamente baixo. Estes fatores são determinantes ao se estudar moléculas envolvendo metais de transição.

FaSulimese blisulaselor

O complexo I e seu análogo neopentóxido ${ }^{2}$ apresentam termocromismo em solução. À temperatura ambiente, I apresenta coloração azul (674 nm), cuja intensidade vai diminuindo gradativamente à medida que surge a cor amarelo ouro (470 nm), que

Figura 1. Estrutura do $\left[\left\{\mathrm{V}(\mathrm{OPr})_{3}\right\}_{2}\left(\mu-\mathrm{OPr}^{\prime}\right)_{2}\right]$ predomina a baixas temperaturas ($\sim 210 \mathrm{~K}$).
Resultados de FTIR, RMN e RPE sugerem que, em soluções de I, o cromismo se dê através de um equilíbrio de dimerização (Figura2). A presença de um ponto isosbéstico no espectro eletrônico experimental sugere a existência de somente duas espécies em solução.
Neste estudo, as estruturas de raios- X destes alcóxidos foram otimizadas, seguidas da análise vibracional, para confirmar a obtenção de um mínimo local. Em seguida, o cálculo do espectro eletrônico por TDDFT e a análise das transições eletrônicas foram realizados.

Neste trabalho utilizamos o funcional híbrido B3LYP, contido no pacote de programas computacionais

Figura 2. Dimerização do $\left[\left\{\mathrm{V}\left(\mathrm{OPr}^{\mathrm{i}}\right)_{3}\right\}_{2}\left(\mu-\mathrm{OPr}^{\mathrm{i}}\right)_{2}\right]$
Gaussian 03. As trinta excitações de menor energia foram calculadas. Na Figura 3, os espectros eletrônicos simulados das duas espécies sugeridas estão mostrados.

Figura 3. Simulação do Espectro eletrônico do $\left[\left\{V\left(\mathrm{OPr}^{\mathrm{i}}\right)_{3}\right\}_{2}(\mu-\mathrm{OPr})_{2}\right]_{2}(\mathrm{~A})$ e da espécie monomérica (B)

Para a espécie binuclear as bandas no espectro são predominantemente originadas por transições de transferência de carga do ligante para o metal, porém as bandas de 400 nm a 430 nm apresentam contribuições significativas de transições d-d e transferência de carga entre os centros metálicos. As absorções da espécie mononuclear na região do espectro visível originam transições do tipo d-d.

Os espectros simulados por TDDFT apontam para uma confirmação das proposições experimentais, havendo concordância entre as principais bandas.

MO radecimionios

CNPq, Fundação Araucária.

[^50]
Simulação de Dinâmica Molecular com o método Qm/MM Para FLAVONÓIDES COM ATIVIDADE ANTI-HIV-1 DA INTEGRASE.

Josenaide Pereira do Nascimento (IC) $)^{1, *}$, Cláudio Nahum Alves (PQ) ${ }^{1}$
${ }^{1}$ Laboratório de Planejamento e Desenvolvimento de Fármacos, Universidade Federal do Pará, CEP 66075-110, Belém, PA, Brasil. *Josenaide2004@yahoo.com.br
Palavras Chave: HIV-1 integrase, quercetagetina, mecânica molecular, dinâmica molecular.

A integrase (IN) é uma das três enzimas essenciais para a replicação do vírus da imunodeficiência humana tipo-1 (HIV-1) e, portanto, um alvo interessante para o planejamento de novos fármacos no uso terapêutico da AIDS. ${ }^{1}$ Recentemente, flavonóides foram usados como inibidores da IN, ${ }^{2.3}$ sendo que a quercetagetina foi a mais ativa entre a série estudada ${ }^{2}$. Neste trabalho, usamos simulações de Dinâmica Molecular (DM) com o método de Mecânica Quântica/Mecânica Molecular ($\mathrm{QM} / \mathrm{MM})^{4}$ para determinar a energia de interação entre a IN e a quercetagetina. Em seguida foram realizados cálculos para a decomposição de energia para determinar as contribuiçães individuais dos resíduos nas interações entre enzima-inibidor.

A estrutura da IN (PDB 1QS4) contendo o inibidor 5CITEP foi utilizada como ponto de partida para a simulação de DM, substituindo o 5CITEP pela quercetagetina. Todos os cálculos de DM foram realizados no programa DYNAMO. Em todos os cálculos o inibidor foi tratado com o método semiempirico AM1, enquanto o resto do sistema (proteína e água) foi descrito usando uma combinação dos campos de força OPLS-AA e TIP3P. A IN foi colocada em uma caixa de água com dimensão de $80 \AA$, todo o sistema contém 15741 resíduos com total de 50505 átomos. A estrutura final obtida após simulações de DM AM1/MM de 400 ps é mostrada na Figura 1, enquanto que na Figura 2 são mostradas as interações entre o inibidor e os principais resíduos de aminoácidos, ou seja, aqueles que tem maior interação com o inibidor.

Figura 1. Representação da interação entre a enzima IN, o inibidor quercetagetina e o cátion Mg^{2+}.

Figura 2. Representação das interações mais importantes e suas respectivas distâncias expressadas em Angstron entre o inibidor e os resíduos da IN .

Os resíduos Asp116, Gln148, Ile151, Asp64, Glu152, Lys156, Lys159, Asn155 são de fundamental importância para a atividade anti-HIV-1, podemos observar na Figura 2 que as hidroxilas do anel aromático interagem com os resíduos Asp116, Glu 152 e $G \ln 148$ através de ligações de hidrogênio, e com Mg^{2+} através de uma atração eletrostática criada pelos elétrons π do anel aromático. Estas interações são responsáveis pela orientação adotada pelo inibidor, o qual se localizada na interface entre a IN e o DNA, ou seja, fazendo com que a reação de integração seja bloqueada.

Este trabalho nos fornece uma percepção do comportamento da quercetagetina anti-HIV-1 no sítio ativo da enzima. As interações estabelecidas entre o inibidor com os resíduos de aminoácidos, a água e o cátion Mg^{2+} são essenciais à atividade catalítica. Estes resultados podem ser úteis no planejamento racional de novos e potentes compostos com atividade anti-HIV-1.

CNPq, CAPES, FINEP.

[^51]
ESTUDO TEÓRICO QUÂNTICO QUIMIOMÉTRICO DOS DERIVADOS ANÁLOGOS DA INDOLO[2,1B] QUINAZOLINE COMO AGENTE CITOSTÁTICO CONTRA O CÂNCER DE MAMA

Lílian Tatiane Ferreira de Melo ${ }^{1}$ (PG)*; Ademir João Camargo ${ }^{2}(P Q)$ 1.lilianthaty@yahoo.com.br; 2.ajc@ueg.br

Palavras Chave: câncer do seio, Indolo, SAR, PCA.

No mundo, milhares de mulheres são acometidas anualmente pelo câncer de mama, representando um dos tipos de câncer com maior número de mortalidade entre pessoas do sexo feminino. Esta doença ainda não tem cura definitiva e o seu controle em geral não é eficaz, apresentando vários efeitos colaterais indesejáveis. Com o objetivo de desenvolver novas drogas que sejam capazes de melhorar o tratamento desta doença, um conjunto de compostos análogos da Indolo[2,1-b]quinazoline(Figura-1)foram sintetizados e testados contra o câncer de seio ${ }^{2}$. Alguns destes derivados sintetizados mostraram-se bastante ativos nos testes in vitro e em vivo.

O presente trabalho investiga, usando métodos de mecânica quântica e quimiométricos, a relação estrutura atividades (SAR) dos derivados análogos da indolo[2,1-b]quinazoline como agente citostático.

Figura 1. Indolo[2,1b]quinazoline

Inicialmente, as análises conformacionais de todos compostos foram feitas usando o programa Hyperchem com o método semi-empírico PM3. Este procedimento teve como objetivo estabelecer a conformação de menor energia dos derivados análogos para serem posteriormente otimizadas. A otimização da conformação mais estável foi realizada com programa Gaussian 03 usando a teoria do funcional da densidade com funcional de troca e correlação híbrido B3LYP juntamente com o conjunto de funções de base 6-31G*

A partir das estruturas moleculares otimizadas, vários descritores geométricos e eletrônicos foram calculados para serem correlacionados com a atividade citostática contra o câncer de mama.

Após inúmeras tentativas, a melhor separação foi conseguida com cinco variáveis: carga sobre o átomo 15 (c15) (ver Figura 1), ordem de ligação
entre os átomos 12-13 (b_{1213}), 17-25 (b17-25), 18-26 (b18-29) e ΔE (diferença de energia entre os orbitais moleculares LUMO e o HOMO). A componente responsável pela separação das moléculas em ativas e inativas foi a PC1, a qual explica 49% da variância dos dados. As duas primeiras componentes explicam 74\% da variância total dos dados para o conjunto de descritores selecionados. Os scores para estas componentes podem ser vistos na Figura 2.

eonchrio

Com base nos cálculos mecânico-quântico e quimiométricos foi possível identificar os descritores físico-químicos responsáveis pela separação dos derivados análogos do indolo[2,1b] quinazoline em moléculas ativas e inativas com relação a atividade citostática contra o câncer de mana. A componente responsável pela separação foi a PC1 que explica 49% da variância total dos dados. Os descritores físico-químicos selecionados foram $\Delta E, b_{1213}, b_{1725}$, C_{15} e b_{1826}.
${ }^{1}$ Breast cancer in Goiás, in Brazil and in the World: current incidence and mortality ratesRev. bras. saúde matern. infant., Recife, 3 (1): 17-24, jan. mar., 2003
${ }^{2}$ Vedula M. Sharma, * P. Prasanna, K. V. Adi Seshu, Novel Indolo[2,1-b]quinazoline Analogues as Cytostatic Agents:Synthesis, Biological Evaluation and Structure-ActivityRelationship, Bioorganic \& Medicinal Chemistry Letters 12 (2002) 2303-2307.

Figura 2 Representação gráfica dos Score.

Determinação das conformações mais estávels da isomaltose ($\alpha-D=$ GLICOPIRANOSIL-($1 \rightarrow 6$)-D-GLICOSE) ATRAVÉS DE MÉTODO QUÂNTICO AB INITIO.

Fábio Javaroni ${ }^{\mathrm{a},{ }^{*}}(\mathrm{PG})$, Aurélio B. Buarque Ferreira ${ }^{\mathrm{a}}(\mathrm{PQ})$, Clarissa O. da Silva ${ }^{\mathrm{a}}(\mathrm{PQ})$.
${ }^{a}$ Departamento de Química da Universidade Federal Rural do Rio de Janeiro, BR-465, Km 47, Seropédica, Rio de Janeiro CEP 23.890-000, Brasil. *e-mail: javaroni@ufrri.br.

Isomaltose, mapa conformacional, ângulo glicosídico.

DTIOM Whem

A molécula de isomaltose é um dissacarídeo composto por duas unidades de glicose (glicopiranose) interligada- através de uma ligação glicosídica do tipo $\alpha(1 \rightarrow 6)$. As sonformações mais estáveis são principalmente definidas pelos ângulos glicosídicos \varnothing (phi), Ψ (psi) e Ω (ômega) Figura 1.

Figura 1. Definição dos ângulos diedros \varnothing : ($\mathrm{O} 5-\mathrm{C} 1$ -O1-C6'); $\Psi:(C 1-01-C 6 '-C 5 ') ; ~ \Omega: ~(01-C 6 '-C 5 '-O 5 ') ~ d a ~$ ligação glicosídica $\alpha(1 \rightarrow 6)$ da isomaltose.

As estruturas de partida foram obtidas através de métodos clássicos de mecânica molecular (campo de força Dreiding). Partindo destas estruturas foram realizadas varreduras nos ângulos diedros \varnothing e ψ com incrementos de 30°, e para cada estrutura obtida por este procedimento a energia do sistema foi calculada em nível HF/6-31G(d,p). Foram obtidos 3 mapas conformacionais, um para cada ângulo diedro Ω correspondente às orientações TG, GT e GG. A Figura 2 reporta o mapa obtido para a conformação TG:

Figura 2. Mapa conformacional, conformação TG para a isomaltose, em nível HF/6-31G (d,p). Os valores de energia estão em kcal/mol.

Amostragens conformacionais foram realizadas nas regiões de energia mínima, e após novas minimizações de energia com otimização de estrutura seis confôrmeros foram obtidos para a orientação TG (conforme reportado na tabela 1), seis para GGe outros seis para GT.
Tabela 1. Ângulos diedros \emptyset e Ψ após uma otimização total dos parâmetros geométricos dos confôrmeros relativos às regiões do mapa conformacional da figura 2.

Região	$\emptyset($ O5-C1-O1-C6 $)$	$\Psi($ C1-O1-C6'-
	$T \mathbf{T G}\left(\Omega=180^{\circ}\right)$	
A	77°	159°
B	79°	120°
C	76°	246°
E	108°	293°
J	258°	187°
L	145°	268°

As populações de Boltzmann foram calculadas depois de considerar-se o efeito do solvente com o modelo "Polarizable Continuum Model" (PCM). Para estas estruturas a constante de acoplamento de spin heteronuclear ao longo da ligação glicosídica foi calculada, e os valores finais reportados na tabela 2 , obtidos como média ponderada pelas populações.

Tabela 2. Valores experimentais e calculados de ${ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{H}}$.

	Este trabalho	Ref 1	Ref.2	Exp. 3
${ }^{3} \mathrm{~J}_{\mathrm{C} 6}, \mathrm{H1}$		3,6	3,1	3,2
${ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{H} 1^{\prime}}$	3,1	2,3	3,6	
${ }^{3} \mathrm{~J}_{\mathrm{C} 6, \mathrm{H}^{\prime \prime}}$	2,5	1,4	1,6	2,9

A grande proximidade observada para os valores teóricos e experimentais das constantes de acoplamento de spin heteronuclear ${ }^{3} \mathrm{~J}_{\mathrm{C}, \mathrm{H}}$ valida as estruturas obtidas neste trabalho.

Os autores agradecem a Capes, FAPERJ e CNPq pelo apoio financeiro a este trabalho.

[^52]
MODELAGEM, ESTRUTURA ELETRÔNICA E ESTUDO ESPECTROSCÓPICO DE COMPLEXO DE EURÓPIO COMI ÁCIDO 2,4-DICLOROFENOXIACÉTICO
 1. Mônica F. Belian* (PG), Gilberto F. de Sá (PQ), Severino Alves Jr.
 2. (PQ).*monicabelian@yahoo.com.br

${ }^{1}$ Departamento de Química Fundamental, Universidade Federal de Pernambuco, 50590-470 Recife, Pernambuco, Brasil. Palavras-chave: modelo Sparkle; espectro eletrônico; parâmetros de intensidade.

Thurodureto

O termo luminescência estabelecido em 1888 pelo físico alemão Eihard Wiedemann, "para todos os fenômenos de luz não condicionados ao aumento da temperatura"[1], posteriormente foi relacionado com a diferença de energia entre dois estados quânticos, o emissor e o estado fundamental. Em 1942, foi reportado por Weissman o processo de sensibilização da luminescência dos complexos de ions lantanídeos, demonstrando que sob excitação na região dos ligantes, estes sistemas exibem emissões características do ion metálico central [2]. Notou-se que um ligante orgânico apresentando alto coeficiente de absortividade molar, ε, quando coordenado ao ion metálico é capaz de transferir energia eficientemente para o ion lantanídeo, intensificando assim sua luminescência. Além disso, o ligante pode ser escolhido no sentido de fornecer ao sistema uma funcionalidade com desejadas propriedades, como: solubilidade e afinidade de ligação. Neste trabalho será apresentado o estudo teórico e experimental das propriedades luminescentes do composto $\left[\mathrm{Eu}(\mathrm{DCPA})_{2} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})\right]$, onde DCAP = ácido 2,4-diclorofenoxiacético (Figura 01).

Figura 1 - Estrutura do ácido 2,4-diclorofenoxiacético.

Rusultados c Miscussao

O composto $\left[\mathrm{Eu}(\mathrm{DCPA})_{2} .\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})\right]$ foi obtido pela reação entre o ligante 2,4-diclorofenoxiacético com o $\mathrm{Eu}(\mathrm{OH})_{3}$ na razão de 2:1, em meio etanólico. Os cálculos teóricos são baseados na otimização da geometria obtida pelo SMLCII/AM1, recentemente introduzido na literatura [3]. Estas geometrias são usadas no cálculo do espectro eletrônico usando o método INDO/S-CI. Os espectros de absorção dos compostos em meio etanólico foram obtidos usando um espectrofotômetro UVVisível, Perkim Elmer LAMBDA 6, na faixa espectral de 190400 nm . O espectro teórico sobrepõe de forma satisfatória o experimental (Figura 2).

Figura 2 - Espectro eletrônico Teórico X Experimental do complexo $\left[\mathrm{Eu}(\mathrm{DCPA})_{2} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})\right]$.

O espectro de infravermelho mostra a banda referente ao ácido carboxílico (COO) deslocada para menores freqüências quando comparada ao espectro do ligante livre, sugerindo uma coordenação por parte do ligante. O espectro de emissão do $\left[\mathrm{Eu}(\mathrm{DCPA})_{2}\right.$. $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})\right]$ (Figura 4), apresenta uma relação entre as transições ${ }^{5} \mathrm{D}_{0} \rightarrow^{7} \mathrm{~F}_{4} \mathrm{e}^{5} \mathrm{D}_{0} \rightarrow^{7} \mathrm{~F}_{2}$ menor que 1 , sugerindo que o ion está em um ambiente de baixa simetria, corroborando com a simetria determinada teoricamente do complexo (C1).

Figura 4 - Espectro de emissão do complexo $\left[\mathrm{Eu}(\mathrm{DCPA})_{2} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}(\mathrm{OH})\right]$.
Os parâmetros de intensidade Ω_{λ} foram determinados experimentalmente, a partir do espectro de emissão; e teoricamente utilizando a teoria de Judd[4] e Ofelt, publicada em 1962. Para os cálculos dos parâmetros onde $\lambda=2$ e 4, usou-se a seguinte expressão:

$$
\Omega_{\lambda}^{d e}=(2 J+1) \sum_{t, p} \frac{\left|B_{\lambda t p}^{d e}\right|^{2}}{2 t+1}
$$

Todos os parâmetros determinados e calculados são mostrados na tabela 1.

Tabela 1 - Parâmetros de intensidade Ω_{λ} teóricos e experimentais.

$\Omega_{2}\left(10^{-20} \mathrm{~cm}^{2}\right)$		$\Omega_{4}\left(10^{-21} \mathrm{~cm}^{2}\right)$	
Experimental	Teórico	Experimental	Teórico
3.36	3.39	3.1	2.7

Os valores experimentais e teóricos apresentam boa concordância (erro de 12\%).

eornclusab

A relação entre as transições ${ }^{5} D_{0} \rightarrow{ }^{7} F_{4}$ e ${ }^{5} D_{0} \rightarrow{ }^{7} F_{2}$ é menor que 1, indicando que neste caso o ion está em um ambiente de baixa simetria, isto corrobora, com a modelagem teórica realizada, cuja simetria é C1. O espectro eletrônico experimental apresenta boa concordância quando comparado com o teórico.
Analisando os dados obtidos $\left(\Omega_{\lambda}\right)$ podemos concluir que neste caso o íon európio encontra-se em um ambiente pouco polarizável. Os valores dos parâmetros de intensidade experimentais e teóricos estão em boa concordância, demonstrando viabilidade do modelo utilizado.

Alolarlecimentios

Os autores agradecem ao CNPq, RENAMI e Instituto do Milênio de Materiais Complexos pelo suporte financeiro.
[1] Bünzli, J-C e Choppin, G. R.; "Lanthanides Probes In Life, Medical and Environmental Science", Ed. Elsevier, Amsterdam (1989).
[2] S. I. Weissman, J. Chem. Phys. 10 (1942) 214.
[3] G.B. Rocha, R.O. Freire, N.B. da Costa Jr, G.F.de Sá, A.M. Simas, Inorg. Chem. 43 (2004) 2346.
[4] B. R. Judd, Review Physical, 127, (3)(1962) 750.

OBTENÇÃO DE UM PROTÓTIPO PARA MEMBRANAS CELULARES ATRAVÉS DA DFT

Cinthia Santos Soares* ${ }^{11}$ (IC) \& Clarissa Oliveira da Silva ${ }^{1}$ (PQ)
${ }^{1}$ Departamento de Química, Universidade Federal Rural do Rio de Janeiro. Rodovia BR 465, km 47 - Seropédica, Rio de Janeiro - Brasil. CEP: 23890-000. *cinthiasoares_css@ufrrj.br

Palavras Chave: bicamada fosfolipídica, trealose, interação com membranas celulares.

As membranas celulares, compostas por fosfolipídeos, proteínas e carboidratos, são responsáveis pela funçionalidade e manutenção da vida das células. É sabido que a preservação de materiais biológicos compreende a manutenção da integridade das membranas das células que o compõem, durante o processo de conservação.
O dissacarídeo trealose vem sendo utilizado como conservante de tais materiais, dada a sua capacidade de preservá-los. De posse da conformação mais abundante da trealose em solução aquosa ${ }^{2}$, pretende-se obter um protótipo para membranas celulares constituídas de fosfatidilcolina e, quantificar a energia de interação entre este dissacarídeo e a membrana fosfolipídica.
Através da Teoria do Funcional Densidade (DFT), e um conjunto de funções de base $6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$, buscase determinar as conformações mais estáveis para um protótipo de fosfolipídeo, composto pelo radical fosfatidilcolina, que compõe a parte hidrofilica de muitas membranas celulares.

Numa primeira investigação, realizada em fase gasosa para a metilfosfatidilcolina (Figura 1), foi realizado um estudo conformacional para este sistema isolado e em solução aquosa (PCM) (Figura 2), com base em trabalhos anteriores ${ }^{3}$.

Figura 1. Protótipo para o radical fosfatidilcolina

Figura 2. Energia relativa do sistema, $\Delta \mathrm{E}$ ($\mathrm{kcal} / \mathrm{mol}$), em função da variação do ângulo diedro $\alpha 2$ (grau)

Tabela 1. Parâmetros geométricos e abundância relativa dos confôrmeros obtidos para o protótipo de fosfatidilcolina, a temperatura de $298,15 \mathrm{~K}$

Conf	$\alpha 2\left({ }^{\circ}\right)$	$\sim \mathrm{OPO}_{2} \mathrm{O} \sim^{*}$	$\sim \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right) 3^{*}$	$\mathrm{p}_{\mathrm{i}}(\%)$	
Fase gasosa					
1	187	$-1,49$	0,76	39	
2 e 3	254	$-1,48$	0,74	61	
Solução aquosa					
3	172	$-1,66$	0,89	100	
$\sim \sim \mathrm{OPO}_{2} \mathrm{O} \sim e$	$\sim \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{3}\right)_{3}$ são os grupos a que se referem as				
distribuicões de carga de Mulliken, reportadas na tabela, em u.a.					

Uma varredura no ângulo $\alpha 2$ mostra que a energia eletrônica para este sistema (Figura 2) varia muito dependendo do meio (fase gasosa ou solução aquosa - aqui descrita através do modelo PCM). Entretanto após a otimização de todos os parâmetros geométricos (e incorporação das componentes térmicas e entrópicas), partindo-se das estruturas com energia mínima em cada fase, obtivemos duas estruturas estáveis em fase gasosa, e somente uma em solução (Tabela 2), recuperável partindo-se daquela mais estável em fase gasosa. Em todas as estruturas o caráter "zwitteriônico" é observado.
A etapa seguinte consistirá do estudo sistemático do crescimento dos segmentos hidrofóbicos que constituem os grupamentos ésteres presentes na molécula de fosfolipídeo, fornecendo um modelo mais próximo do sistema real.

COMC LIGMS

Com base em investigações anteriores ${ }^{3}$, um protótipo de membrana fosfolipídica tem sido desenvolvido. Apesar deste sistema, apresentar comportamento muito distinto dependendo da fase em que se encontre, é possível recuperar a estrutura mais estável em solução a partir de um estudo realizado em fase gasosa. Esta é uma informação importante para a etapa sucessiva deste trabalho.

Atcirubeclmentus

Às agências CNPq e FAPERJ pelo apoio financeiro concedido a este trabalho.

[^53]
ANÁLISE CONFORMACIONAL AB INITIO DA MALTOSE

Valter Paralovo ${ }^{1 *}$ (IC), Clarissa O. da Silva ${ }^{2}$ (PQ)
Departamento de Química - Universidade Federal Rural do Rio de Janeiro, Rodovia BR-465 - km 47, Seropédica / RJ, Brasil - CEP 23890-000 Tel.: (21) 2682-2807
e-mail: vparalovo@ufrr.br ${ }^{1 \text { * }}$
clarissa-dq@ufrri.br ${ }^{2}$
Palavras Chave: ab initio, maltose, conformações, mapa conformacional

用1ioducre

Este trabalho busca a obtenção das conformações mais estáveis da molécula $\alpha-1,4-$ maltose, através de metodologia ab initio, por ser esta capaz de tratar eficientemente os efeitos que determinam suas conformações (efeitos anomérico e exo-anomérico, ligações hidrogênio e interações não-ligantes) ${ }^{\text { }}$. Os cálculos realizados baseiam-se numa varredura dos ângulos glicosídicos (ϕ, ψ) de $30 \mathrm{em} 30^{\circ}$, o que nos remete a 144 estruturas para a molécula $\alpha-$ 1,4 -maltose. Com os valores dos ângulos e de suas respectivas energias são construídos mapas conformacionais a partir da interpolação deste conjunto de dados, que traduzem como varia a eneraia do sistema com a orientação rela

Figura 1. Molécula -1,4-maltose.

Foram obtidas oito regiões de energia mínima a partir dos mapas conformacionais relaxados.

Figura 2. Mapa conformacional 3D relaxado $E=E(\phi, \psi)$ com as respectivas energias em kcal/mol.

Partindo das oito regiões de energia mínima foram obtidos valores médios para os ângulos diedros que nortearão a busca por confôrmeros estáveis. Estes valores vem reportados na Tabela 1.

Tabela 1. Ângulos diedros ϕ e ψ selecionados nas regiões de energia mínima.

	ϕ	ψ		ϕ	ψ
\mathbf{A}	72°	115°	\mathbf{E}	128°	227°
\mathbf{B}	195°	17°	\mathbf{F}	102°	47°
\mathbf{C}	135°	167°	\mathbf{G}	100°	317°
\mathbf{D}	188°	167°	\mathbf{H}	278°	285°

Y M Comellisocs

A primeira parte deste trabalho nos levou a oito regiões de energia mínima obtidas em otimizações no vácuo da molécula $\alpha-1,4$-maltose em nível HF/6-31G (d, p), a partir das quais os confôrmeros mais estáveis em solução aquosa serão obtidos.

Wifurectmenlos

Os autores agradecem a CAPES, FAPERJ e CNPq pelo apoio financeiro a este trabalho.

[^54]
DFT METHOD AND POISSON-BOLTZMANN EQUATION APPLIED AS A HELPFUL TOOL TO CROSSED ALDOL REACTION OF HYDANTOIN DERIVATIVES AND AN ALIPHATIC ALDEHYDE

Elaine Rose Maia ${ }^{\left(1^{*}, \mathrm{PQ}\right)}$, Waleria Rodovalho ${ }^{(2, \mathrm{PG})}$, Inês Sabioni Resck ${ }^{(2, \mathrm{PQ})}$, Harry Pearson ${ }^{(2, \mathrm{PQ})}$
${ }^{\left({ }^{*}\right)}$ Laboratório de Estudos Estruturais Moleculares (LEEM), emaia@unb.br and ${ }^{(2)}$ Laboratório de Síntese Orgânica, Instituto de Química, Universidade de Brasília, Campus Darcy Ribeiro, C.P. 4478, Brasilia, CEP 70919-970 - DF- Brazil.

Key words: DFT, electrostatic potentials, hydantoin, crossed aldol condensation.
(Figure 2), instead of 2.93-3.51D for second most

7llimolioflom

A study based on the density functional theory (DFT), a quantum method was used to understand better the reactivity of some hydantoin derivatives. The crossed aldol condensation is used to condense moieties at the C_{5} of hydantoin (1), resulting in an exocyclic double bond. It is currently accepted that the most acidic hydrogen at C_{5} could induce an enolate ion. ${ }^{1}$ To design a good candidate for a successful synthetic intermediate (3) and in order to throw light on this reactivity, the conformations and the partial atomic charge distributions of five different N_{1} substituents (2a-2e) (Figure 1) were carefully investigated by theoretical calculations.

Figure 1: Hydantoin theoretical derivatives 2a-2e to be condensed by crossed aldol condensations, under basic conditions, to yield the intermediate 3.

The conformation space was searched by molecular mechanics and dynamics and the five most stable conformations were fully recalculated by DFT. The basis set used was DNP/GGA/ PW91 ${ }^{2}$ available in the DMol^{3} program. ${ }^{3}$ Atomic charge distributions were analysed by Mulliken population analysis. The enhanced acidic nature of the C_{5} hydrogen atoms was also verified by electrostatic potential contours computed in water, diethyl ether, THF and dioxane solvents, using their dielectric constants. Those calculations were carried out using the Poisson Boltzmann equation implemented in DeIPhi program. ${ }^{3,4}$

Essentially, the acyl groups substituted at nitrogen atom N_{1} could be oriented toward C_{5} or toward the ureidic $\mathrm{C}=\mathrm{O}$ group. For all derivatives, this first orientation leads to the most stable conformers. Compared to native hydantoin, the dipole moment values for those conformers are quite similar $[2.54 \mathrm{D}, 1,1.96-2.41 \mathrm{D}$, for $2 \mathrm{a}-2 \mathrm{e}$,
stable conformers].

With the substituents acyl (Ac, Boc, Bz) or benzyl, the electrostatic effect verified through the partial charge distribution over hydrogen atoms H_{10} and H_{11} shows a significant difference for derivative 2 d ($0.077 ; 0.057$, respectively), enough to induce the enolate ion. Electrostatic potential calculations also reveal that H_{10} and H_{11} in $2 d$ occupy a region that suggests again the greatest likelihood of reaction.

Figure 2: From upper left to right: the scheme shows the most stable conformers of theoretical derivates (2a-2e) and their electrostatic contours calculated in THF solvent (+ = blue; - = red).

Permgoish

The characterization of the most stable conformers for the studied compounds and the partial charge variation over hydrogen atoms H_{10} and H_{11} has shown that the best hydantoin derivative to be synthesized should be the compound 2d. This was done and a successful synthesis of 3 was achieved showing a pleasing complementarity between theory and experiment.

We are grateful to the Brazilian Agency CAPES, for funding part of this work.

[^55]
ESTUDO AB-INITIO DO PIROXICAM E DE SUA FOTO-REAÇÃO EM PRESENÇA DE OXIGÊNIO MOLECULAR SINGLETE

Kely Ferreira de Souza ${ }^{1}$ (PQ)", Rogério Custodio ${ }^{1}(\mathrm{PQ})$

*kelysouza@iqm.unicamp.br.
Palavras Chave: Piroxicam, DFT, QST2/QST3

hHiodramo

Piroxicam (PRX) é um fármaco com atividade antiinflamatória, analgésica e antipiréptica de uso muito difundido. Entretanto, reações de hipersensibilidade cutânea ao fármaco, após exposição do paciente à luz solar ${ }^{2}$, continuam sendo observadas apesar de todos os estudos já realizados até os dias atuais.

Figura 1. Estrutura do Piroxicam Enol
Nossos estudos anteriores apontaram para o PRX enol como o tautômero-chave na elucidação dos mecanismos de foto-sensibilidade. Assim, o presente trabalho estuda o PRX-enol em um nível mais refinado de teoria, bem como seu mecanismo de reação proposto na literatura ${ }^{3}$. Para tal, construiu-se a superfície de potencial do fármaco através do método DFT/B3LYP com a base cep$31 \mathrm{~g}^{* *}$ e 5 primitivas d. Os mínimos foram re-otimizados com o DFT/B3LYP e o mesmo conjunto de bases e então utilizou-se o método QST2 a fim de encontrar os possíveis estados de transição entre as estruturas. Com este mesmo procedimento, e incluindo também o método QST3, estudou-se o mecanismo de reação entre o PRX e o oxigênio molecular singlete. Todos os cálculos foram realizados com o software Gaussian 2003w.

Resmluides elisoussab

A superfície de potencial forneceu 4 regiões de mínima energia, denominadas de A a D. A estrutura mais estável é novamente a mais planar, em acordo com nossos estudos anteriores. A tabela 1 traz alguns resultados obtidos em QST2.
Tabela 1..Estudo da Superficie de Potencial- Energias das estruturas de partida e dos estados de transição obtidos em QST2.

Estrutura	Energia (kcal/mol)	ntervalo RST2	Est. Transição (kcal/n
A	$-123.161,03$	A-B	$123.143,52$
B	$-123.145,01$	A-C	$123.141,81$
C	$-123.150,28$	B-D	-
P	$123.143,36$	C-D	$-123.139,20$

O mecanismo baseou-se nos intermediários (1,2,3) e produtos (4e5) derivadas da aproximação entre o PRX e $\mathrm{O}_{2}{ }^{1}$.

Tabela 2: Estudo do Mecanismo ${ }^{3}$ - Energias das estruturas de partida e dos estados de transição obtidos em QST2 ou QST3

Estrutura	Energia (kcal/mol)	Intervalo	Est. Trans. (kcal/mol)
1	$-143.101,81$	$1-2$	$-143.012,65$
2	$-143.140,48$	-3	-
3	$-143.137,82$	$3-4 \mathrm{e} 5$	$-143.206,17$
$4 \mathrm{e} 5^{*}$	$143.23 .1,75$	$1-2^{* *}-3$	$-143.140,48$
		$2-3^{* *}-4 \mathrm{e} 5$	$143.135,45$

*N-metilsacarina e N -(2-piridil)-ácido oxâmico
**Estrutura de Transição de partida para os cálculos em QST3
Problemas de convergência impediram a obtenção de uma estrutura de transição entre BeD, bem como entre 2 e 3.
Tabela 3:Diferenças entre as energias da estrutura de partida e da estrutura de transição obtida.

	Intervalo	$\begin{aligned} & \mathrm{\Delta E} \\ & \mathrm{kcal} / \mathrm{mol}) \end{aligned}$
A-B 17,51	1-2	39,16
A-C 19,22	$3-4 \mathrm{e} 5$	-68,35
C-D 11,08	1-3	-38,67
	$2-4$ e 5	5,03

Gonemisocs

As grandes barreiras energéticas para os intervalos $A-B$, A-C, C-D e 2-3 indicam uma difícil interconversão para estas estruturas. Por outro lado, os dois casos em que o estado de transição possui energia mais baixa que a estrutura de partida, bem como a baixa barreira energética do último caso, indicam grande possibilidade da reação ocorrer através de combinação com oxigênio singlete.

Armadecthentos
CAPES, CNPq, Fapesp
' Mihalic, M.; Hofman, H.; Kuftinec, J.; Krile, B.; Capler, V.; Kajfez, F.; Blazevic, N. In Anal. Prof. Drug Subs.; Florey, K., Ed., Academic Press: New York, 1986, 15, 509
${ }^{2}$ Kochevar, I. E.; Morrison, W. L.; Lamm, J. L.; McAuliffe, D. J.; Western A.; Hood A. F. Arch. Dermatol. 1986, 122 ,1283. ${ }^{3}$ Lemp, E.; Zanocco, A. L.; Günther, G.; J. Photochem. Photobiol. B: Biol.; 2001, 65, 165

THEORETICAL STUDY OF β-LACTAMASE INHIBITORS: CLAVULANIC ACID, TAZOBACTAM AND SULBACTAM.

*Ana Claudia G. Malpass ${ }^{1}(\mathrm{PQ})$, Edson Barbosa da Costa $^{2}(\mathrm{PG})$, Marlei B. Passotto ${ }^{1}(\mathrm{PQ})$, Carlos 0. Hokka ${ }^{1}(\mathrm{PQ})$, Milan Trsic $^{2}(\mathrm{PQ})$. acgmalpass@yahoo.com.br
1- Universidade Federal de São Carlos, Departamento de Engenharia Química
2- Universidade de São Paulo, Instituto de Química de São Carlos

Palavras Chave: β-lactamase inhibitors, molecular orbital, charges
by the opening of the β-lactam ring. In the sequence, the inhibitors undergo β-elimination which opens the five membered ring to form an acyl enzyme complex which subsequently results in an irreversible inhibitor-enzyme complex ${ }^{2}$.
Knowing the mechanism, we carried out electrostatic potential charge calculations. By this procedure we can note that the activity increases as the charge on the nitrogen 4 becomes more negative and as the charge on the carbon 3 becomes more positive. So, the charge on C3 and N4 atoms seems to be a descriptor for the β lactamase inhibitor activity of the compounds.
Analyzing the frontier molecular orbitals of the compounds we could not find a correlation between the activity and this property. For this reason, following Silva et $a \mu^{3}$, we decided to analyze the frontier molecular orbital with the highest contribution on the carbonyl group C3. Using the criteria detailed by Silva et al^{3}, which is based on the molecular orbital shape, location and composition; we verified that the FERMO (Frontier Effective for Reaction Molecular Orbital) of the unoccupied molecular orbitals presents a reasonable correlation with the observed activity and the mechanism of action.

From this study we can conclude that the charges on C3 and N4 atoms probably are important descriptors for activity. Moreover, we can also conclude that the molecular orbital structure in combination with the molecular orbital shape is appropriate to hint which molecular orbital command the reaction. In this case the contribution of the FERMO of the unoccupied molecular orbitals provides a reasonable correlation with the β lactamase inhibitor activity of the compounds.

FAPESP (contract number 05/55079-4 and PD fellowship 06/59474-8)
CNPq
1- Buynak, J. D. Biochemical Pharmacology, 2006, 71, 930.
2- Yang, Y.; Rasmussen, B.A.; Shlaes, D.M. Pharmacology \& Therapeutics, 1999, 83, 141.
3- Silva, R.R.; Ramalho, T.C.; Santos, J.M.; Figueroa-Villar, J.D. J.
Phys. Chem. 2006, 110, 1031.

AnÁlise Teórico de Compostos Antihistamínicos H_{3}

Edson Barbosa da Costa*1 (PG), Milan Trsic ${ }^{1}$ (PQ)
edcosta@iqsc.usp.br
1-Grupo de Química Quântica, Instituto de Química de São Carlos-USP
Palavras Chave: Orbital Molecular, Antihistamínico H_{3}, Regressão Linear.
 antagonistas não imidadozólicos do receptor H_{3}, pertencente à classe das G-proteínas, tem sido alvo de grande interesse da industria farmacêutica. Esse fato se deve a ação dele como auto-receptor e regulador da síntese de histamina, controlador das quantidades de neurotransmissores no Sistema Nervo Central (SNC). Devido esses efeitos, agonistas e antagonistas do receptor H_{3} são utilizados no tratamento do mau de Parkinson e mau Alzheimer, insônia, distúrbios do sono e memória ${ }^{1}$. O principal interesse deste trabalho consiste em avaliar qual parâmetro teórico apresenta correlação significativa com a atividade antihistamínica H_{3}, em termos do logaritmo negativo da constante de afinidade do ligante ao receptor (pKi), com o intuito de auxiliar no planejamento de novos e potentes antagonistas H_{3}.

Nesse trabalho foi utilizado para cálculos com os métodos Hartree-Fock (HF) e da Teoria do Funcional Densidade (DFT) um conjunto de 28 compostos antagonistas do receptor H_{3} de estrutura base 4 -fenoxipiperidina descrito na literatura ${ }^{2}$, com uso da base $6-31 \mathrm{G}^{* *}$ para ambos os níveis de teoria. Foram selecionadas as seguintes propriedades teóricas: energias do último orbital molecular ocupado (HOMO) e do orbital molecular de fronteira efetivo para a reação (FERMO) ${ }^{3}$.

Segundo Da Silva ${ }^{3}$, os orbitais "FERMOs" são os orbitais moleculares que localizam a sua maior contribuição no átomo ou grupo de átomos onde a interação ou reação ocorre, sendo que eles podem ser escolhidos levando em consideração a sua forma e a composição. Nesse estudo os orbitais "FERMOs" para o grupo de moléculas variaram dos orbitais moleculares HOMO até HOMO_{-4}.

As energias orbitais obtidas com os métodos HF e DFT foram correlacionadas com os valores experimentais de pKi pelo método de regressão linear. A determinação dos coeficientes $\left(R^{2}\right)$ e de outros parâmetros estatísticos foram analisados e comparados. Os resultados estatísticos dos modelos de regressão são mostrados na Tabela 1.
Tabela 1. Parâmetros da Regressão Linear para os Valores de pKi versus as Energias dos Orbitais Moleculares (MO)

Método	MO^{a}	$\mathrm{R}^{2 b}$	$\mathrm{~s}^{\mathrm{c}}$	F^{d}	$\mathrm{F}_{1,26}{ }^{e}$
HF	HOMO	0.461	0.827	22.22	
HF	FERMO	0.843	0.446	139.47	
DFT	HOMO	0.635	0.681	45.19	
DFT	FERMO	0.864	0.415	165.80	

${ }^{\text {a }}$ Orbital molecular. ${ }^{\mathrm{b}}$ Quadrado do coeficiente de correlação. ${ }^{\text {c }}$ Desvio-padrão. ${ }^{\text {d }} \mathrm{F}$ de Fisher do modelo de regressão. ${ }^{e} \mathrm{~F}$ de Fisher de referência (nível de confiança 99\%)

Os resultados da correlação entre HOMO e pKi para ambos os métodos foram insatisfatórios e não mostraram correlação linear com os dados experimentais, visto que, o teste estatístico de Fisher, utilizado para avaliar os modelo de regressão, ficou abaixo do esperados para os dois métodos. Haja vista que, as regressões podem ser consideradas satisfatórias se possuírem valores de F de Fisher pelo menos dez vezes maiores que os valores do teste de Fisher. Em relação aos valores das energias dos orbitais "FERMOs" obtidas pelos dois métodos, HF e DFT, verificou-se um uma boa correlação linear com valores de pKi devido os valores de F serem superiores a dez vezes o valor mínimo, os desvios padrões serem próximos de zero e o valores de R^{2} estarem mais próximos do valor um do que os mesmo parâmetros utilizando os orbitais HOMO.

coriclusoes

O uso dos orbitais "FERMOs" na análise da correlação das energias dos orbitais dos 28 compostos e os valores das atividades pKi se mostraram de grande importância em situações onde os orbitais de fronteira HOMO não tiveram sucesso em descrever valores experimentais de atividades.

Ablraloct hentios

Os autores agradecem a CAPES, CNPq e FAPESP Pelo apoio financeiro.

[^56]
Qualidade Estrutural da Enzima Mao B Obtida pelo método oniom

Edson Barbosa da Costa* ${ }^{1}$ (PG), Ranylson Marcello L. Savedra ${ }^{1}$ (PG), Milan Trsic ${ }^{1}$ (PQ) edcosta@iqsc.usp.br
1-Grupo de Química Quântica, Instituto de Química de São Carlos-USP

Palavras Chave: MAO B, ONIOM, Ramachandran.

THTOLCD

Monoamina oxidase do tipo B (MAO B) é uma enzima localizada fora da membrana mitocondrial e é bem conhecida por ter como principal função a diaminação oxidativa de neurotransmissores e de compostos exógenos que apresentam grupo amina. Devido essa função, inibidores dessa enzima são utilizados clinicamente em tratamentos contra o mau de Parkinson e depressão ${ }^{1}$. O objetivo do presente trabalho é verificar a se a estrutura da enzima MAO B calculada utilizando método de QM:MM apresenta relações de ângulos Psi e Phi válidas segundo a metodologia de Ramachandran .

O modelo da enzima MAO B complexada com o inibidor Rasagilina extraída do Banco de Dados de Proteínas PDB (1S2Q) foi utilizada com estrutura inicial para a sua posterior otimização com o método híbrido QM:MM ONIOM ${ }^{2}$. O sitio ativo enzimático composto por dez monoácidos, quatro moléculas de água, juntamente com o inibidor e o cofator FAD da enzima foram tratados pelo método químico quântico $A M 1$ e o restante da enzima foi incluído na parte de mecânica molecular usando o método universal UFF. A estrutura otimizada foi avaliada através dos valores dos ângulos diedros Psi e Phi correlacionados no gráfico de Ramachandran ${ }^{3}$. As estruturas cristalográfica e otimizada com o método ONIOM particionado da forma AM1:UFF e o gráfico de Ramachandran são mostrados, respectivamente, nas Figuras 1 e 2 .

A

B

Figura 1. Monômero da enzima MAO B cristalográfico (A) e otimizada pelo método AM1:UFF (B).

Figura 2. Gráfico de Ramachandran para enzima MAO B otimizada pelo método AM1:UFF.

A análise do gráfico de Ramachandran apresentado na Figura 2 mostra que a estrutura resultante da otimização apresenta boa qualidade, uma vez que $99,2 \%$ dos resíduos de aminoácidos modelados apresentam ângulos espacialmente possíveis.

A combinação do método semi-empírico AM1 juntamente com o de mecânica molecular UFF utilizada na otimização da enzima MAO B fornece ângulos diedros Psi e Phi permitidos segundo o gráfico de Ramachandran. Portanto, esse resultado indica que o uso dessa metodologia é válida para estudo de novos inibidores junto à enzima MAO B.

Agradecimentos

[^57]
Estudos Computacionais da RNA POLIMERASE DO MYCOBACTERIUM tuberculosis e mutantes d516V e H526L.

Daniela Josa ${ }^{1}$ (IC) ${ }^{\star}$, Thais C. S. Souza ${ }^{1}$ (IC), Melissa S. Caetano ${ }^{1}$ (PG), Teodorico de C. Ramalho ${ }^{1}$ (PQ), Elaine F. F. da Cunha ${ }^{1}$ (PQ). danielajosa@bol.com.br

Departamento de Química, Universidade Federal de Lavras, Bloco A, 37200-000 Lavras, MG ${ }^{1}$. Palavras Chave: modelagem comparativa, Mycobacterium tuberculosis, RNA polimerase.

Todos os inibidores apresentam ligações hidrogênio com os resíduos Arg-248, Gln-513, Phe514, Arg-529 e Ser-531, com exceção do RFB ancorado na enzima H526L, que não apresentou ligação hidrogênio com o resíduo Arg-529. Verificou-se uma ligação hidrogênio entre a RFB e o resíduo His-526 da enzima D516V, não encontrada nos outros inibidores.
De acordo com os dados obtidos no ancoramento (Tabela 1), obtivemos, com exceção do composto RFB, uma boa correlação entre os dados experimentais e teóricos.

Figura 1. Estrutura 3D da enzima mtRNAP.

Tabela 1. Valores de MICs ($\mu \mathrm{g} \cdot \mathrm{ml}^{-1}$) e energia de interação intermolecular (kcal.mol ${ }^{-1}$).

MIC				Interação	
	D516V	H526L	D516V	H526L	
RIF	32	16	$-144,38$	$-148,49$	
RPN	32	16	$-147,77$	$-145,20$	
RFB	0,5	8	$-117,69$	$-115,14$	
KRM-1648	0,01	0,56	$-160,25$	$-154,95$	

Os ancoramentos dos ligantes na enzima nativa apresentaram as mesmas tendências que as enzimas mutantes D516V e H526L.

42) WeOncheroses

A validação da estrutura tridimensional da mtRNAP apresentou-se satisfatória e as boas correlações entre os resultados teóricos e experimentais sugerem que este trabalho poderá ser usado para o planejamento de novos agentes anti-TB.

P- Exirechanlos

Ao DQI-UFLA e a FAPEMIG.

[^58]XIV Simpósio Brasileiro de Química Teórica (SBQT)
RELAÇÃO ENTRE ATIVIDADE BIOLÓGICA DA ENZIMA MAO B E PARÂMETROS
QUÍMICO-QUÂNTICOS DE ANFETAMINAS E DERIVADOS.

Maíra A. Carvalho (PG) ${ }^{1 *}$, Edson B. da Costa (PG) ${ }^{1}$, Bernadete A. Roberto (IC) ${ }^{1,2}$, Milan Trsic (PQ) ${ }^{1}$

*email: mairacarvalho@gmail.com

1. Grupo de Química Quântica, Instituto de Química de São Carlos, Universidade de São Paulo, CEP 13560-970 São Carlos, SP.
2. Centro Universitário Central Paulista, São Carlos CEP 13562-190, SP.

Palavras Chave: Anfetaminas e derivados, MAO B, orbital molecular e atividade biológica.
mesma fase do LUMO do FAD e, as inativas, possuem fases diferentes.

(a)

(b)

(c)

(d)

(e)

(i)

Figura 1: Estrutura das moléculas (a) anfetamina (b) MDMA (c) $2 \mathrm{NO}_{2}-4,5-\mathrm{MDA}$ (d) ETA (e) Ddeprenil e (f) L-deprenil.

Hondriscred

Pode-se concluir que há uma relação entre a atividade biológica dessas moléculas es paramêtros químico-quânticos calculados, no qual as moléculas mais potentes apresentam valores baixos de momento de dipolo e valores altos para as cargas do carbono assimétrico e do nitrogênio e para as energias do HOMO e do LUMO. A análise dos $O M$ sugere que a diferença na potência dessas moléculas é dada pela fase do orbital do HOMO efetivo do ligante e LUMO da molécula FAD no sitio de reação da enzima MAO B onde, para as moléculas inativas a fase desses orbitais são diferentes e para as ativas as fases desses orbiatis são mesma.

CNPq, FAPESP

[^59]
ESTUDO TEÓRICO DA OZONÓLISE EM FASE GASOSA DO GERANIOL-TRANSE PRODUTOS 6-METIL-5-HEPTEN-2-ONA E 6-HIDROXI-4-METIL-4-HEXENAL

Tadeu Leonardo Soares e Silva* ${ }^{1}$ (PG), Edílson Clemente da Silva ${ }^{1}$ (PQ) e Graciela Arbilla ${ }^{1}$ (PQ) e-mail: Tajo33@hotmail.com
${ }^{1}$ Departamento de Físico-Química, Instituto de Química da UFRJ
Palavras Chave: Geraniol-trans, ozonólises, estudo teórico e TST.

Thiolvicare

As reações atmosféricas dos COV de origem biogênica têm tido enorme atenção devido à sua contribuição na formação de diversos compostos de grande importância, tais como: compostos carbonílicos, radicais livres, ácidos carboxílicos e aerossóis secundários, provenientes principalmente da oxidação de monoterpenóides ${ }^{1}$.

O geraniol é um monoterpenóide encontrado em óleos essenciais de várias plantas típicas no território brasileiro e pode estar presente na atmosfera, assim como os seus produtos 6-metil-5-hepten-2-ona e 6-hidroxi-4-metil-4-hexenal ${ }^{2,3,4}$.

A reação de ozonólise do geraniol-trans e de seus produtos tem sido investigada experimentalmente, dada ao seu interesse em química atmosférica. Em particular, os resultados obtidos por Andrade e colaboradores ${ }^{3}$ e Grosjean et al^{2}.indicam a formação de vários produtos, devido à quebra de ligações em pontos distintos da molécula. Mecanismos foram propostos para tentar explicar os resultados obtidos experimentalmente. Neste trabalho, modelaram-se os canais do tipo carbonila primária da ozonólise do geraniol-trans e de seus produtos.

As ozonólises do geraniol-trans e de seus produtos envolvem um grande número de reações e espécies. Portanto foram identificadas e caracterizadas as geometrias de cada um dos pontos estacionários existentes nas etapas elementares de cada um dos canais reacionais que foram estudados, conectando-os pela IRC (Intrinsic reaction coordinate). Foram utilizados os seguintes funcionais: B3LYP/6-31G**, MPW1K/cc-pVDZ e BH\&HLYP/cc-pVDZ. Posteriormente foram calculados os coeficientes de velocidade para cada uma das etapas elementares usando as geometrias que foram reotimizadas em BH\&HLYP/cc-pVDZ

O perfil da energia livre de Gibbs de reação, está ilustrado na Fig 1 para os dois canais de decomposição do geraniol-trans.

Figuras 1. (a) Energia livre de Gibbs para a ozonólise do geraniol-trans. (b) clivagem dos ozonídeos primários.

Usando os valores de energia livre de ativação foram calculados os coeficientes de velocidade a 298 K na aproximação do limite de alta pressão. Os valores calculados (em unidades cm^{3} molecula ${ }^{-1} \mathrm{~s}^{-1}$) são $5,96.10^{-}$ ${ }^{16}, 1,22.10^{-18}$ e $6,63.10^{-18}$ para o geraniol-trans, 6 -hidroxi-4-metil-4-hexenal e 6-metil-5-hepten-2-ona respectivamente. Os valores experimentais, nas mesmas unidades, são $\left(4,1\right.$ a $\left.9,3.10^{-16}\right), 1,5.10^{-18} \mathrm{e}$ $6,98.10^{-18}$, respectivamente ${ }^{2,3,4}$

Conchispes

Foram modelados todos os canais do tipo carbonila primária para as ozonólises estudadas. Os resultados confirmam e esclarecem os mecanismos propostos previamente. Os coeficientes de velocidade calculados estão em bom acordo com os dados experimentais.

A CAPES pela bolsa de doutorado, ao CNPq e FAPERJ.

[^60]
The nuclear electric quadrupole moment of Lutetium from the MOLECULAR METHOD

Roberto L. A. Haiduke (PQ), ${ }^{1, *}$ Albérico B. F. da Silva (PQ), ${ }^{2}$ Lucas Visscher (PQ) ${ }^{3}$ haiduke@quimica.ufpr.br
${ }^{1}$ Departamento de Química, Universidade Federal do Paraná, CP 19081, 81531-990, Curitiba, PR, Brazil.
${ }^{2}$ Departamento de Química e Física Molecular, Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, 13560-970, São Carlos, SP, Brazil.
${ }^{3}$ Department of Theoretical Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1083 HV Amsterdam, Netherlands.

Keywords: Lutetium, Nuclear Quadrupole Moments, Electric Field Gradients, Diatomic Molecules.

- Ihmodeliolion

The electric nuclear quadrupole moment (NQM), $Q(X)$, of a nucleus X can be obtained from experimental nuclear quadrupole coupling constants (NQCCs), determined by microwave spectroscopy, if the electric field gradients (EFGs) at the nucleus of interest are known. With the advent of precise electronic structure methods to calculate EFGs, this so-called "molecular method" has become a valuable source of precise values of NQMs. ${ }^{1}$ For Lutetium it is possible to use the NQCCs in LuF and LuCl that were measured recently by Cooke et al. ${ }^{2}$

In this work, we employ the molecular method to obtain the NQMs of the two main isotopes of Lutetium. We consider the DC Hamiltonian, use the relativistic adapted Gaussian basis sets (RAGBSs) ${ }^{3}$ for the Lutetium atom, and treat electron correlation within the Coupled Cluster formalism. Additional corrections were included to account for higher order relativistic and core correlation effects, respectively: 1) Gaunt contributions at the Hartree-Fock (DCG-HF) level; and 2) Larger active space contributions evaluated at the Moller-Plesset second-order (DC-MP2) level.

The resulting NQMs for ${ }^{175} \mathrm{Lu}$ are presented in Table 1. One can see in this table that all the average NQM values obtained from EFGs calculated by means of correlated methods are in the range from 3295 to 3865 mbarn. Table 1 shows that the density functional methods present the largest mean absolute deviations (MADs), indicating that the functionals do not capture all the particularities of both molecules. This error renders DFT inapplicable for the "direct" method of evaluating the Lutetium NQM as this method demands a high absolute accuracy. In the correlated results, we furthermore see triple substitutions are required to obtain smaller MADs in the CC formalism.

Table 1. NQM for ${ }^{175} \mathrm{Lu}$ (in mbarn) obtained with the EFGs and NQCCs for the LuF and LuCl molecules.

Method	LuF	LuCl	Average	MAD
DC-HF	2844	2788	2816	27.7
DCG-HF	2859	2801	2830	29.2
DC-B3LYP	3527	3623	3575	48.2
DC-BPW91	3800	3930	3865	65.3
DC-MP2	3580	3574	3577	3.1
DC-CCSD	3301	3289	3295	6.4
DC-CCSD(T)	3421	3416	3418	2.6
DC-CCSD-T	3417	3412	3415	2.4

Our recommended value for the NQM of ${ }^{175} \mathrm{Lu}, 3415(34)$ mbarn, can be compared with data available in the literature, $3490(20)$ mbarn, from the muonic method. ${ }^{1,4}$ Both values lie outside each other error bars and, given the proven reliability of the Coupled Cluster molecular approach, we believe that our result indicates that the currently adopted standard value should be revised. Additionally, we also compute the NQM of ${ }^{176} \mathrm{Lu}$ based on the available NQCCs 2 as 4818(48) mbarn.

Fremovaromens

R.L.A.H. and A.B.F.S. acknowledge Dr. Roy Edward Bruns for computational resources and also FAPESP for financial support. Support from NCF for computational resources is also gratefully acknowledged.

[^61]
a relativistic coupled cluster study of the kef ${ }_{2}$ molecular PROPERTIES

Roberto L. A. Haiduke (PQ), ${ }^{1,{ }^{*}}$ Harley de P. Martins Filho (PQ), ${ }^{1}$ Albérico B. F. da Silva (PQ) ${ }^{2}$ haiduke@quimica.ufpr.br
${ }^{1}$ Departamento de Química, Universidade Federal do Paraná, CP 19081, 81531-990, Curitiba, PR, Brazil;
${ }^{2}$ Departamento de Química e Física Molecular, Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, 13560-970, São Carlos, SP, Brazil.
Keywords: xenon fluorides, noble gas compounds, relativistic effects, four-component methods, anharmonicity. good. The same is observed for the anharmonic constants not shown here. Finally, the heat of formation of XeF_{2} is $-20.5 \mathrm{kcal} \mathrm{mol}^{-1}$ (DC-CCSD-T).

Table 1. Equilibrium bond lengths (r_{e}), dissociation energies $\left(\mathrm{D}_{\mathrm{e}}\right)$, ionization potentials $\left(\mathrm{I}_{1}\right)$, and electron affinities $\left(E_{A}\right)$ obtained for XeF_{2}.

Method	$r_{e}(\AA)$	$D_{e}(\mathrm{eV})$	$\mathrm{I}_{1}(\mathrm{eV})$	$\mathrm{E}_{\mathrm{A}}(\mathrm{eV})$
NR-HF	1.931	-0.74		
NR-CCSD	1.968	2.31		
NR-CCSD (T)	1.980	2.47		
NR-CCSD-T	1.984	2.46	12.68	0.23
DC-HF	1.940	-0.84		
DC-CCSD	1.976	2.23		
DC-CCSD(T)	1.990	2.39		
DC-CCSD-T	1.991	2.39	12.45	0.33
Experimental $^{4-6}$	1.979	2.78	12.4	

Table 2. Harmonic vibrational frequencies for XeF_{2}.

	DC-CCSD(T)	DC-CCSD-T	Exp. 7
$\omega_{1}\left(\mathrm{~cm}^{-1}\right)$	563.5	562.3	566.1
$\omega_{2}\left(\mathrm{~cm}^{-1}\right)$	520.2	518.7	526.0
$\omega_{3}\left(\mathrm{~cm}^{-1}\right)$	205.1	204.8	214.2

The correlation-relativity interaction seems to be negligible for XeF_{2} and the properties of this system are mainly given by electronic correlation.

CENAPAD/SP for computational resources.

[^62]
3. STUDY OF ELECTRONIC STRUCTURE OF POLY(TRANS-1, 2-DI(2= THIENYL)=1,3-BUTADIENE) AND OPTICAL TRANSITIONS IN OLIGOMERS
 Nei Marçal ${ }^{11}$ (PG), Bernardo Laks ${ }^{1}$ (PQ).
 Instituto de Física; Universidade Estadual de Campinas, 13083-970 Campinas, São Paulo, Brazil
 corresponding author: marcal@ifi.unicamp.br ; Fax: +55 1937885376
 Palavras chaves: Oligômeros, Estrutura Eletrồnica, Espectro de Absorção Óptica.

WW. Thiloghrag

Este trabalho determinou teoricamente a estrutura eletrônica do Poly(trans-1,4-di(2-thienyl)-1,3-butadiene) (PTB) e as propriedades ópticas dos oligômeros neutros e dopados.

Figura 1. Representação esquemática da estrutura molecular do PTB.

Resultagos e Drgeluscalo

A optimização geométrica foi produzida com cálculos semiempíricos usando modelo AM1 (Austin Method 1). A estrutura de bandas de orbitais π foi obitida usando um Hamiltoniano tight-binding. A densidade de estados (DOS) foi calculada através da técnica da contagem de fatores negativos (NFC)[1].

Figura.2. Apresentamos no lado direito a estrutura de banda de orbitais π e no lado esquerdo a densidade de estados (DOS), ambos para o PTB neutro.

A distribuição de carga na cadeia também foi analisada. Foi calculada a energia das transições e a força do oscilador para oligômeros neutros e carregados, desta forma o spectro de UV-vis foi apresentado. Este cálculo
foi feito usando INDO (intermediate neglect of differential overlap Hamiltonian) em combinação com a técnica Cl (configuration-interaction) de maneira a incluir efeitos de correlação.

Figura 3. Simulação do spectro de absorção UVvis para o hexa(PTB) no estado neutro (linha pontilhada), simplesmente oxidado (linha solida), e duplamente oxidado (linha tracejada).

Teronemboes

A estrutura eletrônica do PTB mostrou que o gap da DOS é igual 1.73 eV . Para uma longa cadeia neutra, a absorção HOMO LUMO foi estimada em 2.02 eV , ambos resultados estão de bom acordo com valor experimental de 1.9 eV .

Os resultados mostram uma dependencia que varia inversamente entre a energia de transição óptica e o tamanho do oligômero.

Os autores agradecem as agências CNPq, CAPES e FAPESP pelo suporte financeiro.
[1] Dean, P. Phys. Soc. (London) 1959, 73, 413; Ladik, J.; Seel, M.; Otto, P.; Bakhshi, A. K. Chem. Phys. 1986, 108, 2003.

ESTUDO TEÓRICO DA INIBIÇÃO DA ACETILCOLINESTERASE POR POLICETÍDEOS DA ESPONJA MARINHA PLAKORTIS ANGULOSPICULATOS

Suzana V. da Silva1*(PG), Clarissa O. da Silva1(PQ), Carlos M. R. Sant'Anna1(PQ)
1Departamento de Química da Universidade Federal Rural do Rio de Janeiro, BR-465, Km 47, Seropédica, Rio de Janeiro CEP 23.890.000, Brasil. *e-mail: suzanarural@ufrri.br.

Palavras Chave: acetilcolinesterase, Mal de Alzheimer, acetilcolina, inibição enzimática.

Abstract

ITHODVICale O Mal de Alzheimer é uma doença neurodegenerativa causada por um déficit de diversos neurotransmissores sendo o principal a acetilcolina (ACh). Uma abordagem possível para o tratamento dessa doença seria a restauração da função colinérgica, afetada pela redução na produção da ACh. A utilização de inibidores da enzima acetilcolinesterase (AChE), responsável pela hidrólise da ACh, é uma estratégia utilizada. ${ }^{1}$ Estudos com policetídeos ${ }^{2}$ extraídos de esponjas marinhas mostraram que essas substâncias são promissores inibidores da AChE. Portanto através de estudo de policetídeos no sítio ativo da enzima, objetivou-se investigar as mudanças conformacionais e energéticas provenientes da interação policetídeos-AChE supondo que esta interação seja competitiva com aquela estabelecida com a ACh, e leve portanto a uma diminuição da atividade enzimática sobre este último substrato.

O estudo baseou-se em três compostos da família de policetídeos. Conforme figura reportada abaixo:

Figura1. Moléculas de policetídeos, Δ representa uma ligação dupla entre os átomos 9 e 10 .

Consideraram-se dois estados para os aminoácidos Ser200 e His440 da triade catalítica: ambos neutros (estado 1) e com o átomo de H do grupo hidroxila da Ser200 transferido para o N da His440 (estado 2).
O modelo enzimático utilizado como referência para este trabalho foi construído a partir da estrutura cristalográfica da enzima de Torpedo californica com o inibidor m -($\mathrm{N}, \mathrm{N}, \mathrm{N}$-trimetilamônio)-2,2,2-
trifluoroacetofenona (TMTFA), de código 1AMN no banco de dados Protein Data Bank (PDB). Foram considerados no modelo do sítio ativo desta enzima aqueles aminoácidos que se encontravam em um raio de 4,5 Á do inibidor, através do programa RasMol 2.7.2.1.1. Moléculas de água também foram consideradas, baseando-se em sua proximidade com os aminoácidos selecionados. O inibidor TMTFA foi eliminado e os átomos pertencentes às ligações peptídicas foram fixados e minimizados por cálculos de MM (campo de força MMFF) no programa PC Spartan Pro. Foram feitos em seguida cálculos com o método semi-empírico, através do programa Mopac6.0 utilizando o halmitoniano PM3.

Tabela 1. Valores de entalpia de interação (kcal/mol) para os complexos formados pelas moléculas de policetídeos e a enzima no estado 1 e no estado 2.

ESTRUTURAS	Estado 1	Estado 2
Policetídeo 1	$-16,66$	$-16,50$
Policetídeo 2	$-12,81$	$-15,76$
Policetídeo 3	$-14,97$	$-16,29$

Merondix

O modelo apresentado descreve como favorável a interação policetídeos-AChE independentemente do sítio ativo encontrar-se no estado 1 ou 2 , como mostram os valores de entalpia de interação encontrados em ambos os casos. Encontram-se em fase de obtenção os valores referentes à energia do complexo ACh-AChE afim de determinar se a interação policetídeos-AChE é de fato competitiva com a estabelecida entre a AChAChE, pelo menos do ponto de vista energético.

Agradeçemos a Universidade Federal Rural do Rio de Janeiro e aos órgãos de fomento CAPES, CnPQ, FAPERJ.

[^63]
XIV Simpósio Brasileiro de Química Teórica (SBQT)

CARACTERIZAÇÃO TEÓRICA DO DÍMERO HOCL-H $\mathrm{H}_{2} \mathrm{O}$

Yuri Alexandre Aoto* (IC), Fernando Rei Ornellas (PQ)

*e-mail: yuri_alexandre@ hotmail.com
Instituto de Química, Universidade de São Paulo, Caixa Postal 26077, São Paulo, SP, 05513-970, Brasil Palavras Chave: Ácido hipocloroso, ab initio, ozônio.

7万ITOMTHe

Dada a importância do composto HOCl em reações atmosféricas, em especial na depleção do ozônio ${ }^{1}$, e a influência de cristais de gelo na cinética de tais reações ${ }^{2}$, como:

$$
\mathrm{ClOH}+\mathrm{HCl} \rightarrow \mathrm{Cl}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

foram efetuados cálculos ab initio do dímero $\mathrm{HOCl}-$ $\mathrm{H}_{2} \mathrm{O}$, caracterizando sua geometria, espectro vibracional e energias relativas, nos níveis de cálculo MP2 e $\operatorname{CCSD}(\mathrm{T})$, com as bases atômicas 631G, 6-311G(d,p), 6-311++G(d,p) e aug-cc-pVnZ (n $=\mathrm{D}, \mathrm{T}$). A possibilidade de erros de superposição de base foi examinada através de cálculos com correção counterpoise.

Foram caracterizadas as estruturas de dois confôrmeros do complexo $\mathrm{HOCl}-\mathrm{H}_{2} \mathrm{O}$, denominadas estruturas syn e anti, nas quais ocorre a formação de uma ligação de hidrogênio entre o hidrogênio do HOCl e o oxigênio da água.

Figura 1. Estrutura dos confôrmeros syn e anti; distâncias em Ângström e ângulos em graus, obtidos com CCSD(T)/aug-cc-pVTZ.

Nota-se uma variação dos parâmetros geométricos e das freqüências vibracionais devido à dimerização, das quais destacam-se a diminuição e aumento das freqüências associadas ao estiramento OH e dobramento de ângulo do HOCl , respectivamente, para os dois confôrmeros.
Quanto aos aspectos energéticos, o confôrmero syn é levemente mais estável que o anti (cerca de 0.4 $\mathrm{kcal} / \mathrm{mol}$), em todos os níveis de cálculo. A análise da estabilidade relativa dos confôrmeros mostra claramente a diminuição desta com o aumento da base, deixando claro efeitos de superposição de base, como ilustrado na Tabela 1.

Tabela 1. Comparação das energias relativas (diferença entre a energia do confôrmero e a soma das energias dos monômeros), em kcal/mol, com e sem correção dos efeitos de superposição de base.

	Sem correção counterpoise	Com correção counterpoise
	syn	
MP2/6-31G(d)	-8,34	-6,83
MP2/6-311G(d,p)	-8,08	-5,31
MP2/6-311++G(d,p)	-6,51	-5,67
CCSD(T)/aug-cc-pVDZ	-6,06	-4,74
CCSD(T)/aug-cc-pVTZ *	-6,05	-5,37
anti		
CCSD(T)/aug-cc-pVDZ	-5,83	-4,55
CCSD(T)/aug-cc-pVTZ *	-5,81	-4,72

* Levando em consideração ZPE calculada por CCSD(T)/aug-cc-pVDZ.

Destacamos a formação de dímeros ($\mathrm{HOCl}-\mathrm{H}_{2} \dot{\mathrm{O}}$) relativamente estáveis e a redução substancial da energia de ligação desse dímero através da correção counterpoise, mesmo para o caso da base mais extensa.

Agradecemos ao CNPq e à FAPESP pelo apoio financeiro.

[^64]
QUANTUM CHEMICAL STUDY ON PROPERTIES OF OLIGOFLUORENES

Melissa Fabíola Siqueira Pinto* (PG), Milan Trsic (PQ)
Grupo de Química Quântica, Instituto de Química de São Carlos, Universidade de São Paulo, CEP 13560-970 São Carlos-SP, Brasil. E-mail: melissa@iqsc.usp.br

Keywords: Oligofluorenes, Quantum chemical methods, UV spectra

1/THOClCHIM

Conjugated oligomers and polymers have attracted many experimental and theoretical efforts to understand their peculiar luminescence. These researches are mainly interested in applications of these materials as optoelectronic devices [1-3]. Furthermore, the optical and electrical properties of conjugated materials are known to be strongly dependent on their structural and electronic behavior.

Our research consists to correlate the molecular conformations and the increase of the number of monomer units of fluorene and derivatives with their structural, electronic and optical properties. In order to evaluate these properties we have used quantum chemical methods at several levels of theory (Semiempirical ZINDO/S-Cl and others, ab initio Hartree-Fock and Density Functional Theory).

Resmishind misauselomi

Quantum chemical calculations regarding some oligomers of fluorene (Figure 1) and two derivatives were performed using semiempirical, $a b$ initio HF and DFT methods. We combined HF and DFT methods with several basis sets and some exchange-correlation functionals, with the aim to perform a methodological evaluation of the dimers properties. Afterwards, we have analyzed the evolution of some structural and electronic properties with the gradual inclusion of the monomers (\mathbf{n}) in oligomers on study.

Figure 1. Structural representation of the fluorene monomer, \mathbf{n} is the number of units inserted in the oligomers.

Our results indicate that the absorption spectra calculated using ZINDO/S-CI provide fastest and better results than TD-DFT and TDHF methods, in comparison with the experimental results [4]. These results were obtained from the fully optimized structures, using several levels of theory.

Moreover, we observed that the changes in the dihedral angles between the monomeric rings affect directly and significantly the electronic properties, mainly the UV spectra, calculated in vacuum.

230 (2)

We observed there is a limit to the bathochromic shift of the oligomers main band ($\pi \rightarrow \pi^{*}$). This behavior is in agreement with the experimental data reported in the literature [4].

Our results also indicate that the oligomer approach is feasible to predict the behavior of some properties of the fluorene and derivatives related polymers. In addition, this information would be helpful for the improvement of their potentialities as also for the development of novel molecules.

The authors are grateful for the financial support from FAPESP, CNPq and CAPES.

[^65]
 \title{
XIV Simpósio Brasileiro de Química Teórica (SBQT)
 \title{
XIV Simpósio Brasileiro de Química Teórica (SBQT)
 ESTUDO TEÓRICO DE CROMÓFOROS NATURAIS E SINTÉTICOS DA BACTERIORODOPSINA UTHLIZANDO O MÉTODO DE QM/MM
}

Ranylson Marcello L. Savedra ${ }^{1 *}$ (PG), Melissa Fabiola S. Pinto ${ }^{1}$ (PG) e Milan Trsic ${ }^{1}$ (PQ)
${ }^{1}$ Grupo de Química Quântica, Instituto de Química de São Carlos, Universidade de São Paulo, CEP 13560-970 São Carlos-SP, Brasil. E-mail: marcello@iqsc.usp.br

Palavras Chave: QM/MM, bacteriorodopsina, retinais sintéticos, TD-HF, TD-DFT
Os resultados mostraram que as combinações de métodos ab initio com o método

A fotoisomerização do retinal é o evento primário responsável por vários processos que ocorrem em alguns sistemas biológicos, tais como a conversão de energia luminosa em energia química em H. salinarum e também para a transdução visual em mamíferos. Além disso, outro destacado interesse nos retinais está associado à fabricação e desenvolvimento de dispositivos moleculares eletrônicos de alta eficiência utilizando-se membranas que contenham bacteriorodopsinas (bRs).

O desenvolvimento de dispositivos ópticos e eletrônicos com maior capacidade de armazenamento de informação tem motivado pesquisas experimentais e teóricas em busca de novos retinais. Com esse propósito, métodos de química teórica têm se destacado como uma importante ferramenta de análise.

Investigações teóricas mostram a importância das propriedades eletrônicas e estruturais (tanto no estado fundamental como nos excitados $)^{1,2}$ para a compreensão do fenômeno da fotoisomerização. Além de possibilitarem estimar estas propriedades para retinais sintéticos. ${ }^{3}$

Neste trabalho foram analisadas as bRs nativa e modificada pela substituição do retinal por um retinal sintético, Figura 1, utilizando os métodos de QM/MM (HF/6-31G(d,p):UFF e B3LYP/6-31G(d,p):UEF).

Figura 1. Estruturas das bRs estudadas: (a) nativa e (b) modificada.
universal UFF apresentam menores desvios que os observados com o método AMBER. ${ }^{4}$ Foi observado ainda que tanto a teoria do funcional da densidade (DFT) quanto o método HartreeFock (HF) apresentaram resultados similares para a geometria da proteína.

Foram utilizados ainda os métodos TD-DFT e TD-HF. Os resultados preliminares indicam que, entre os métodos estudados, a metodologia TD-HF/6-31G(d,p)//B3LYP/6-31G(d,p) apresenta maior concordância com os resultados observados para a absorção eletrônica desses cromóforos em solução. ${ }^{5}$

Nossos resultados indicam que:

- A metodologia QM/UFF é mais adequada do que a $Q M / A M B E R^{4}$ para a análise bRs, devido a sua maior precisão quando comparada com resultados cristalográficos; ${ }^{6}$
- A geometria final das proteínas é pouco influenciada pela correlação eletrônica, visto que ambas as metodologias utilizadas apresentaram resultados similares;
- Os resultados preliminares mostram que a metodologia TD-HF/6-31G(d,p)//B3LYP/6$31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ apresenta boa concordância em relação ao observado em solução. ${ }^{5}$

Os autores agradecem as agências CNPq e FAPESP pelo financiamento dos equipamentos.

Melissa F. S. Pinto e Ranylson M. L. Savedra agradecem à CAPES e ao CNPq, respectivamente pelas bolsas concedidas.

[^66]
AVAliação de arlloxazinas como inibidores das enzimas glutationa REDUTASE HUMANA E DO PLASMODIUM FALCIPARUM ATRAVÉS DE DOCKING

Denis da Silva Corrêa ${ }^{1}$ (IC)*, Ignez Caracelli ${ }^{2}$ (PQ)
denis.s.correa@gmail.com
${ }^{1}$ Licenciatura Plena em Ciências Biológicas, Departamento de Biologia, Faculdade de Ciências, UNESP, Bauru
${ }^{2}$ BioMat - Departamento de Física, Faculdade de Ciências, UNESP; Bauru

Palavras Chave: docking, ariloxazinas, glutationa redutase, malária.

Existem evidências sugerindo que aumentar o estresse oxidativo pode inibir eficientemente o crescimento do Plasmodium falciparum em seu estágio intra-eritrócito ${ }^{1}$. Assim, a enzima glutationa redutase (GR), responsável pela defesa antioxidante deste parasita, torna-se um alvo em potencial para o desenvolvimento de inibidores que possam atuar como fármacos contra a malária ${ }^{2}$. O objetivo deste trabalho é estudar o comportamento dos inibidores da família das ariloxazinas no sítio ativo (SA) e no sitio da interface (SI), tanto da enzima humana (GRh), quanto do parasita (GRPf).

Os inibidores foram modelados, utilizando o programa HyperChem ${ }^{3}$, a partir de estruturas cristalográficas obtidas por meio de busca por compostos semelhantes no Cambridge Structural Database - CSD ${ }^{4}$. Os cálculos de docking destes compostos nos SA e SI da GRh e GRPf foram realizados via programa DOCK $3.5^{5,6}$, a fim de se identificar um padrão de ligação para os inibidores nos sítios estudados e predizer quais complexos são mais favoráveis. Para a GRh, foram considerados para os cálculos os resíduos em um raio de $13 \AA$ do par Cys $58-C y s 63$ no SA e $10 \AA$ do par His75-His75' no SI ${ }^{7}$; para a GRPf, $12 \AA$ ao redor do par Cys39-Cys 44 no SA e $10 \AA$ do par Phe68-Phe68' no SI. Para a avaliação dos complexos formados, foram utilizados programas de visualização gráfica, além da análise das energias de interação obtidas a partir dos cálculos de docking.

Os compostos que apresentaram melhor atividade ${ }^{1}$ apresentaram, no geral, um modo de ligação característico nos sítios. Para o SA da GRh, observou-se que os compostos se orientam principalmente com sua porção isoaloxazina entre os resíduos Arg37 e Arg347, fazendo uma ligação de hidrogênio com a Arg347, e com seu substituinte aromático na posição N10 interagindo com o Glu473'. No SA da GRPf, observou-se que os compostos se orientam principalmente em uma posição mais interna no sítio, podendo interagir
com a Cys39 e His484' catalíticos. No SI da GRPf, o inibidor (3) orienta-se com a porção pentafluorfenil entre os resíduos Asp58 e Glu432, além de ocorrerem ligações de hidrogênio com os resíduos Arg196 e Tyr424 (Figura 1); obteve-se que (3) se liga preferencialmente a este sítio do que ao sítio da GRh.

Figura 1. Composto (3) no SI da GRPf.

Gomginsors

Os resultados sugerem que, no geral, as ariloxazinas apresentam uma maior afinidade à GRh, não sendo, portanto, inibidores específicos em relação à GRPf. A orientação de (3), entretanto, foi mais favorável no SI da GRPf, o que está de acordo com dados cinéticos que indicam que (3) inibe a GRPf mais eficientemente ${ }^{1}$. Ainda, a partir dos resultados obtidos, conclui-se que a presença dos substituintes 4'-clorofenil e 1'-naftil na posição N10 foi favorável à ligação à GRh, enquanto o pentafluorfenil favorece a ligação à GRPf.

UWIFClectinemios

FAPESP (Bolsa IC 2005/02775-3), Fundunesp.

[^67]
ESTUDO TEÓRICO DO MECANISMO DE FORMAÇÃO DO EPSP CATALISADA PELA EPSP SINTASE DE ARROZ

Anivaldo Xavier de Souza ${ }^{1}$ (PG) ${ }^{*}$, Carlos Mauricio R. Sant ${ }^{\prime}$ Anna ${ }^{2}$ (PQ)

4. Departamento de Química, Instituto de Ciências Exatas, UFRRJ
${ }^{1}$ anivaldo@ufrrj.br, ${ }^{2}$ santanna@ufrrj.br

Palavras Chave: EPSP sintase do arroz, método semi-empírico,

TTHTODELK日 210

A enzima 5 -enolpiruvil-chiquimato 3 -fosfato (EPSP) sintase catalisa a reação entre o fosfoenolpiruvato (PEP) e o chiquimato-3-fosfato (S3P), formando os produtos EPSP e fosfato inorgânico. Esta reação é essencial para a biossíntese de compostos aromáticos em algas, plantas superiores, bactérias e fungos ${ }^{1}$. Na etapa final do mecanismo, é proposto que um resíduo básico próximo do sítio ativo abstrai o hidrogênio do grupo OH ligado ao carbono C 4 do fragmento do S3P do intermedário da reação. O oxigênio desprotonado abstrai um próton ligado ao carbono C3 do fragmento PEP do intermedário da reação, levando ao produto (Figura 1).

Figura 1. Esquema proposto para a etapa final do mecanismo catalítico da formação do EPSP.

Nosso objetivo é avaliar o potencial catalítico do resíduo Asp334 da EPSP sintase de arroz, determinando, por meio de cálculos semi-empíricos, sua possível participação na formação da EPSP nesta rota proposta.

Para avaliar o mecanismo de inibição da EPSP sintase do arroz, foi construído um modelo de homologia a partir de sua seqüência primária ${ }^{2}$ e da estrutura cristalográfica da EPSP sintase de Escherichia coli disponível no PDB (1Q36) ${ }^{3}$. Após seleção da região do sítio ativo enzimático, cálculos semi-empíricos (PM3) foram executados com o programa Mopac2002 ${ }^{4}$. Na primeira parte desse trabalho, a distância d_{1} foi variada de 0,96 a $2,76 \AA$ com incremento de $0,3 \AA$, otimizando-se o modelo a cada distância d_{1}, mas mantendo-se fixos os valores de d_{2} e d_{3} em $1,09 \AA$ e $1,38 \AA$. Com essa variação o hidrogênio ligado ao grupo OH foi aproximando do carboxilato de Asp334. A análise dos resultados indicam que na distância d_{1} próximo de 1,90 Å há um
mínimo local na entalpia, correspondendo a um intermediário reacional.
Com o oxigênio ligado ao carbono C 4 desprotonado, iniciou-se a segunda parte da reação. Nesta parte, a distância d_{2} foi variada de 1,09 a $2,29 \AA$ com incremento de $0,3 \AA$ e a distância d d_{3} variou de 1,38 a $3,18 \AA$ com incremento de $0,2 \AA$. A distância d_{1} foi mantida livre com valor inicial de $1,79 \AA$. Os valores das distâncias d_{2} e d_{3} foram permutados obtendo-se 50 estruturas. Cada estrutura foi otimizada e o respectivo calor de formação foi calculado. Com os calores de formação foram obtidos 50 pontos que foram utilizados para construir a superficie de energia potencial relativa, em função de d_{2} e d_{3} (Figura 2).

Os resultados obtidos partindo-se do intermediário da reação, sugerem que Asp334 pode atuar como um catalisador básico, abstraindo o hidrogênio do oxigênio ligado ao carbono C 4 . Após a desprotonação, no caminho de menor energia o oxigênio retira um hidrogênio da metila levando a um intermediário carbânion. Após a formação deste carbânion, ocorre a liberação do fosfato e a formação do EPSP. Estes resultados sugerem ser esta uma possível rota para o mecanismo de formação do EPSP, que ocorre em 3 etapas.

FAPERJ, CNPq

[^68]
INVERSE PROBLEMS IN QUANTUM SCATTERING: POTENTIAL ENERGY FUNCTION FROM DIFFERENTIAL CROSS SECTION

Nelson H.T. Lemes (PQ), Emílio Borges (PG), Rômulo V. Sousa (PG) and João P.Braga* (PQ) *jpbraga@ufmg.br

Universidade Federal de Minas Gerais - UFMG
Keywords: Inverse Problems, Quantum Scattering

Essential physical chemical information can be extracted from scattering experiments. Therefore, several methods of investigating inverse scattering theory have been described in literature ${ }^{1}$. However, this kind of problem is usually ill-posed in the sense that one of three conditions, existence, uniqueness and continuity is not satisfied. For example, the inversion of intermolecular potential functions from scattering data such as experimental cross section is an illposed problem which can be modeled as a Fredholm integral equation ${ }^{2}$.

In this work, an inversion method based on recursive neural networks ${ }^{3}$ is proposed to solve this inverse quantum scattering problem. As physical example, the repulsive component of potential function for the interaction $\mathrm{Ar}-\ldots \mathrm{Ar}$ is obtained from cross section data for this rare gas.

Frosuls and blis evesthen

The relation between the intermolecular potential function and the cross section data is modeled by the Born integral equation. This equation can be obtained from the nuclear Schrödinger equation and has the Fredholm equation form ${ }^{2}$.The inverted potential function, exact potential function ${ }^{4}$ and the initial condition used to obtain the inverted results are presented in figure 1. The initial condition used corresponds to exact solution with deviation of 90%. The agreement between the inverted and exact potential functions is excellent as shown in figure 1. The method proposed to the inversion does not use analytical inverse operators. Also, although the Born approximation in first order is valid in specific energies limit, there are no restrictions or singularities in this process.

Figure 1. Inverted (circle) and exact potential functions (full line). The dashed line corresponds to the initial conditions used to proceed the inversion.

A method to solve inverse problems in quantum scattering, based on recursive neural networks, is proposed in this work. The Born approximation technique derived from the Schrödinger equation is the theoretical background of the equations used in the inversion procedure. The repulsive intermolecular potential function for the interaction Ar---Ar is obtained from cross section data.

4ed moveramment

Financial Support: CNPq/FAPEMIG.

[^69]
HARTREE-FOCK AND DENSITY FUNCTIONAL THEORY CALCULATIONS OF ELECTRIC PROPERTIES OF NUCLEIC ACID BASES

Cesar T. Campos (PG)*, Francisco E. Jorge (PQ).
Departamento de Física, Universidade Federal do Espírito Santo, 29.060-900, Vitória, ES. *cesartcampos@gmail.com

Key words: nucleic acid bases, electric properties, AXZP basis sets, HF and DFT calculations

Abstract

Intermolecular interactions greatly affect large molecules, particularly biomolecules. The macrostructures and properties of proteins and DNA are highly dependent on such interactions. Perhaps the most important biological intermolecular interactions are those between nucleic acids bases in DNA. These interactions are electric in nature; thus, an accurate determination of the electric properties of the nucleic acid bases is desirable. In this work, we present the results of Hartree- Fock (HF) and density functional theory (DFT) calculations using the Jorge's hierarchical sequence of basis sets ${ }^{1,2}$ on benzene, pyridine, uracil, cytosine, thymine, guanine, and adenine. Optimized geometries for benzene, pyridine, and the bases as well as calculated static values of the dipole moment (μ), mean dipole polarizability ($\bar{\alpha}$), and anisotropy (\circ) are presented and compared with previous theoretical ${ }^{3}$ and experimental ${ }^{3}$ results.

Pandis animplecussion

In this section, the HF and B3LYP/DZP models were used to optimize the geometry structures of the benzene, pyridine, and nucleic acid bases and, then, from these geometries, using noncorrelated (HF) and correlated (B3LYP and BP86) methods and the hierarchical sequence of augmented X zeta quality plus polarization functions [AXZP, $\mathrm{X}=\mathrm{D}$ (double), T (triple), Q (quadruple)] basis sets ${ }^{1,2}$, electric properties were calculated. All calculations were carried out using the Gaussian 03 program. Table I shows some theoretical and experimental results for cytosine.
The correlation contribution modifies our HF dipole moments by $2.2-13.4 \%$. For the bases containing only one ring, the B3LYP dipole moments are about 4.0% larger than those computed with the non-hybrid functional, whereas for the other molecules this difference decreases for approximately 2.0%. With exception of adenine ($\sim 13.5 \%$), the differences between the BP86 and MP2 ${ }^{3}$ dipole moments are always smaller than 1.4%. When compared with the experimental values, our BP86 results are as good as those of Johnson et al. ${ }^{3}$ for both uracil and thymine.

Our calculated HF values of the mean polarizabilities are in excellent agreement with the experimental data ${ }^{3}$.

Now, for all molecules, the BP86 results are larger than the B3LYP and MP2 ${ }^{3}$ ones. For the bases, the agreement between the B3LYP and MP2 values is excellent, being the largest difference (0.8%) observed for uracil.
The B3LYP anisotropies for the nucleic acid bases are also very close to the MP2 ${ }^{3}$ results. The differences are $0.5,0.8,0.9,3.3$, and 3.9 a.u. for uracil, thymine, cytosine, adenine, and guanine, respectively. Thus, the difference increases with the size of the base.

Table I. Electric properties of cytosine.

Property	HF $^{\mathrm{a}}$	BP86 $^{\mathrm{a}}$	B3LYP $^{\mathrm{a}}$	MP2	Expt.
μ	7.32	6.41	6.66	6.33	7.0
$\bar{\alpha}$	71.4	81.3	78.7	79.1	69.5
$\Delta \alpha$	45.9	56.2	53.8	52.9	-

2. *)

For all molecules studied, we found that the electric property results obtained with any basis set of the AXZP ($\mathrm{X}=\mathrm{D}, \mathrm{T}$, and Q) hierarchical sequence are very similar. Our findings have important implications for future electric property calculations of π electron systems like these, namely: a basis set of double zeta quality (e.g., ADZP) is enough to carry out reliable and accurate calculations of such properties.
The B3LYP/DZP geometries and B3LYP/ADZP values of the properties correspond very well with those calculated from more computationally intensive MP2/6-31G** and [$5 \mathrm{~s} 3 \mathrm{p} 2 \mathrm{~d} / 3 \mathrm{~s} 2 \mathrm{p}$] calculations ${ }^{3}$.

Ademomboganchis
CNPq, FAPES.

[^70]
EmPIRICAL ANALYSIS OF THE LIEB-OXFORD LOWER BOUND ON THE EXCHANGECORRELATION ENERGY

Mariana M. Odashima*ㄹ ${ }^{1}$ (PG), Klaus Capelle ${ }^{1}$ (PQ)
${ }^{1}$ Departamento de Física e Informática, Instituto de Física de São Carlos, Universidade de São Paulo. São Carlos, 13560-970 SP, Brazil
*mariana@ifsc.usp.br

Density-functional-theory, exchange-correlation energy, Lieb-Oxford bound

Abstract

hinoralien In electronic-structure calculations, densityfunctional theory plays a key role in the computation of the properties of a vast range of materials. In quantum chemistry, solid-state physics and materials science there has been an enormous demand for more accurate and versatile functionals for the description of manybody effects on electronic structure. Further progress in DFT therefore depends crucially on the development of ever better density functionals. In this context, the investigation of exact constraints on the exchange-correlation (xc) energy has been a central issue for the development of new functionals, following Perdew's approach. ${ }^{1}$

In the present study, we focus on one such universal property of xc functionals, the Lieb-Oxford (LO) lower bound on the exchangecorrelation energy. This property was investigated in Ref.[2], where a large difference between the theoretical maximum value of the LO bound ${ }^{3}$ and the values exhibited by physical systems and model Hamiltonians was noted. Here we analyse the LO bound for various molecular systems. Our results support the conjecture that the LiebOxford bound can be tightened. ${ }^{2}$

The exchange-correlation energy is known to satisfy the following inequalities

$$
0 \geq E_{x c} \geq-C \int d^{3} r n^{4 / 3}
$$

where C is a universal constant. The first inequality provides an upper bound to E_{Xc}, and is an immediate consequence of the variational principle. The second inequality is a remarkable result due to Lieb and Oxford, ${ }^{3}$ who established the form of the bound and obtained the value $\mathrm{C}_{\mathrm{LO}}=1.68$ as an upper limit of the prefactor C .

The Lieb-Oxford bound with $\mathrm{C}_{\mathrm{LO}}=1.68$ is a key ingredient in the construction of modern xc funcionals ${ }^{4,5}$. This maximum value $C_{\text {LO }}$ has been slightly reduced to $\mathrm{C}_{\mathrm{LO}}=1.6358$ by the work of Chan and Handy. ${ }^{6}$ However, in a very recent
study, ${ }^{2}$ the Lieb-Oxford bound was evaluated for different classes of systems, such as atoms, ions, molecules and solids, and the results suggested a possible further tightening of the LO bound. In the present work, we present evidence that for other physical systems, such as diatomic molecules ${ }^{7}$, hydrides ${ }^{8}$ and ions ${ }^{9}$, the LO bound gives results around 50% of the maximum value. This range of values is in agreement with the molecular data analysed in Ref.[2], for small hydrocarbons and the silicon dimer. ${ }^{10}$ This empirical analysis strongly suggests that the current value of C_{LO} is too generous, and that it could be reduced, either generally or for classes of systems.

concusions

In this work, we investigate the behaviour of the Lieb-Oxford lower bound in molecules. In agreement with a recent study, ${ }^{2}$ we find that also for diatomic molecules, hydrides and ions the bound is obeyed with a much smaller prefactor than the original value of Lieb and Oxford ${ }^{3}$ and the one of Chan and Handy. ${ }^{6}$ This result supports the hypothesis of a possible tightening of the Lieb-Oxford bound. This idea deserves to be investigated in detail, since a substantial change in the prefactor C would surely have consequences for the performance of current density-functionals. ${ }^{4,5}$

AREMOMEGEMEMS

This work is supported by FAPESP.

[^71]
GAUSSIAN BASIS SET OF DOUBLE ZETA QUALITY FOR ATOMS GALLIUM THROUGH KRYPTON: APPLICATION IN DFT CALCULATIONS OF MOLECULAR PROPERTIES

Sydney F. Machado (PG), Giuseppi G. Camiletti (PG), Francisco E. Jorge (PQ)
Departamento de Física, Universidade Federal do Espirito Santo, 29060-900 Vitória, ES; (*) sydney@cce.ufes.br

Palavras Chave: DZP basis set, Ga to Kr; BP86 and B3LYP functionals, molecular properties

Recently, Jorge et al. presented segmented contracted double ${ }^{1}$ and triple and quadruple ${ }^{2}$ zeta valence quality plus polarization function ($\mathrm{XZP}, \mathrm{X}=\mathrm{D}$, T , and Q , respectively) basis sets for the atoms from H to Ar. This work is the extension of the DZP basis set ${ }^{1}$ to third-row atoms (Ga-Kr). Combined with lighter atoms using the same basis set, this should increase the range of inorganic chemistry that can be handled efficiently by quantum chemistry methods. Ground-vibrational-state dissociation energy (D_{0}), bond length (r_{e}), harmonic vibrational frequency (${ }_{\mathrm{e}}$), and dipole moment $\left(\mu_{\mathrm{e}}\right)$ for five diatomics and geometric parameters for four polyatomics were calculated and compared with results obtained with the cc-pVDZ ${ }^{3,4}$ basis set and with experimental data ${ }^{5}$ in the gas phase.

The Gaussian 03 program was used in DFT molecular wave function calculations.
For the five diatomics studied, the mean absolute percentage deviations from experiment of BP86 (B3LYP)/DZP and cc-pVDZ dissociation energies are 3.60 (2.81) and 3.25 (4.10) \%, respectively. It is clear that the best accord with the experimental data is obtained with the B3LYP/DZP model. For the molecules containing a main group atom, the mean absolute deviations of the theoretical bond lengths from experimental values are 0.0308 (0.0207) and 0.0442 (0.0332) for the BP86 (B3LYP)/DZP and ccpVDZ models, respectively. At any level of theory, the DZP set yields equilibrium structures which, on average, are better than those derived with the other basis set. For studied molecules, the mean absolute percentage deviations from experiment of BP86 (B3LYP)/DZP and cc-pVDZ harmonic frequencies are 4.23 (1.58) and 3.59 (2.01) \%. The
smallest deviation is obtained with the B3LYP/DZP model. The agreement between B3LYP/DZP and experimental results is excellent, except for GeS at the B3LYP level, whose cc-pVDZ error is only 0.05 D smaller than ours, the best agreement between theoretical and experimental dipole moments is always obtained with the DZP basis set. For the DZP set, one verifies good agreement same for diatomics incorporating very electropositive (GeO) third-row element. The largest DZP error ($\sim 0.30 \mathrm{D}$) occurs for GeO at the BP86 level.
As an example, calculated and experimental ${ }^{5} D_{0}, r_{e}$, ω_{e}, and μ_{e} for GeO are presented in Table I. The zero-point vibrational energy was computed at a temperature of 298.15 K .

comchitions

In this work, we constructed correlated DZP basis set for Ga-Kr.
For the diatomic molecules containing atoms of the main group, the best results of D_{0} and ω_{e} are obtained with the B3LYP/DZP model.
For any basis set, the hybrid functional showed to be in general the most appropriated to calculate the properties studied in this work.
The best agreement between theoretical and experimental dipole moments is obtained with the DZP basis set.

CNPq and CAPES

[^72]Table I. Experimental and calculated D_{0}, r_{e}, ω_{e}, and μ_{e} for the ground state of GeO .

Molecule	Method	Basis Set	$\mathrm{D}_{0}(\mathrm{~kJ} / \mathrm{mol})$	$\mathrm{r}_{.}(\AA)$	$\left(\mathrm{cm}^{-1}\right)$	$\mu_{。}(\mathrm{D})$
$\mathrm{GeO}\left(1 \Sigma^{+}\right)$	Expt.		659.4 ± 12.6	1.6246	986.49	3.282
	BP86	DZP	690.5	1.6466	943.05	2.983
		cc-pVDZ	679.3	1.6612	937.24	2.742
	B3LYP	DZP	633.7	1.6298	992.91	3.279
		cc-pVDZ	620.1	1.6439	981.66	3.014

Desempenho de Bibliotecas de Otimização em Programas onais de Estrutura Eletrônica.

Maurício Chagas da Silva(PG)*, Nelson Henrique Morgon(PQ) mcsilva@iqm.unicamp.br.

Instituo de Química UNICAMP; Caixa Postal 6154 - Campinas, SP - CEP 13084-862.

Palavras Chave: Otimização, BLAS, ATLAS, ACML.

1Hereverad

Nos processos da resolução de cálculos de estrutura eletrônica são necessárias diversas etapas numéricas de inversão de matrizes, escalonamento, diagonalização e muitas outras. Assim, nos pacotes computacionais de estrutura eletrônica, tais como GAMESS ${ }^{1}$, DALTON ${ }^{2}$ e DIRAC ${ }^{3}$, encontra-se implementados diversos métodos da álgebra linear. Contudo, tais programas aconselham o uso de bibliotecas otimizadas como BLAS 4 (Basic Linear Algebra Subprograms), ATLAS ${ }^{5}$ (Automaticlly Tuned Linear Algebra Software) e ACML 6 (AMD Core Math Library). Com o intuito de se obter a melhor relação custo/benefício nos cálculos de estrutura eletrônica utilizando os pacotes GAMESS, DALTON e DIRAC, estudou-se o desempenho destes programas utilizando-se tais bibliotecas otimizadas.

Os pacotes computacionais GAMESS, DALTON e DIRAC (nas suas últimas versões disponíveis) foram compilados para uma plataforma 64bits com processador AMD64 X2 dual core com clock de $2,6 \mathrm{GHz}$ RAM rodando o sistema operacional FreeBSD6.2 e com 2GB de memória. Utilizaramse, como compiladores padrões, o gfortran e gcc (ambos na versão 4.1). Tanto a biblioteca BLAS como a ATLAS foram compiladas com os mesmo compiladores, a biblioteca ACML foi compilada nestes mesmos compiladores e para a precisão de 64bits tanto para variáveis inteiras como reais.

O desempenho das bibliotecas de otimização foi analisado segundo o tempo total de processamento de todos os exemplos contidos nos códigos fontes dos pacotes computacionais de estrutura eletrônica estudado. Observou-se também o tempo do processo mais e menos demorado frente a utilização das bibliotecas de otimização.

Tabela 1. Tempos totais e dos processos mais rápido e mais demorado em segundos, obtidos na análise de desempenho do pacote computacional GAMESS

Biblioteca	Total	Maior	Menor
NULL*	95,59	19,38	0,05
ACML	86,27	18,61	0,05

ATLAS	90,79	19,71	0,04
BLAS	91,19	19,67	0,05

Tabela 2. Tempos totais e dos processos mais rápido e mais demorado em segundos, obtidos na análise de desempenho do pacote computacional DALTON.

Biblioteca	Total	Maior	Menor
NULL *	2751,02	315,00	0,02
ACML	2742,36	315,00	0,02
ATLAS	2751,63	314,00	0,02
BLAS	2741,23	311,00	0,02

* NULL : sem inclusão de bibliotecas otimizadas.

De um modo geral, segundo as Tabelas 1 e 2, a utilização da biblioteca de otimização adequada pode reduzir o tempo de processamento. No caso do pacote GAMESS observa uma redução considerável quando se utiliza a biblioteca ACML. O mesmo também é observado para o pacote DALTON. No caso do pacote GAMESS todas as bibliotecas reduziram o tempo de processamento, o mesmo não é observado no pacote DALTON. No caso do DALTON utilizando a ATLAS observou-se o mesmo tempo de processamento para o programa compilado sem nenhuma biblioteca externa.

A biblioteca ACML apresentou o melhor desempenho frente à BLAS e à ATLAS, tanto para - GAMESS como para o DALTON. Cálculos ainda estão em andamento para o pacote DIRAC, mas resultados preliminares já inferem o mesmo comportamento. Outros testes estão em andamento com estas bibliotecas, mas utilizandose outros compiladores e outras plataformas de hardware (Intel), bem como testes utilizando compilações destes programas para 32bits, mas executados em plataformas 64bits.

Agradecemos às agências CAPES, CNPQ e FAPESP pelos diversos fomentos (bolsas e aquisições em infra-estruturas) fornecidos ao nosso grupo de pesquisa.

[^73]
Cálculo da Energia de Hidratação utilizando o Método PCM e CONJUNTOS DE BASES ADAPTADOS A ECP

Maurício Chagas da Silva (PG)*, Nelson Henrique Morgon (PQ) mcsilva@iqm.unicamp.br

Instituo de Química UNICAMP; Caixa Postal 6154 - Campinas, SP - CEP 13084-862.

Palavras Chave: PCM, Energia de Hidratação, ECP.

DHTerclicare

O método PCM^{1} tem sido muito utilizado na descrição de sistemas químicos condensados tais como líquidos. Desta forma, utilizou-se desta abordagem teórica para se estudar a energia de hidratação (EH) de diversas moléculas orgânicas contendo os átomos de $\mathrm{H}, \mathrm{B}, \mathrm{C}, \mathrm{N}, \mathrm{O}, \mathrm{F}, \mathrm{P}, \mathrm{S}, \mathrm{Cl}$ e Br . Com este estudo averiguou-se a influência de abordagens ab-initio (HF) e de TFD (B3LYP e B3PW91) e de diferentes conjuntos de bases adaptados a pseudopotenciais, na determinação da $E H^{2}$ dos compostos orgânicos considerados.

Estudou-se a EH de um conjunto de 10 moléculas orgânicas através do método PCM implementado no pacote computacional Gaussian98. As estruturas moleculares foram otimizadas em fase condensada utilizando-se a água como solvente $(\varepsilon=78.39 D)$ e o método UAHF na construção da cavidade molecular solvatada. Nas geometrias de equilíbrio em fase aquosa, calculou-se a $E H^{2}$ que no caso é a própria energia livre de solvatação, Eq. (1), onde ψ^{s} é a função de onda molecular solvatada, ψ^{0} é a função de onda molecular em fase gasosa, H^{0} é o hamiltoniano eletrônico molecular e $V(R, r)$ é o potencial perturbativo referente ao processo de solvatação.

$$
\begin{equation*}
\left.\Delta G_{\mathrm{suv}}=\left|\Psi^{2}\right| \mathrm{H}^{0}+0.5 \mathrm{~V}^{2}(\mathrm{RE}) \mid \Psi^{*}\right)-\left(\Psi^{0}\left|\mathrm{H}^{0}\right| \Psi^{0}\right\rangle \tag{1}
\end{equation*}
$$

A EH foi obtida na função de onda HF e também através da TFD com os funcionais B3LYP e B3PW91. Diferentes conjuntos de bases adaptados a ECP foram empregados neste estudo tais como LANL2DZ, SDDALL, GBSMCS (conjuntos de bases desenvolvidos com o MCGDIO^{3}, adaptados ao ECP-SBKJC, que incluem funções difuṣas s e p, e de polarização d e f $), m L A N L 2 D Z$ e $m S D D A L L)$.

Os conjuntos mLANL2DZ e mSDDALL foram obtidos através da adição de funções extras de polarização d e f provenientes dos conjuntos 6$311++G(2 d f, 2 p)$ e da adição de funções difusas s e p segundo uma extrapolação linear dos
conjuntos sep das primitivas destas bases não modificadas -LANL2DZ e SDDALL.

Tabela 1. Erro absoluto médio e desvios padrões em $\mathrm{kcal} / \mathrm{mol}$, obtidos na determinação da EH de um conjunto de 10 moléculas orgânicas.

Bases	Métodos		
	HF	B3LYP	B3PW91
GBSMCS	$0,4 \pm 0,2$	$0,3 \pm 0,2$	$0,2 \pm 0,1$
LANL2DZ	$1,0 \pm 1,0$	$0,7 \pm 0,6$	$0,8 \pm 0,6$
SDDALL	$1,0 \pm 1,0$	$0,8 \pm 0,8$	$0,8 \pm 0,8$
mLANL2DZ	$0,5 \pm 0,3$	$0,8 \pm 0,6$	$0,8 \pm 0,5$
mSDDALL	$0,4 \pm 0,3$	$0,4 \pm 0,2$	$0,3 \pm 0,2$

* Conjuntos de bases modificados.

Observa-se segundo a Tabela 1 que o melhor conjunto de base empregado foi o desenvolvido pelo MCGDIO (GBSMCS) apresentando erros por volta dos $0,3 \mathrm{kcal} / \mathrm{mol}$. Observa-se que este mesmo conjunto apresentou bons resultados em todas as aproximações teóricas (HF, B3LYP e B3PW91). Os conjuntos LANL2DZ e SDDALL foram os que apresentaram os maiores erros na determinação da EH, contudo observa-se que através da modificação estes erros podem ser diminuídos.
 flexibilidade e bons resultados na determinação da EH dos compostos orgânicos estudados. A modificação dos conjuntos LANL2DZ e SDDALL podem trazer melhorias significativas no cálculo da $E H$.

Agradecemos às agências CAPES, CNPQ e FAPESP pelos diversos fomentos (bolsas e aquisições em infra-estruturas) fornecidos ao nosso grupo de pesquisa.

[^74]
ESPECTRO ELETRONICO DO FENOL EM ÁGUA EM CONDIÇÕES NORMAIS E SUPERCRÍTICAS, INCLUINDO POLARIZAÇÃO DO SOLUTO

Rafael C. Barreto* (PG) barreto@if.usp.br, Sylvio Canuto (PQ)
Instituto de Física, Universidade de São Paulo, CP 66318, 05315-970 São Paulo, SP, Brasil Palavras Chave: Fenol, Espectro, Método Seqüencial Monte Carlo / Mecânica Quântica

hnror ricato

O estudo da polarização eletrônica em líquidos é crucial na compreensão e na descrição de suas propriedades. Uma molécula imersa em meio solvente sofre mudança em seus momentos de multipolo, sua assinatura espectral, e até mesmo em sua conformação. Tais propriedades são medidas diretamente em fase gasosa, porém esta não é uma tarefa trivial em meio líquido. Para a maioria dos solventes orgânicos, estima-se que o momento de dipolo do soluto aumente cerca de 30% na fase líquida, em relação à gasosa [1]. A água é um caso especial, que sofre um aumento de $40 \% \mathrm{em}$ seu momento de dipolo [2]. Moléculas solvatadas sofrem um efeito de polarização ainda maior, como observado para a acetona (60%) e a benzofenona (90\%) [3]. Nosso interesse é calcular o espectro do fenol em água, incluindo polarização, em diferentes condições termodinâmicas.

Neste trabalho foi utilizado o método Seqüencial Monte Carlo/Mecânica Quântica (S-MC/QM) [4] para calcular o espectro eletrônico do fenol em água. Através dessa metodologia, obtém-se propriedades como o momento de dipolo, através de simulações clássicas da estrutura do líquido seguidas por cálculos de MQ.

Primeiramente consideramos a molécula de fenol isolada, utilizando-se teoria de perturbação de segunda ordem de Møller-Plesset (MP2). Utilizando um conjunto de funções base aug-cc-pVDZ, foram ajustadas cargas clássicas para o fenol, através do modelo CHELPG [5]. Com estas cargas, foi realizada uma simulação clássica. O modelo utilizado para a água foi o SPC/E [6]. Da simulação clássica foram selecionadas 100 configurações estatisticamente descorrelacionadas para se obter o momento de dipolo em solução. A polarização do soluto foi incorporada usando-se um método iterativo [3]. Diferentes simulações são realizadas e as cargas obtidas até a convergência no momento de dipolo do soluto. O solvente foi considerado incluindo 3 camadas de solvatação de moléculas de água, representadas por cargas pontuais.

O fenol em água foi simulado em 2 condições termodinâmicas diferentes: condições normais (298 K, 1 atm) e condições supercríticas ($733 \mathrm{~K}, 440$ atm). Nestas duas condições termodinâmicas
foram realizados cálculos do espectro de absorção utilizando métodos extensivos como o método semi-empírico INDO/CIS, o método time-dependent (TD) DFT (B3LYP) e Hartree-Fock (HF) e também o método pós HF CIS(D). Com exceção do método semi-empírico (que utiliza base mínima), os métodos TD e pós HF foram realizados utilizandose um conjunto-base de Pople $\left(6-31++G^{*}\right.$ para o fenol, e $6-31+G$ e $3-21 \mathrm{G}$ para a água). O deslocamento solvatocrômico obtido com o método INDO/CIS é mostrado abaixo para a condição normal.

Fenol em água normal (298K,1atm) primeira transição

Figura 1. Deslocamento do primeiro estado excitado eletrônico do fenol em água em condição normal, utilizando INDO/CIS.

Condmsocs

Os resultados para água em condições normais estão em acordo com os resultados experimentais. O deslocamento calculado para o fenol em água em condições supercríticas é aproximadamente metade do resultado para condições normais.

Agradecemos ao CNPq, ao RENAMI e à FAPESP.

[^75]
GRAPHENE COVERED BY AU NANOPARTICLES: ELECTRONIC AND STRUCTURAL PROPERTIES

Sabrina S. Carara ${ }^{1}(\mathrm{PG})^{*}$, Hélio Chacham ${ }^{1}(\mathrm{PQ})$, Ronaldo J. C. Batista ${ }^{1}$ (PQ), scarara@fisica.ufmg.br
${ }^{1}$ Departamento de Fisicica, ICEX, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil

Keywords: graphene, Au nanoparticles, electronic structure of materials

4 hleonction

In the present work, we investigate electronic properties resulting of interaction of an Au_{38} nanoparticle on a graphene layer, performing firstprinciples calculations. The nanoparticle is capped by methylthiol molecules and its geometry is fully optimized $[1,2]$. Our methodology is based on the density functional theory within the generalized gradient approximation and norm-conserving pseudopotentials as implemented in the Siesta code.

In our calculations, we found the minimum position of an Au_{38} nanoparticle on a graphene sheet. The separation between the centre of nanoparticle and graphene layer found was about 10 angstrons. Isolated calculations of Au_{38} nanoparticle and graphene layer showed no net spin polarization as well as the calculation of the system formed by graphene sheet with a nanoparticle on it. The total density of states on carbon atoms of graphene in the nanoparticlegraphene system was calculated, showing no changes near the Fermi level.
Investigations about the interaction of graphene layer with an Au_{38} nanoparticle on it were made including a net charge in the system. The total density of states on carbon atoms of graphene in the charged nanoparticlegraphene system were calculated, showing changes near the Fermi level when a net charge is added or pulled back of the system. Figure 1 shows the case that a net charge equal to $0.0,0.5,1.0$ e 2.0 electronic charge is added to the system.

Figure 1.Density of states of the nanoparticle-graphene system when a net charge is added to the system.

Figure 2 shows the case that a net charge equal to 0.0 , $0.5,1.0$ e 2.0 electronic charge is pulled back to the system.

Figure 2.Density of states of the nanoparticle-graphene system when a net charge is pulled back to the system.

We observed an asymmetry in the curves of the Figures 1 and 2. The curves show us there be exist á difference to add or pull back charge of the system. Analyzing the total atomic charges of the charged or non-charged system we see that when a net charge is added to the system this charge is equally distributed between graphene layer and nanoparticle. When a net charge is pulled back of the system the biggest contribution comes of nanoparticle (approximately 70%). Probably this trend is responsible by the differences between the curves when we compare the same net charge being added or pulled back of the system.

Tomemicimi

We performed first-principles calculations to investigate electronic and structural properties resulting of interaction of an Au_{38} nanoparticle with a graphene layer, finding an asymmetry when a net charge is added or pulled back of the system. The effect of applied electric fields on the electronic structure will also be investigated.

We acknowledge to Capes by the financing of this project.

[^76]
ESTUDO DO CARÁTER ELÉTRON-DOADOR E ELÉTRON-ACEITADOR de biomoléculas

Káthia Maria Honório (EACH - USP),
Paula Homem de Mello (UFABC),
Albérico Borges Ferreira da Silva (IQSC - USP)

Os principais objetivos deste trabalho foram estudar o cárater elétron-doador e elétron-aceitador de biomoléculas e obter uma escala de reatividade química, a partir de valores de $\mathrm{E}_{\text {номо }}$ e $\mathrm{E}_{\text {Luмо }}$, que poderá ser empregada em estudos envolvendo reações de transferência de carga. Os cálculos foram realizados utilizando a Teoria do Funcional da Densidade, com o funcional B3LYP e as bases 6-311G e 6-311+G. O método IEF/PCM foi utilizado para simular o meio aquoso. Comparando os resultados obtidos é possível verificar que não ocorreram variações significativas nos valores de energia total e energias dos orbitais HOMO e LUMO para as
moléculas estudadas. Afinidade eletrônica e potencial de ionização também foram calculados e pode-se observar uma alta correlação entre as aproximações utilizadas para determinar estes valores quando foi empregado o método IEF/PCM. Os mapas de contribuições atômicas para o HOMO do composto mais elétron-doador e para o LUMO do composto com maior caráter elétron-aceitador foram obtidos, tornando possível verificar os sítios que participarão em uma reação de transferência de carga.

INVESTIGAÇÃO DA AdITIVIDADE DA ROTAÇÃO ÓTICA EM SISTEMAS COM MAIS de um centro quiral.

Renato V. da Silva ${ }^{1 *}$ (PG), Benedetta Mennucci ${ }^{2}$ (PQ) e Clarissa O. da Silva ${ }^{1}$ (PQ)
${ }^{1}$ Departamento de Química, Instituto de Ciências Exatas, Universidade Federal Rural do Rio de Janeiro, Km 07 da Rodovia BR 465, Seropédica - RJ - CEP 23890-000, Brasil.
${ }^{2}$ Dipartimento di Chimica e Chim. Ind., Universitá degli Studi di Pisa, via Risorgimento 35, Pisa, Itália.
* e-mail: renvisil@hotmail.com
Palavras Chave: rotação ótica; sistemas multiquirais.

InCiroflcere

A rotação ótica (RO) desempenha um papel significativo na pesquisa de carboidratos, devido ao elevado número de centros quirais presentes nestes compostos, pode auxiliar na determinação de configurações absolutas dos compostos.
O desenvolvimento de métodos teóricos, especialmente quanto mecânicos, para a predição da RO é complexo por diferentes fatores. Os cálculos de RO são muito sensíveis ao nível de cálculo e dependem da geometria dos compostos ${ }^{1}$. A seleção do método computacional e do conjunto de funções de base nos cálculos tem grande influência nos resultados de RO^{2}. Stephens et al. ${ }^{3,4}$ mostraram que cálculos DFT combinados com um apropriado conjunto de funções de base, com funções difusas incorporadas, rendem resultados mais confiáveis, quando comparados à metodologia Hartree-Fock (HF), para sistemas rígidos.
Os sacarídeos pelo contrário, são sistemas com grande variedade conformacional e muitos centros quirais, e conseqüentemente, a complexidade dos cálculos é amplificada.
Investigaremos, através de cálculos teóricos DFT, um possível caráter aditivo existente para a rotação ótica, para assim estudar a criação de protótipos para facilitar os cálculos de rotação ótica de compostos multiquirais como os sacarídeos. Estão sendo investigados sistemas modelo com distâncias variadas entre seus dois centros quirais e com variação de configuração destes centros, em distintos níveis de cálculo. A partir destes sistemas, são construídos compostos monoquirais a partir da eliminação de 1 centro por vez. Sendo definido como erro percentual de aditividade($\%_{\text {erro }}$) o valor:

$$
\%_{\text {erro }}=\frac{\Delta R O \times 100}{R O_{(b i .)}} \quad \Delta R O=R O_{(b i)}-\left[R O_{(\text {monol })}+R O_{(\text {mono2 })}\right]
$$

Sendo $\mathbf{R O}_{(\mathrm{x})}$ o valor da RO para cada composto.

Figura 1: Modelo biquiral genérico. Onde N é o número de grupamentos CH_{2} para cada modelo.

Na Figura 1 estão representados, genericamente, os modelos biquirais utilizados para o cálculo da RO em função de N.
Após a realização de cálculos de otimização de geometria para cada modelo, foram obtidos valores de rotação ótica($[\alpha]_{\mathrm{D}}$) para os modelos biquirais, com N variando de 2 a 5 , e monoquirais através de cálculos realizados com o funcional híbrido B3LYP. Os valores do erro percentual $\left(\%_{\text {erro }}\right)$, obtidos nos cálculos utilizando o conjunto de funções de base $6-31++G(d, p)$ está representado na Figura 2.

Figura 2: Erro percentual em função de N. Foram omitidos os resultados de $\%_{\text {erro }}$ para o modelo com configuração SR , pois o mesmo não apresentou atividade ótica.
Notou-se que com o distanciamento dos centros quirais, excluindo o resultado obtido para o modelo com configuração $S S$ e $N=5$, foram obtidos valores relativamente pequenos para o $\%_{\text {erro }}$.

Tophillerocs

A partir dos valores de $\%_{\text {erro }}$ obtidos, podemos observar um certo caráter aditivo da RO para os modelos propostos, em função do distanciamento entre seus centros quirais. Porém é necessário a realização de cálculos com outros conjuntos de funções de base e posterior comparação dos resultados para confirmar este caráter. Investigações neste sentido estão em andamento.

[^77]
Estudo do Efeito Espacial e Eletrônico de Ligantes Fosforados na Hidroformilação do Estireno Utilizando Cálculos Híbridos ONiom

Roberta P. Dias ${ }^{1}(P G)^{*}$, Willian R. Rocha (PQ) ${ }^{1}$
1-Laboratório de Química Computacional e Modelagem Molecular (LQC-MM), Departamento de Química, ICEx, UFMG, Belo Horizonte, Minas Gerais, 31270-901
*robertadias@ufng.br

Palavras Chave: Catálise homogênea, hidroformilação, ONIOM.

A hidroformilação (conversão de alquenos em aldeídos) homogênea de olefinas, catalisadas por metais de transição, representa um versátil meio para a produção de álcoois e aldeídos comercialmente importantes ${ }^{1}$. Grande parte dos estudos em catálise homogênea hoje consiste na busca de catalisadores mais ativos e mais seletivos. Catalisadores de Rh contendo ligantes fosforados vem sendo utilizados com o intuito de se encontrar um controle na régio e estereoquímica dos produtos ${ }^{1,2}$. Modificando os ligantes, tanto em suas propriedades espaciais, quanto em suas propriedades eletrônicas, pode-se obter uma nova gama de catalisadores, aplicáveis em diferentes tipos de reação, que requerem seletividade na formação de seus produtos ${ }^{3}$. Neste trabalho, a metodologia ONIOM^{4} foi utilizada com o objetivo de elucidar e quantificar o efeito dos ligantes nos principais passos do mecanismo de hidroformilação (inserção e carbonilação da olefina), utilizando o estireno como substrato e $\mathrm{HRh}(\mathrm{CO})_{x}\left(\mathrm{PPh}_{3}\right)_{3-\mathrm{x}} \quad(\mathrm{x}=1,2) \quad$ como espécies cataliticamente ativas.

Cálculos ONIOM de duas camadas foram feitos, utilizando o funcional B3LYP na parte de alto nível e o campo de força UFF na camada de baixo nível (B3LYP:UFF). Cálculos no ponto, utilizando o método HF na camada de baixo nível (B3LYP:HF) também foram conduzidos, para se estudar o efeito eletrônico e espacial dos ligantes. Em todas as aproximações, funções de base $6-31 \mathrm{G}(\mathrm{d})$ foram utilizadas para os átomos do ligante e ECP do tipo LANL2DZ para o átomo de ródio, presentes na camada de alto nível. Os resultados mostram que a estabilidade relativa das espécies envolvidas, bem como as barreiras de ativação, é dependente da maneira como os efeitos do meio (incluídos na camada de baixo nível) são tratados. Como exemplo, a tabela 1 mostra como as energias relativas entre as espécies cis e trans do catalisador $\mathrm{HRh}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$ (Fig. 1) variam quando o efeito do meio é tratado de maneira diferente. O campo de força parece superestimar interações não ligadas do tipo (π-stacking), levando a uma inversão na estabilidade final.

cis - $\mathrm{HRh}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$
trans- $\mathrm{HRh}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2}$
Figura 1. Possíveis catalisadores para a reação de hidroformilação do estireno.

Tabela 1. Energia das Diferentes Geometrias do Catalisador $\mathrm{HRh}(\mathrm{CO})\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{em} \mathrm{Kcal} / \mathrm{mol}$.

Uma vez definida a metodologia adequada, os cálculos ONIOM foram utilizados para se avaliar o efeito dos ligantes nas reações de inserção do estireno na ligação Rh-H do catalisador e inserção de CO na ligação Rh-C do alquila metálico formado. Estes dados serão apresentados e discutidos, bem como o estudo da natureza das interações MetalLigante em alguns intermediários.

CVOMODHELS

Os resultados obtidos até o momento nos permitem concluir que a seletividade da reação de hidroformilação do estireno, depende mais fortemente dos fatores espaciais do ligante do que fatores eletrônicos.

P M Gradechiminios

CAPES, CNPQ e FAPEMIG

[^78]
Interação entre Amodiaquina e bases purínicas do dna: Uma ABORDAGEM TEÓRICA

José Maria Pires ${ }^{1 *}$ (PQ), Valdemar Lacerda Júnior ${ }^{2}(\mathrm{PQ})$, Adilson Beatriz ${ }^{3}$ (PQ) e Maria de Lara Palmeira de Macedo Arguelho ${ }^{4}$ (PQ) *piresufes@gmail.com
${ }^{1}$ Departamento de Física-CCE-UFES; ${ }^{2}$ Departamento de Química-CCE-UFES; ${ }^{3}$ Departamento de Química-CCET-UFMS; ${ }^{4}$ Departamento de Química-CCET-UFS.

Palavras Chave: Amodiaquina; Reatividade; FMO; MEP

In Hoducao

Amodiaquina (AMD-1) é um dos quimioterápicos mais eficazes no combate à malária. No entanto, os efeitos tóxicos desse fármaco acabam restringindo seu uso terapêutico. Estudos indicam que a amodiaquina, assim como a cloroquina, possuem efeitos mutagênicos e genotóxicos ${ }^{1,2}$. Em um trabalho recente ${ }^{3}$ relatamos o comportamento redox da amodiaquina na presença de DNA o qual sugere intercalação da droga na estrutura do DNA. Estudos adicionais mostraram formação de um aduto eletroativo entre a amodiaquina e guanina, mas não com a adenina em meio ácido ${ }^{3}$. Compostos que possuem alta eletrofilicidade reagem com macromoléculas biológicas nucleofílicas e, como resultado, podem ser carcinogênicos ${ }^{4}$. Com o objetivo de avaliar a reatividade entre AMD (1) com as bases purínicas adenina (ADE-2) e guanina (GUA-3), e sugerir possíveis estruturas para o aduto formado realizamos um estudo teórico baseado em algumas propriedades globais (μ, η e ω, obtidas através das energias de HOMO e LUMO de cada composto), dos MEPs (Mapas de Potencial Eletrostático) e comparação entre as energias dos possíveis adutos.

Resullaion c Discuscao
As geometrias da AMD (1), AMD-H ${ }^{+}$(1a), ADE (2) e GUA (3) foram otimizadas usando o programa Gaussian 03 com o modelo B3LYP/6-31G(d). As energias de HOMO e LUMO foram obtidas em B3LYP/6-31+G(d,p). Os MEPs foram obtidos a partir das estruturas otimizadas usando o programa GaussView3.0 em B3LYP/6-31G(d).Para comprovar a observação experimental que AMD (1) reage com GUA (3) e não com ADE (2) analisamos as propriedades globais: potencial químico eletrônico (μ), a dureza quimica (η) e a eletrofilicidade global (ω), Tabela 1. Como observado, a AMD- H^{+}(1a) é um excelente eletrófilo (alto valor de μ em módulo, baixo valor de $\eta \mathrm{e}$ alto valor de ω), e a GUA (3), de forma contrária o melhor nucleófilo. Sabendo que a GUA (3) age como nucleófilo e a AMD- H^{+}(1a) como eletrófilo (neste caso usamos a AMD protonada, pois o meio é ácido, o que de fato aumenta muito sua eletrofilicidade), propomos duas
Tabela 1. Propriedades Globais (μ, η e ω)

Composto	HOMO	LUMO	$\boldsymbol{\mu}$	$\boldsymbol{\eta}$	$\boldsymbol{\omega}$
$\mathbf{1 a}$	$-0,3208$	$-0,2109$	$-0,2659$	0,1099	8,75
$\mathbf{1}$	$-0,2083$	$-0,0627$	$-0,1355$	0,1456	1,72
$\mathbf{2}$	$-0,2310$	$-0,0337$	$-0,1324$	0,1973	1,21
$\mathbf{3}$	$-0,2241$	$-0,0279$	$-0,1260$	0,1962	1,10

Valores de HOMO-LUMO, μ e η em au; valores ω em eV
possíveis estruturas para o aduto formado, diferindo pela posição da GUA (3) que ataca a AMD-H ${ }^{+}$(1a), N7 ou N2.

Para decidir qual a posição de ataque favorecida, N7 ou N2, utilizamos a energia associada às estruturas de mínimo dos dois adutos e os MEPs. A diferença de energia entre os dois adutos é mínima, sendo o aduto N7 $0,29 \mathrm{kcal} / \mathrm{mol}$ menor. Já os MEPs forneceram informações valiosas, pois mostra claramente que na GUA (3) existe densidade eletrônica localizada em N7 (potencial em vermelho), ao contrário do observado para N2 (potencial em azul).

AMD-H ${ }^{+}$(1a)

GUA (3)

No momento está em andamento um estudo mais detalhado baseado nas propriedades locais e na cinética de reação (estado de transição e IRC) para definir de forma mais segura qual o aduto formado.

As propriedades globais (μ, η e ω) mostraram ser capazes de fornecer informações valiosas sobre a reatividade entre AMD (1) e as bases purínicas ADE (2) e GUA (3). Dois possíveis adutos formados foram propostos. Através do MEP da GUA (3) se pode obter uma informação a respeito de qual a posição de ataque é favorecida, no caso, N7.

[^79]
SimuLação de peptídeos em bicamadas lipídicas: busca pela melhor INTERAÇÃO PEPTÍDEO/BICAMADA

Carlos A. Fuzo* (PG), Eduardo A. Ribeiro (IC), Léo Degrève (PQ)
Grupo de Simulação Molecular, Dept. Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, SP, Brasil.
*cafuzo@usp.br
Palavras Chave: Peptídeos antimicrobianos, indolicidina, interação com bicamadas de DPPC, simulação molecular.

Os mecanismos propostos para a ação dos peptídeos antimicrobianos são baseados em modelos genéricos que não devem expressar a realidade das interações entre os peptídeos e as membranas. Uma ferramenta que vem sendo aprimorada cada vez mais para buscar informações tanto a respeito do comportamento de pequenas moléculas quanto de macromoléculas é a simulação molecular. As técnicas de simulação molecular estão permitindo aprimorar os modelos e torná-los realísticos. Nas simulações realizadas em sistemas onde se conhece, por meios de técnicas experimentais, a orientação do peptídeo na membrana parte-se de uma configuração inicial com o peptídeo já inserido na mesma, na orientação indicada pelos experimentos. Quando tal informação não está disponível, a simulação é realizada com o peptídeo locado no solvente próximo à bicamada e observa-se sua migração e inserção na bicamada. No entanto, esse tipo de simulação requer grande tempo de cálculo para que ocorra a aproximação, inserção e relaxação do peptídeo. Neste trabalho uma técnica de rápido aquecimento/resfriamento foi utilizada para buscar mais rapidamente a aproximação e a inserção. Os estudos estão sendo conduzidos com o programa GROMACS e o peptídeo antimicrobiano indolicidina. Primeiro, foi verificado se uma bicamada de DPPC hidratada suporta um rápido
 aquecimento/resfriamento sem que haja grandes mudanças estruturais.

Figura 1. Estrutura inicial do sistema contendo dois peptídeos IND e a bicamada. As moléculas de água foram removidas para melhor visualização dos peptídeos.

Finalmente, foi realizada a simulação do peptídeo IND perto da bicamada, com o esquema da figura 1, utilizando a mesma técnica.

-a es lifac os e vischssor

Ná simulação da bicamada, aumentou-se a temperatura linearmente de 323 para 400 K em 100 ps . Depois, a temperatura foi reduzida para 323 K de 100 ps até 1000 ps para o relaxamento da estrutura. Ao final da simulação parâmetros, tais como área por lipídeo e distribuição dos átomos na direção perpendicular ao plano da bicamada voltaram aos valores obtidos em 323 K . A simulação na presença do peptídeo foi realizada por 10 ns (10 ciclos de aquecimento/resfriamento). As energias de interação do peptídeo A na simulação à temperatura constante (323 K) e com o rápido aquecimento/resfriamento de temperatura encontram-se na figura 2. Pode-se verificar que em 5 ns o peptídeo interage com a membrana com energias ($-2000 \mathrm{~kJ} . \mathrm{mol}^{-1}$) que são alcançadas apenas em 50 ns na simulação à temperatura constante. O mesmo comportamento é observado para o peptídeo B.

Figura 2. Energia de interação entre o peptídeo e bicamada.

MEM Mondisoas

Os resultados e comparações com as simulações à temperatura constante estão mostrando que o método é viável diminuindo os tempos de cálculo em 90%. Assim, o sistema onde ocorre uma maior interação peptídeo/membrana pode ser posteriormente simulado à temperatura constante para a análise das interações peptídeo/membrana.

Fapesp
CNPq

ESTUDO DO MECANISMO DA REAÇÃO DE REDUÇÃO DO ÁCIDO ETANÓICO UTILIZANDO BOROHIDRETO DE SÓDIO E UM ELETRÓFILO.

José Carlos Barreto de Lima ${ }^{1 *}$ (PG), Nelson Henrique Morgon ${ }^{1}$ (PQ)
*jlima@iqm.unicamp.br
${ }^{1}$ DFQ-IQ-UNICAMP, CP 6154, CEP 13084-862, Campinas, $S P$.

Palavras Chave: mecanismo de reação, redução de ácido carboxílico, método CBS-QB3. médio $=318,8 \mathrm{~s}$) foi 70% mais eficiente que o método G2 ($T_{\text {cpu-médio }}=1109,9 \mathrm{~s}$) e 40% mais eficiente que o método G 3 ($\mathrm{T}_{\text {cPu-médio }}=528,6 \mathrm{~s}$).

Dessa forma, o método CBS-QB3 foi escolhido para a realização dos cálculos. Realizouse um estudo de dois possíveis mecanismos para a segunda etapa, onde ocorre a abstração do hidrogênio do $\mathrm{H}_{2} \mathrm{SO}_{4}$ por um dos oxigênios do $\mathrm{H}_{3} \mathrm{CCOOBH}_{3}$. Numa das propostas o H é abstraído pelo oxigênio livre (espécie 1), e na outra pelo outro oxigênio (espécie 2) (Figura 1).

espécie 1

espécie 2

Figura 1: Espécies dos prováveis mecanismos para a segunda etapa da reação estudada.

O cálculo com CBS-QB3 para a espécie 1 resultou em uma $A P=1336,78 \mathrm{~kJ} / \mathrm{mol}$, enquanto que para a espécie 2 uma $\mathrm{AP}=1264,05 \mathrm{~kJ} / \mathrm{mol}$; a AP calculada do $\mathrm{H}_{2} \mathrm{SO}_{4}$ foi de $1289,68 \mathrm{~kJ} / \mathrm{mol}$. Portanto, a espécie 1 apresentou maior valor de AP em relação à espécie 2 e ao $\mathrm{H}_{2} \mathrm{SO}_{4}$.

Devido a estes resultados este trabalho propõe que o hidrogênio do ácido é abstraído pelo oxigênio livre do $\mathrm{H}_{3} \mathrm{CCOOBH}_{3}$ - para depois ser liberado como H_{2}.

O estudo da afinidade por próton obtido com o método CBS-QB3 foi mais eficiente que com os métodos G2 e G3. A utilização deste método para estudar a segunda etapa da redução do ácido etanóico possibilitou um melhor entendimento do mecanismo da reação. Estudos das öutras etapas em andamento.

Ao CNPq (135415/2005-5, 471159/2006-9 e $305325 / 2006-0$) e à FAPESP (2006/04228-2).

[^80]
ESTUDO QUÍMICO QUANTICO E MULTIVARIADO SAR DE DERIVADOS DA ARTEMISININA SOLÚVEIS EMÁGUA

Helieverton G. de Brito (IC)*, Ricardo M. de Miranda (PG), Ruth O. de Almeida(IC), Elierge B. Costa(PG), Maycon da S. Lobato(PG), Marcos A. B. dos Santos (PG), Antonio F. de Figueiredo (PG), Fabio J. B. Cardoso (PG), Fabio M. Rosa (IC), Alexandre de A. Maciel (PG), Williams J. da C. Macedo (PG), José C. Pinheiro (PQ). helievertonbrito@yahoo.com

Laboratório de Química Teórica e Computacional, Departamento de Química, Instituto de ciências Exatas e Naturais, Universidade Federal do Pará, CP 101101, CEP 66075-110, Belém, PA, Amazônia, Brasil.

Palavras Chave: Artemisinina, HF/6-31G**, Reconhecimento Padrão, MEP

Nive ima

A Malária é a terceira maior doença parasitária que mais mata no mundo. Estima-se que ao ano ocorram 300 a 500 milhões de casos e destes 1.5 a 2.7 milhões de pessoas morram devido a infecção por malária. Cerca de 40% da população vive em áreas endêmicas em todo mundo. Os tratamentos usados no combate à malária são principalmente quinino, cloroquina e mefloquina, que apresenta resistência por parte do vetor. A artemisinina, bem como seus derivados, vem sendo estudada, experimental e computacionalmente como uma droga promissora no combate da malária falciparum. A Artemisinina é um produto natural isolado da planta Artemísia Annua L. de origem chinesa que é usada na medicina tradicional daquele país no tratamento de aproximadamente 54 espécies de doenças. A estrutura da artemisinina é mostrada na figura 1.

Figura 1: estrutura da artemisinina.

Neste trabalho, foi realizado, o estudo químico quântico e multivariado de 16 compostos derivados da artmisinina (conjunto treinamento), reportados na literatura apresentando diferentes graus de atividades antimalariais contra p.falciparum resistentes a mefloquina. Posteriormente utilizou-se as informações obtidas com o conjunto treinamento e aplicou-se a um conjunto teste, 15 compostos, com intuito de verificar possíveis atividades antimalariais.

MResulfargs ch DIEGUESaro

Inicialmente as moléculas do conjunto treinamento foram submetidas à otimização com o método $\mathrm{HF} / 6-$ $31 \mathrm{G}^{* *}$, em seguida realizou-se a análise multivariada com os métodos de reconhecimento padrão (PCA, HCA, KNN e SIMCA) nestes compostos treinamento. Os descritores, LUMO+1, HE, MAXDN e ALOGS-logs, foram os responsáveis pela separação destes compostos, em mais ativos e menos ativos. Análise de componentes
principais (PCA) e análise hierárquica de cluster (HCA) foram os métodos usados na separação. Os métodos de reconhecimento padrão KNN e SIMCA foram aplicados ao conjunto treinamento, para em
seguida serem usados na predição dos compostos do conjunto teste, em mais ativos e manos ativos. Observou-se uma boa concordância dos resultados obtidos, onde se verificou que entre os 15 compostos do conjunto treinamento 7 foram indicados como mais ativos por todos os métodos. Foram construídos mapas de potencial eletrostático (MEP) para todos os compostos com intuito de aumentar a confiabilidade do método. O MEP da artemisinina juntamente com o derivado 15 do conjunto teste é mostrado na figura 2, onde se observa concordância na região de maior atividade, o que ajuda no indicativo da presença de atividade para o composto.

Figura 2. Mapas de potencial eletrostático da artemisinina e derivado 15 do conjunto teste.

Qonclusoes

A aplicação de métodos químicos quânticos juntamente com análise multivariada, pode ser uma boa proposta no planejamento de novos fármacos com atividades biológicas, onde podem observar através de mais este entre tantos trabalhos, que podem ser encontrados na literatura do mundo todo, pois isto vem sendo alvo de estudos de muitos cientistas.

Ao LQTC pelo suporte físico e científico e ao CNPQ pelo suporte financeiro.

[^81]
ESTUDO TEÓRICO DA INTERAÇÃO ENTRE DIIODETO DE SAMÁRIO E MONOHALOETANOS EM FASE GASOSA.

Tácito D. F. Leite ${ }^{1,2}(\mathbb{P Q})$, José Divino dos Santos ${ }^{1}(\mathrm{PQ})$, João B. Lopes Martins ${ }^{3}(\mathrm{PQ})^{*}$. lopes@unb.br.

1 Universidade Estadual de Goiás (UEG), CET, Campus BR 153, km 98, CP 459, Anápolis, GO, CEP 75001-970
2 Centro Federal de Educação Tecnológica (CEFET) de Goiás, Rua 75, n. 46, Centro, Goiânia, GO, CEP 74055-110
3 Universidade de Brasília, Laboratório de Química Computacional, IQ, CP 4478, Brasilia, DF, CEP 70904-970

Palavras Chave: diiodeto de samário, haloetanos

Diiodeto de samário $\left(\mathrm{Sml}_{2}\right)$ é um reagente seletivo de transferência de elétron, o qual promove uma série importante de reações de redução em síntese de produtos naturais. ${ }^{1}$
A redução de hidrocarbonetos insaturados, em solvente água-amina, foi recentemente estudada. ${ }^{2}$
Neste trabalho as seguintes reações foram calculadas, em fase gasosa, utilizando-se métodos de estrutura eletrônica, para $\mathrm{X}=\mathrm{F}, \mathrm{Cl}$, Br .

$$
\begin{align*}
& \mathrm{C}_{2} \mathrm{H}_{5}-\mathrm{X}+\mathrm{Sml}_{2} \rightarrow\left(\mathrm{C}_{2} \mathrm{H}_{5}-\mathrm{X}\right)_{0}^{-}+\left(\mathrm{Sml}_{2}\right)^{+} \tag{1}\\
& \left(\mathrm{C}_{2} \mathrm{H}_{5}-\mathrm{X}\right)_{\circ}^{-} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5}{ }^{\circ}+\mathrm{X}^{-} \text {(2) }
\end{align*}
$$

Na primeira reação (1) ocorre um ânionradical, o qual poderá se decompor (2) resultando em radical etila. Os reagentes e produtos desta reação foram estudados em nível Hartree-Fock e de Funcional de Densidade (B3LYP). Os cálculos foram realizados com o programa Gaussian03. As estruturas foram otimizadas utilizando dois conjuntos de funções de base: $6-31++G(2 d f, 2 p d)$ e 6-311++G(2df,2pd). Para o samário foi usado o pseudopotencial SDD.

Resumin os elifcuss

Os valores de $\Delta \mathrm{E}$ obtidos para a reação 1 indicam que a mesma é endotérmica, nos dois estados investigados (dubleto e quarteto) (Tabela 1). Os resultados B3LYP e HF apresentam valores significativamente próximos, excetuando o caso do bromo.
Tabela 1. Variação de energia ($\mathrm{kcal} / \mathrm{mol}$) para a reação 1. Apenas mostrado o estado dubleto.

$*$	RHF (a)	RHF (b)	B3LYP (a)	B3LYP (b)
F	181,4	180,6	171,5	170,8
Cl	179,9	179,4	169,8	169,4
Br	179,1	141,7	168,6	143,6

[^82]Estes resultados estão em concordância com cálculos de Bertran et al. ${ }^{3}$ para a transferência dissociativa de elétrons envolvendo haletos de perfluorometila. Os resultados obtidos mostram que o esquema de contração 6-311 aumenta a diferença entre os halogểnios. No caso dos estados quartetos, para a reação 1, a faixa de Δ E calculada foi de 200-250 kcal $/ \mathrm{mol}$.
Na formação do radical etila (reação 2), cálculos para os estados dubletos e com a base RHF/6$31++G(2 d f, 2 p d)$ são mostrados na Figura 1. O melhor átomo de saída é o Br , o "mais mole" (Teoria HSAB), dentre os analisados, tendo a menor eletronegatividade $(3,0)$ e o maior raio iônico (196 pm)

Eletronegatwinade
Figura 1. Variação da energia da reação 2 com a eletronegatividade do halogênio.

Cxomin He6es

Os resultados mostram que tanto o método HF quanto o funcional híbrido B3LYP têm o mesmo comportamento para a base mais estendida, na reação com o Sml_{2}. A análise do $\Delta \mathrm{E}$ mostra uma relação quase linear com a eletronegatividade.
-a
CNPq, Finatec e UnB.

[^83]
INTENSIDADES FUNDAMENTAIS DE ABSORÇÃO NO INFRAVERMELHO, CALCULADAS ATRAVÉS DO MODELO CCFDF E DE CARGAS E DIPOLOS ATÔMICOS CHELPG.

Thiago C. F. Gomes* ${ }^{1}$ (PG), Luciano N. Vidal ${ }^{1}$ (PG), Roy E. Bruns ${ }^{1}$ (PQ), Pedro A. M. Vazquez ${ }^{1}$ (PQ)
1 - DFQ - Instituto de Quimica, Universidade Estadual de Campinas (UNICAMP) , CP 6154, CEP 13084-862
* tgomes@iqm.unicamp.br
Palavras Chave: Intensidades, Infravermelho, CCFDF, CHELPG, QTAIM, fluroclorometanos.

Tabela 1. Intensidades de absorção na região do infravermelho (em km/mol) para três fluroclorometanos obtidas através dos modelos CCFDF/ChelpG, CCFDF/QTAIM, analiticamente no nível MP2 e intensidades experimentais.

CH_{4}				
v_{i} (cm ${ }^{-1}$)	Chelpg	QTAIM	MP2	Experimental
3019 (F2)	54.8	45.9	54.4	68.8
1306 (F2)	30.3	28.8	30.8	34.2
CF_{4}				
1281 (F2)	849.5	1194.9	1215.2	1259.9
632 (F2)	27.1	10.5	10.5	13.7
CCl $_{4}$				
776 (F2)	408.0	400.4	408.1	322.0
314 (F2)	0.4	0.4	0.4	20.0

* Conjunto de funções base: $6-311++G(3 \mathrm{~d}, 3 \mathrm{p})$.

Figura 1. Fluxo de dipolo versus fluxo de carga para os modos normais dos fluoroclorometanos.
 respectivas contribuições de cargas, fluxos de
carga e fluxos de dipolo para um conjunto de doze respectivas contribuições de cargas, fluxos de
carga e fluxos de dipolo para um conjunto de doze fluroclorometanos.

Whasuliciclose Discusszo

As intensidades fundamentais na região do infravermelho calculadas os fluroclorometanos de acordo com o modelo CCFDF e utilizando cargas e dipolos atômicos ChelpG são apresentadas na Tabela 1, para três das doze moléculas estudadas. Estas intensidades mostram boa concordância com os resultados obtidos por Bruns e cols. ${ }^{1}$ utilizando cargas QTAIM (Quantum Theory Atoms in Molecules) e também com as intensidades analíticas obtidas no nível de teoria MP2 / 6$311++G(3 d, 3 p)$, exceto para o tetraflúormetano, para a o qual as intensidades calculadas segundo o modelo CCFDF/ChelpG (com deslocamentos das posições nucleares de $0.01 \AA$) estão muito distântes das intensidades analíticas no nível MP2 / $6-311++G(3 d, 3 p)$.

O modelo CCFDF, proposto por Bruns e cols. ${ }^{1}$ permite calcular e interpretar as intensidades de absorção no infravermelho em termos de alterações na distribuição de densidade eletrônica durante as vibrações moleculares. Estas alterações são analisadas em termos de contribuições de carga, fluxos de cargas e fluxos de dipolos atômicos que, de acordo com o modelo CCFDF, compõem os tensores polares atômicos cuja justaposição, após ser projetada em coordenadas normais, resulta nas derivadas do momento dipolar molecular em relação aos modos normais, cujo quadrado é proporcional às intensidades fundamentais. Os fluxos de carga e os fluxos de dipolo são obtidos através de derivadas numéricas das cargas e dos dipolos atômicos respectivamente. Neste estudo, as cargas e dipolos atômicos são calculados através do método ChelpG (de sua sigla em inglês Charges from Eletrostatic Potential - Grid), utilizando o programa GAUSSIAN 03 (D. 02), e as derivadas numéricas das cargas e dipolos atômicos são obtidas utilizando uma versão do programa PLACZEK extendida para o cálculo de intensidades no infravermelho segundo o modelo CCFDF.
Foram estudadas as intensidades de bandas fundamentais de absorção no infravermelho, e as

ESTUDO DA DEPENDÊNCIA DAS CONTRIBUIÇõES CCFDF EM FUNÇÃO DA MAGNITUDE DO DESLOCAMENTO DAS COORDENADAS NUCLEARES.

Thiago C. F. Gomes* ${ }^{1}(\mathbb{P G})$, Luciano $\mathbb{N . V i d a l}^{1}(\mathbb{P G})$, Roy E. Bruns ${ }^{1}(\mathbb{P Q})$, Pedro A. M. Vazquez ${ }^{1}$ (PQ)
1 - DFQ - Instituto de Quimica, Universidade Estadual de Campinas (UNICAMP) , CP 6154, CEP 13084-862
* tgomes@iqm.unicamp.br
Palavras Chave: Intensidades, Infravermelho, CCFDF, CHELPG, QTAIM, fluroclorometanos.

Observa-se que conforme diminui-se o tamanho dos deslocamentos, as contribuições de fluxo de carga e de fluxo de dipolo convergem para um valor constante, enquanto que a contribuição de carga e a derivada total do momento dipolar em relação à coordenada normal não se alteram. Além disso, a variação no fluxo de carga e no fluxo de dipolo, em função do tamanho do deslocamento, é sempre complementar, ou seja, a soma destas contribuições é invariante ao tamanho dos deslocamentos das coordenadas nucleares.

Figura 1. Contribuições de carga (círculos), fluxo de carga (quadrados), fluxo de dipolo (losangos) e derivada do momento dipolar molecular total em relação à coordenada normal (triângulos) do modo de estiramento simétrico (A1) da amônia, em 3337 cm^{-1}.

Mer Felichroos

O fato da contribuição de carga não se alterar é uma decorrência do modelo CCFDF, enquanto que a não alteração da derivada total do momento dipolar em relação à coordenada normal se deve à restrição utilizada, que obriga o momento dipolar molecular ChelpG ser igual ao momento dipolar molecular MP2/6-311G(3d,3p).
T.C.F.G e L.N.V. agradecem ao CNPq pelas bolsas concedidas, de mestrado e doutorado respectivamente (processos 132571/2006-4 e 141888/2004-0).

[^84]
Modelagem da Reação de Hidrólise de Ésteres de Fosfato Catalisada por Complexos de Lantanídeos.

Ana Carolina Roma ${ }^{1^{*}}(\mathbb{P G})$, Maryene A. Camargo ${ }^{2}$ (PG), Ademir Neves ${ }^{2}$ (PQ), Ricardo L. Longo ${ }^{1}$ (PQ). *acroma_ufpe@hotmail.com
${ }^{1}$ Laboratório de Química teórica e Computacional, Departamento de Química Fundamental, Universidade Federal de Pernambuco, Cidade Universitária, 50.740-540 Recife - PE, Brasil.
${ }^{2}$ Laboratório de Bioinorgânica e Cristalografia, Departamento de Química, Universidade Federal de Santa Catarina, Campus Trindade, 88040-900 Florianópolis - SC, Brasil.

Palavras - Chave: Complexos de lantanídeos, catálise, clivagem hidrolitica.

Thitrod Meaco

Existe grande interesse no desenvolvimento de modelos funcionais para metaloenzimas hidrolíticas como agentes específicos de clivagem de ácidos nucléicos. Compostos modelo de diésteres de fosfato têm sido utilizados para modelar a catálise da reação de clivagem do DNA com complexos de íons lantanídeos. Complexos de Gd(III), Eu(III) e La (III) foram sintetizados e tiveram suas estruturas e propriedades cinéticas determinadas. Estes resultados experimentais demonstraram que o complexo de Gd (III) revelou pronunciada ação catalítica na clivagem do DNA e foi altamente eficiente na hidrólise do substrato bis(2,4dinitrofenil) fosfato (2,4-BDNPP), em que as duas hidrólises puderam ser medidas separadamente, sendo a primeira muito mais rápida que a segunda, e a segunda hidrólise mostrou-se independente da concentração do complexo. Métodos ab initio e semi-empíricos estão sendo empregados na determinação da estrutura e atividade catalítica do complexo $\left[\mathrm{Gd}(\mathrm{L})\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\left(\mathrm{NO}_{3}\right)\right]\left(\mathrm{NO}_{3}\right)_{2}$ na hidrólise do substrato 2,4-BDNPP.

Resuliarose discussaO

O complexo $\left[\mathrm{Gd}(\mathrm{L})\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\left(\mathrm{NO}_{3}\right)\right]^{2+}$ e o substrato $2,4-$ BDNPP (figura 1) foram modelados com os métodos Sparkle/AM1 e RHF/3-21G/ECP(4f), em que os elétrons $4 f$ estão inclusos no caroço.

Figura 1. Estruturas do $\left[\mathrm{Gd}(\mathrm{L})\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\left(\mathrm{NO}_{3}\right)\right]^{2+} \mathrm{e}$ do substrato 2,4-BDNPP.
Para o complexo de Gd (III), a comparação entre as estruturas calculadas e a cristalográfica indica que o método $a b$ initio forneceu resultados em melhor concordância que o método semi-empírico. De fato, na figura 2, a sobreposição das estruturas cristalográfica e ab initio ilustra esta concordância.

Figura 2. Superposição das estruturas cristalográfica e calculadas RHF (esquerda) e Sparkle/AM1 (direita).

As estruturas iniciais para a modelagem da catálise foram obtidas pela substituição do ligante nitrato pelo 2,4-BDNPP nas formas neutra e desprotonada (aniônica). Foram testadas diversas posições e formas de coordenação, com o objetivo de determinar as mais estáveis e prováveis. Uma destas estruturas está ilustrada na figura 3.

Figura 3. Estrutura calculada RHF do 2,4BDNPP desprotonado coordenado ao $\left[\mathrm{Gd}(\mathrm{L})\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]^{3+}$.

Note que, apesar de volumoso, o substrato 2,4BDNPP coordena-se fortemente ao íon Gd(III), com três moléculas de água de coordenação próximas ao sítio de hidrólise. A partir destas estruturas, as moléculas de água estão sendo aproximadas do grupo fosfato do 2,4 -BDNPP utilizando o método de coordenada de reação, na tentativa de se obter a estrutura do estado de transição. A hidrólise do 2,4-BDNPP isolado também está sendo realizada, de tal maneira a permitir que seja determinada a ação catalítica do complexo.

Wermerisoes

A superficie de energia potencial da hidrólise do 2,4-BDNPP coordenado ao complexo está sendo explorada com o método Sparkle/AM1 devido à alta demanda computacional do método RHF.

- Iracercinentos

CNPq, CAPES, FINEP, PADCT, RENAMI.

A Theoretical Study of the Vibrational Spectrum of Maleimide.

Eduardo C. Aguiar* (PG), João B. P. da Silva (PQ) e Mozart N. Ramos (PQ).
Departamento de Química Fundamental - Universidade Federal de Pernambuco, 50740-540, Recife (PE), Brazil.
*castro.eduardo@gmail.com
Keywords: Maleimide, Vibrational spectrum, Ab Initio.

Mrrox日ligiom

Maleimide (Figure 1) and its N -derivatives have been employed in a variety of photochemical applications, which are based on their electron accepting properties. Woldbaek et al^{1} have studied the vibrational spectra of maleimide and N-D maleimide. In general, this study has been successful by performing the vibrational assignments of the normal modes of these compounds. In spite of this, the agreement between observed and calculated (using molecular force field) frequencies for the in-plane bending modes has been only satisfactory and certain large discrepancies remained for the out-of-plane vibrations. Furthermore, they have not performed an analysis of vibrational intensities in order to better understand their $I \mathbb{R}$ spectra in terms of atomic charges and charge-fluxes obtained from the charge-charge-flux-overlap (CCFO) model ${ }^{2}$. In this work, we have employed B3LYP and MP2 calculations with the 6$31++G(d, p)$ basis set to interpret the IR spectrum of maleimide.

Figure 1: Maleimide Structure.

Mermisamornacusstorn

In Table 1 we show the most intense bands of the IR spectrum of maleimide. Both experimental and calculated spectra are mainly dominated be asymmetric $\mathrm{C}=\mathrm{O}$ stretching mode. Its corresponding symmetric $\mathrm{C}=\mathrm{O}$ stretching band is, on the other hand, relatively weak. We have also verified that the $\mathrm{N}-\mathrm{H}$ out-of-plane bending and stretching modes are pure and their IR intensities are strong in agreement with the experimental data. The N-H out-of-plane intensity can be exactly predicted using the hydrogen atomic charge obtained from CCFO. Its calculated frequency is very lower than the experimental one. It is also interesting to verify that the N-H charge flux associated to the N-H stretching is slightly negative, i.e., $-0.021 \mathrm{e} / \AA \AA$ following acid-hydrogen others.

Table 1: Vibrational frequencies and infrared intensities of maleimide, calculated ${ }^{\text {a }}$ and experimental ${ }^{1}$.

i	Mode	Assignment	${ }_{\text {i }}\left(\mathrm{cm}^{-1}\right)$	
1	b_{1}	out-of-plane N -H bending	513 (455)	$\begin{gathered} 105.3 \\ (108.3) \end{gathered}$
2	b_{2}	in-plane ring bending	$\begin{gathered} 673 \text { (679) } \\ {[668]} \end{gathered}$	$\begin{gathered} 25.6(25 \ldots ; \\ {[\mathrm{s}]} \end{gathered}$
3	b_{1}	out-of-plane C-H bending	$\begin{gathered} 838(783) \\ {[831]} \end{gathered}$	$\begin{gathered} 75.3(72.4) \\ {[\mathrm{s}]} \end{gathered}$
4	b_{2}	in-plane ring bending	$\begin{gathered} 921 \text { (938) } \\ {[906]} \end{gathered}$	$35.8 \text { (44.8) }$ [s]
5	b_{2}	asymmetric CNC stretching	$\begin{gathered} 1141 \\ (1174) \\ {[1130]} \end{gathered}$	$\begin{gathered} 46.3(80.1) \\ {[\mathrm{s}]} \end{gathered}$
6	a_{1}	symmetric CNC stretching	$\begin{gathered} 1347 \\ (1373) \\ {[1335]} \end{gathered}$	$\begin{gathered} 145.5 \\ (140.0)[\mathrm{s}] \end{gathered}$
7	b_{2}	asymmetric $\mathrm{C}=\mathrm{O}$ stretching	$\begin{gathered} 1803 \\ (1794) \\ {[1756]} \end{gathered}$	$\begin{gathered} 847.0 \\ (638.8)[\mathrm{vs}] \end{gathered}$
8	a_{1}	$\mathrm{N}-\mathrm{H}$ stretching	$\begin{gathered} 3655 \\ (3710) \\ {[3482]} \end{gathered}$	$\begin{gathered} 91.5 \text { (104.7) } \\ {[\mathrm{s}]} \end{gathered}$

${ }^{\text {a }}$ MP2 and experimental values are given in parenthesis and brackets, respectively.
*Here vs is very strong while \boldsymbol{s} is strong.

- Concilusions

Our calculated IR spectra are in good agreement with the experimental one. However, some differences are verified to the vibrational modes below $600 \mathrm{~cm}^{-1}$, especially to the N-H out-of-plane and in-plane $\mathrm{C}=\mathrm{O}$ bending modes. Intensity parameters are useful to interpret the IR intensities of the $\mathrm{N}-\mathrm{H}$ oscillator.

CNPq.

[^85]
Estudo Teórico dos Dímeros da Maleimida

Daniela Nadvorny* (PG), Eduardo C. Aguiar (PG), João Bosco P. da Silva (PQ) e Mozart N. Ramos (PQ).

Departamento de Química Fundamental - Universidade Federal de Pernambuco, 50740-540, Recife (PE), Brasil. *nady@ufpe.br

Palavras-chave: Maleimida, Complexos de Hidrogênio, DFT.

Hifodrega

A estrutura da maleimida (MA) favorece a formação de Ligações de Hidrogênio (LH). Em fase sólida e em soluções concentradas pode ocorrer dimerização através de LH entre a carbonila de uma molécula e o hidrogênio da imida da outra. Esta conectividade gera um dímero (DM1) com simetria $\mathrm{C}_{2 \mathrm{~h}}$ (Figura 1 a) de existência prevista ${ }^{1}$. Recentemente, cálculos vibracionais mostraram que o dímero DM1. representava melhor o espectro experimental em fase sólida, que a MA isolada ${ }^{2}$.

Além deste dímero, já conhecido, é possível combinar a MA de modo a obter-se mais dois complexos de hidrogênio sendo, um com simetria C_{s} (DM2) e outro com simetria $\mathrm{C}_{2 \mathrm{~h}}$ (DM3) (Figura 1 b e c). Estes dois dímeros não são descritos na literatura e, em particular, não há trabalhos relatando características energéticas e geométricas de nenhum dos três.

(a)

(b)

(c)

Figura 1: Estruturas dos dímeros da maleimida: a) DM1 b) do DM2 e c) do DM3.

Neste trabalho utilizamos cálculos B3LYP/6$31++G(d, p)$ para avaliar, do ponto de vista energético e geométrico, os três complexos de hidrogênio previamente mencionados.

Do ponto de vista geométrico as mudanças mais acentuadas estão nos sítios próximos às LH. A Tabela 1 mostra as distancias de ligação para os três complexos com relação ao monômero.

DM1 apresenta a LH mais curta (1,918 Å); enquanto que no DM3 a LH é a mais longa (2,299 A). O complexo DM2 apresenta duas LH diferentes, $L H_{N H \cdots O}=1,939 \AA$ e LH $H_{C H \cdots O}=2,297 \AA$.

Tabela 1: Principais mudanças nas distâncias de ligação (em \AA) com a formação do dímero, com relação à MA.

	MA	DM1	DM2*	DM3
N-H	1,011	$+0,014(\mathrm{LH})$	$+0,012(\mathrm{LH})$	-
N-C	1,397	$-0,015(\mathrm{LH})$	$-0,010(\mathrm{LH})(\mathrm{A})$	$-0,005(\mathrm{LH})$
C=O	1,214	$+0,011(\mathrm{LH})$	$+0,008(\mathrm{LH})(\mathrm{A})$	$+0,005(\mathrm{LH})$
C-H	1,082	-	$+0,003(\mathrm{LH})$	$+0,003(\mathrm{LH})$

* (A) Monômero que tem a imida não complexada. Aqui são apresentados os valores com maior modificação dentre os monômeros.

A Tabela 2 mostra as energias de dimerização para os complexos com e sem correção de energia do ponto zero (ZPE) e de superposição do conjunto de bases (BSSE).

Tabela 2: Energias de dimerização dos complexos com e sem correções ZPE e BSSE, em kJ•mol ${ }^{-1}$.

	$\Delta \mathrm{E}$	$\Delta \mathrm{E}^{0}$	$\Delta \mathrm{E}_{\text {BSSE }}$	$\Delta \mathrm{E}_{\text {BSSE }}^{0}$
DM1	$-44,01$	$-39,31$	$-41,46$	$-36,76$
DM2	$-31,81$	$-28,28$	$-28,48$	$-24,95$
DM3	$-20,80$	$-18,33$	$-19,31$	$-16,84$

A energia do DM2 pode ser decomposta, grosseiramente, em três fatores, dois referentes às contribuições de cada uma das LH isoladas e um termo devido à transferência de carga. Os dois primeiros sendo igual a $\Delta \mathrm{E} / 2$. A soma dessas contribuições fornece o valor de $-32,41 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$, que superestima em $1,88 \%$ o ΔE de DM3.

Comichisoas

A complexação leva a pequenas alterações estruturais nos sítios próximos as LH. O complexo DM1 se mostrou o mais estável com $\Delta \mathrm{E}_{\text {BSSE }}^{0}=-$ $36,76 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$. Tal valor é devido principalmente à componente eletrostática.

Wararalech rimplos

CNPq, FACEPE

[^86]
ESTUDO VIBRACIONAL DO METIL-LÍtIO NO ESTADO SÓLIDO E CÁLCULO DFT COM onda plana e pseudo-potencial

Yoshiyuki Hase (PQ)

Instituto de Química, Universidade Estadual de Campinas
Palavras Chave: Metil-lítioterâmero no estado sólido, DFT com onda plana e pseudo-potencial, Análise vibracional O cálculo de freqüências vibracionais mostra que o modo de deformação simétrico do anion CH_{3} não está mais ao próximo do modo de deformação assimétrico em $1400-1500 \mathrm{~cm}^{-1}$, mas fica na região de $1000-1100 \mathrm{~cm}^{-1}$, junto com o movimento rotacional do CH_{3}. A banda observada em $\sim 515 \mathrm{~cm}^{-1}$ do $\mathrm{CH}_{3} \mathrm{Li}$ e $\sim 440 \mathrm{~cm}^{-1}$ do $\mathrm{CD}_{3} \mathrm{Li}$ é considerada principalmente do modo translacional do ânion, apesar de seu deslocamento observado pela substituição do lítio isotópico. O cálculo também suporta a afirmação da falta de uma banda característica de movimento translacional dos cátions lítio na região de $300-400 \mathrm{~cm}^{-1}$. Portanto, o resultado sugere a necessidade de revisão de interpretação das bandas observadas.
A análise de coordenadas normais, feita ao sistema cristalino usando as frequeências experimentais por infravermelho, resultou numa concordância perfeita com a nova atribuição. Para este fim, o uso de apenas 8 constantes de força diferentes foi suficiente de expressar um campo de força, definido usando num total de 100 coordenadas internas. Baseando neste campo de força, foi possível estimar as freqüências esperadas aos demais modos vibracionais, ou seja, as bandas ativas no espectro Raman e os modos opticamente inativos. As freqüências calculadas com este campo de força simples estão em boa concordância com as calculadas através do método DFT com onda plana e pseudo-potencial.

Uma nova interpretação do espectro infravermelho foi sugerida baseando-se na regra do produto, do cálculo químico quântico e na análise de coordenadas normais. Os resultados dos três métodos distintos estão em boa concordância nas atribuições das bandas fundamentais e na explicação dos deslocamentos dos modos vibracionais causados pelos efeitos isotópicos.

[^87]Figura 1. Estrutura cristalina optimizada pelo método DFT.
plana e pseudo-potencial é aplicado para o sistema periódico 3D do metillítio $\left(\mathrm{CH}_{3} \mathrm{Li}\right)_{4}$ através do programa NWChem 5,0, com a intenção de fazer uma análise vibracional semiquantitativa de regiões das bandas fundamentais e de seus deslocamentos devidos aos efeitos isotópicos ${ }^{6} \mathrm{Li} /{ }^{7} \mathrm{Li}$ e $\mathrm{CH}_{3} / \mathrm{CD}_{3}$. A estrutura optimizada, tais como o tamanho da cela unitária e as posições dos ions, reproduz bem os dados cristalográficos (Figura 1).

EFFECTS OF WAVE FUNCTION MODIFICATIONS ON CALCULATED H-C AND C $=$ C STRETCHING FREQUENCIES

Kelson C. Lopes ${ }^{\mathrm{b}}(\mathrm{PG})^{*}$, Wallace D. Fragoso ${ }^{\mathrm{b}}(\mathrm{PG})$, Arquimedes M. Pereira ${ }^{\mathrm{b}}(\mathrm{PG})$, Mozart N. Ramos ${ }^{\text {a }}$ (PQ) and Regiane C.M.U. Araújo ${ }^{\text {b }}$ (PQ)
e-mail: kelsoncarvalholopes@yahoo.com.br
${ }^{a}$ Departamento de Química Fundamental, Universidade Federal de Pernambuco (UFPE), 50739-901, Recife (PE), Brasil and ${ }^{\text {b }}$ Departamento de Química, Universidade Federal da Paraíba (UFPB), 58036-300, João Pessoa (PB), Brasil

Keywords: stretching frequencies, ab initio, chemometric techniques

ThiodUefor

In the last years, we have shown that multivariate statistical techniques Factorial Design (FD) and Principal Component Analysis (PCA) are useful to determine how calculated molecular properties depend on characteristics of the molecular orbital wave functions.
Two-level Factorial Design (FD) and Principal Component (PC) models are used to determine the effects of wave function modifications on calculated $\mathrm{H}-\mathrm{C}$ and $\mathrm{C} \equiv \mathrm{C}$ harmonic stretching frequencies for the $\mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{R}$ molecules, with $\mathrm{R}=\mathrm{H}, \mathrm{F}, \mathrm{Cl}, \mathrm{CCH}, \mathrm{CN}$ and CH_{3}. The wave functions used for these calculations were defined by a 2^{4} Factorial Design. Specifically for our purposes, two levels of four factors are investigated: (I) the use of a $6-31 \mathrm{G}$ or a 6-311 valence basis set, (II) the presence or absence of diffuse functions in the basis set, (III) the presence or absence of polarization functions in the basis set, and (IV) the inclusion or not of electronic correlation by using DFT/B3LYP or MP2 second-order Møller-Plesset perturbation corrections to the Hartree-Fock level of calculation.

Our results have shown that valence (val), diffuse (dif), polarization (pol) and electron correlation (corr) main effects as well as some second-order interaction effects are significant to build factorial models for these stretching frequencies. For example, when valence and diffuse functions are introduced in the basis set the calculated H-C and $\mathrm{C} \equiv \mathrm{C}$ stretching frequencies are decreased. However, this reduction is much more accentuated when the electron correlation effect is introduced in the Hartree-Fock calculation. By far the corr main effect is the most important on the $\mathrm{H}-\mathrm{C}$ and $\mathrm{C} \equiv \mathrm{C}$ frequency values. The MP2 electron correlation effect provokes an increment of $157.4 \mathrm{~cm}^{-1}$ and $283.8 \mathrm{~cm}^{-1}$ on the $\mathrm{H}-\mathrm{C}$ and $\mathrm{C} \equiv \mathrm{C}$ stretching frequencies, respectively, whereas the dif effect produces only a reduction of $9.1 \mathrm{~cm}^{-1}$ and $12.9 \mathrm{~cm}^{-1}$ on these frequencies, respectively. The inclusion of MP2 perturbation in the Hartree-Fock calculation
also produces an important pol-corr interaction effect on the $\mathrm{H}-\mathrm{C}$ and $\mathrm{C} \equiv \mathrm{C}$ stretching frequencies, increasing their values by $45.2 \mathrm{~cm}^{-1}$ and $17.3 \mathrm{~cm}^{-1}$, respectively. Algebraic models were then established to explain how calculated $\mathrm{H}-\mathrm{C}$ and $\mathrm{C} \equiv \mathrm{C}$ stretching frequencies depend on characteristics of the wave functions. These models were successful in reproducing calculated $\mathrm{H}-\mathrm{C}$ and $\mathrm{C} \equiv \mathrm{C}$ frequency values for the $\mathrm{H}-\mathrm{CN}$ and $\mathrm{CH}_{3} \mathrm{C} \equiv \mathrm{CCH}_{3}$ molecules, which were not included in the training set. The principal component analysis, has revealed that the calculated $\mathrm{H}-\mathrm{C}$ and $\mathrm{C} \equiv \mathrm{C}$ stretching frequencies can be adequately described by a single principal component (Figure1). It is capable to explain more than 99% of the total data variance.

Figure 1. Principal component score graphs for the autoscaled $\mathrm{C}-\mathrm{H}$ and $\mathrm{C} \equiv \mathrm{C}$ stretching frequencies. This PC1 component explains 99.9\% and 99.2% of the total data variance for the $\mathrm{C}-\mathrm{H}$ and $\mathrm{C} \equiv \mathrm{C}$ frequencies in $\mathrm{H}-\mathrm{C} \equiv \mathrm{C}-\mathrm{R}$, respectively.

Concinstoms

Our FD and PC models led to the selection of the MP2/6-311++G and MP2/6-311G wave functions in order to better reproduce experimental H-C stretching frequencies whereas the MP2/6$311 \mathrm{G}(\mathrm{d}, \mathrm{p})$, MP2/6-311++G(d,p) and MP2/6$31++G(d, p)$ results are those that better reproduce the experimental $\mathrm{C} \equiv \mathrm{C}$ frequency values for all the molecules here studied.

Ach hiomleoldemichis

The authors acknowledge partial financial support from the CNPq, CAPES and FAPESQ/PB agencies.

Estudo teórico da colisão elástica entre elétrons e moléculas de sic.

Milton Massumi Fujimoto*1(PQ), Danilo Rodrigues ${ }^{1}(I C)$, Sergio E. Michelin ${ }^{2}(\mathbb{P Q})$, Lee Mu-Tao ${ }^{3}(\mathbb{P Q})$. *Milton@fisica.ufpr.br
${ }^{1}$ Departamento de Física, Universidade Federal do Paraná, Centro Politécnico, Curitiba-PR.
${ }^{2}$ Departamento de Física, Universidade Federal de Santa Catarina, Florianópolis-SC.
${ }^{3}$ Departamento de Química, Universidade Federal de São Carlos, São Carlos-SP.
Palavras Chave: colisão elétron-molécula, seção de choque

Thimerucho

A molécula de SiC (carbeto de silício) é uma molécula de grande interesse na astrofísica. A sua existência foi predita, com enorme abundância relativa, em vários modelos que descrevem as estrelas de carbono, atmosferas estelares e nuvens interestelares densas[1,2]. Na fase cristalina é conhecida como carborundum, tem grande importância na indústria como abrasivo, cerâmica de alta-temperatura, e também como semicondutores[3]. Por exemplo, Atualmente, estudam-se nanotubos de SiC .

A molécula de SiC é um radical com 2 elétrons desemparelhados. Devido a grande dificuldade experimental de se gerar moléculas isoladas de SiC para interagir com elétrons, o estudo teórico fornece um grande suporte para o preenchimento desta lacuna nos dados espectroscópicos disponíveis na literatura. Neste trabalho, o nosso objetivo é estudar teoricamente a colisão elástica entre elétrons e moléculas de SiC .

Apresentaremos os resultados para a seção de choque diferencial, integral e de transferência de momento, nas faixas de energias de impacto baixa e intermediária ($1-100 \mathrm{eV}$).

A dinâmica da interação elétron-radical será representada através de um potencial complexo, no qual a sua parte real descreve os efeitos estático-troca-correlação-polarização e a parte imaginária representa os de absorção. Como é conhecido, em geral, as moléculas de camada aberta possuem muitos estados de baixa energia, isso implica em que é necessária a inclusão dos efeitos de polarização da nuvem eletrônica para a descrição da colisão elástica entre elétrons de baixa energia e estas moléculas. A metodologia empregada para a obtenção da amplitude de espalhamento é o método variacional iterativo de Schwinger (MVIS) combinado com o método de ondas distorcidas (MOD). No cálculo da matriz-T de espalhamento a parte real do potencial é solucionada utilizando o

MVIS enquanto que a parte imaginária do potencial é resolvida pelo MOD no formalismo "two-potential".

Até o momento não encontramos dados disponíveis na literatura sobre seção de choque para esta molécula. Assim realizamos um estudo comparando a seção de choque de SiC com a da molécula de C_{2}, a qual é isovalente. De maneira geral, os resultados são semelhantes, e como já era esperado, os valores das seções de choque são maiores para SiC do que para C_{2}. Outro aspecto observado na seção de choque diferencial, é que SiC apresenta um comportamento divergente para ângulos pequenos enquanto que C_{2} não apresenta. Isso ocorre devido a existência de dipolo permanente na molécula de SiC .

Para estudar a importância do efeito de polarização da nuvem eletrônica na seção de choque, comparamos os nossos resultados incluindo ou não o efeito de polarização. Outros resultados serão apresentados durante o Simpósio.

Devido à ausência de outros resultados para comparação, foi realizado um estudo comparativo para avaliar a confiabilidade dos resultados deste estudo. Estes resultados mostram que estão no mesmo nível de resultados obtidos anteriormente pelo nosso grupo. Quanto à importância do efeito de polarização, este não se verificou muito pronunciado em função da existência do dipolo permanente, o qual possui um papel importante na interação de longo alcance.

7. O/balechnimilos

Este trabalho foi parcialmente suportado pelas agências de fomento: Fundação Araucária, CNPq, Fapesp e também pela UFPR que concedeu uma bolsa de IC ao aluno Danilo Rodrigues.

[^88]
Estudo Teórico do mecanismo de reação: m $+\mathrm{CO}_{2} \rightarrow \mathrm{MO}+\mathrm{CO}$, min $=\mathrm{Mg} \mathrm{E}$ MG^{+}

Marcus Vinicius S. de Lima (PG)*, Maria Cristina R. da Silva (PQ), Edilson Clemente da Silva (PQ)
Departamento de Físico-Química, Universidade Federal do Rio de Janeiro, Instituto de Quimica, CT Bloco A sala 403, Ilha do Fundão, Rio de Janeiro 21945-900
*e-mail: msantos@iq.ufr.br
Palavra Chave: Reforma do CO_{2}
Sabe-se que dióxido de carbono é uma molécula termodinamicamente muito estável. A estabilidade desta molécula pode ser verificada pela reação de decomposição unimolecular: $\mathrm{CO}_{2} \rightarrow \mathrm{O}\left({ }^{3} \mathrm{P}\right)+\mathrm{CO}$, com energia experimental de $125,7 \mathrm{kcal} / \mathrm{mol}$ [1].

Apesar do monóxido de carbono ser tóxico, é mais fácil retê-lo em solução através de complexação com metais solubilizados, se comparado com o dióxido de carbono.
A proposta deste trabalho é predizer teoricamente o mecanismo de reação do CO_{2} através da reação com magnésio monopositivo utilizando cálculos $a b$ initio, e compará-lo com o caminho de reforma do CO_{2} usando o magnésio neutro [2], nos mesmos níveis e bases de cálculos.
O estudo foi realizado utilizando o pacote Gaussian 03 nos seguintes níveis de cálculos: MP2/cc-pVTZ, CCSD/cc-pVTZ, CCSD(T)/cc-PVT//MP2/cc-pVTZ e CCSD(T)/cc-pVTZ//CCSD/ccpVTZ.

Verificamos que a reação inicia-se pela aproximação do Mg^{+}a um dos oxigênios da molécula de CO_{2} formando o complexo linear 1 $\left(\mathrm{Mg}^{+} \mathrm{OCO}\right)$, com energia relativa menor que a dos reagentes. Tal complexo liga-se ao complexo cíclico pela estrutura de transição TS1. Por outro lado, o complexo cíclico liga-se a um segundo complexo linear $2\left(\mathrm{OMg}^{+} \mathrm{OC}\right)$ pela estrutura de transição TS2, seguindo para a formação dos produtos CO e $\mathrm{Mg}^{+} \mathrm{O}$.

Figura 1: Diagrama $\mathrm{CO}_{2}+\mathrm{Mg}^{+}$em nível CCSD/ccpVTZ.

Figura 2: Diagrama $\mathrm{CO}_{2}+\mathrm{Mg}$ em nível CCSD/ccpVTZ.
Os diagramas relativos à reforma do $\mathrm{CO}_{2} \mathrm{em} \mathrm{CO}$ mediante interação com Mg e Mg^{+}foram estabelecidos em nível CCSD/cc-pVTZ.
Ambos os caminhos de reação envolvem a formação de um complexo entre o CO_{2} e o metal, embora a forma mais estável do complexo formado com o Mg (forma T) seja diferente daquela com o Mg^{+}(linear). A forma T do complexo $\mathrm{Mg}^{+}-\mathrm{CO}_{2}$ revelou ser um estado de transição.
A reação do CO_{2} com o Mg^{+}revela a presença de um outro complexo entre as espécies presentes ao longo do caminho de reação: o complexo OMg^{+}OC. Este complexo não faz parte do caminho de reação para a reforma do CO_{2} via Mg .
Verifica-se que a reação $\mathrm{Mg}^{+}+\mathrm{CO}_{2} \rightarrow \mathrm{CO}+\mathrm{Mg}^{+} \mathrm{O}$ requer menos energia do que a reação $\mathrm{Mg}+\mathrm{CO}_{2}$ $\rightarrow \mathrm{CO}+\mathrm{MgO}$ para ocorrer, conforme resultados obtidos em nível CCSD/cc-pVTZ. A diferença de energia é de aproximadamente $6 \mathrm{kcal} / \mathrm{mol}$.
A variação de energia da reação $\mathrm{CO}_{2} \rightarrow \mathrm{CO}+$ $O\left({ }^{3} P\right)$ calculada em nível CCSD/cc-pVTZ é de $114,40 \mathrm{kcal} / \mathrm{mol}$. Em nível CCSD(T)/cc-pVTZ é de 119,88.

Os resultados obtidos em nível CCSD/cc-pVTZ mostram que, com a relação à decomposição unimolecular do CO_{2}, a reforma do CO_{2} em CO via Mg^{+}requer cerca de $56 \mathrm{kcal} / \mathrm{mol}$ a menos de energia em relação a energia experimental de decomposição do CO_{2}; usando o Mg a reforma requer cerca de $50 \mathrm{kcal} / \mathrm{mol}$ a menos de energia.

[^89]
Theoretical approach and its contribution to metalloenzymes chemistry. PART 1 - Optimization and spectroscopy study of a Cull ${ }_{2}$ MOdel Complex

Nicolás A. Rey (PG) ${ }^{1}$, Ademir Neves (PQ) ${ }^{1}$, Wagner B. De Almeida(PQ) ${ }^{2}$, Hélio F. Dos Santos $(\mathbb{P Q})^{3}$, Luiz Antônio S. Costa ${ }^{4, *}$ (PQ) *Ircosta@netuno.qui.ufmg.br
${ }^{1}$ LABINC, Departamento de Química, UFSC, Florianópolis-SC, 88040-900, Brazil
${ }^{2}$ LQC-MM, Departamento de Química, ICEx, UFMG, Belo Horizonte-MG, 31270-901, Brazil
${ }^{3}$ NEQC, Departamento de Quimica, ICE, UFJF, Juiz de Fora-MG, 36036-330, Brazil
${ }^{4}$ EPCAR, Escola Preparatória de Cadetes do Ar, Barbacena-MG, 36205-970, Brazil.
Palavras Chave: catechol oxidase, DFT calculations, spectroscopy

Catechol oxidases (COs) are plant enzymes that belong to the oxidoreductases class. They contain a dinuclear copper center in their active site, which is able to catalyze the two-electron oxidation of a broad range of catechols to the corresponding o-quinones. The structure of the "sweet potato" CO was already elucidate and presents, in its resting $\mathrm{Cu}^{\text {II }} \mathrm{Cu}^{\text {II }}$ (met) state, two cupric ions at the distance of $2.9 \AA$ bridged by an exogenous hydroxo ligand [1]. Recently, we have published the synthesis and X-ray of a new dicopper(II) μ-hydroxo complex (1) which has been a very good structural model for met form of the active site of CO [2]. Over the past decade, theoretical calculations have attracted increased attention by its use as an excellent approach in the study of bimetallic copper systems. The density functional theory (DFT) has been applied on this study to evaluate the structural and spectroscopic data of dinuclear cation in (1), hereafter named Complex-A.

The choice for B3LYP functional is reasonable explained by its recent use in similar works [3]. The basis set used was the triple-zeta $6-311 \mathrm{G}^{*}$ for all atoms, except Cu for which the ECP LanL2DZ was employed. The gas phase optimizations and frequencies calculations have been performed using Gaussian 03 program at 298 K and 1 atm. ComplexA was also analyzed by NMR and TD-DFT using B3LYP/6-311G(2d)/LanL2DZ in attempt of attributing the main excitations.

The optimized structure of Complex-A is shown in Figure 1. It should be mentioned that the gas phase structure is much more symmetric than X-ray structure; for example, the index τ is altered from X ray (0.19 for Cu 1 and 0.34 for Cu 2) to calculated (0.25 for both Cu atoms) structure. As can be seen, the $\mathrm{Cu}^{\text {II...Cu" distance }}$ is $3.117 \AA$ which is in accordance with the reported data of 2.896(1) \AA [2]. This agreement is also observed in the imine bonds lengths of $1.256(9)$ and 1.258 (9) \AA A when comparing
to calculated structure ($1.283 \AA$). These bonds are quite important in order to characterize the Schiff base nature of the complex giving IR calculated frequencies of $1669\left(v_{\text {assim }}\right) / 1673\left(v_{\text {sim }}\right) \mathrm{cm}^{-1}$.

Figura 1. Optimized structure of Complex-A (1).
The TD-DFT was used to evaluate the main electronic transitions of Complex-A. In the UV region it was identified an intense absorption at 365 nm probably due to three different overlapped transitions and another one in the visible region (670 nm) related to d-d transitions. This is in agreement with the experimental values of 368 and 608 nm [2].

The theoretical ${ }^{1} \mathrm{H}-\mathrm{NMR}$ has also been performed using TMS as reference; the calculated values for the aromatic ring (8.2 ppm) and methyl groups (1.44, $1.55,1.74,2.61$ and 2.78 ppm) are close to the expected data and might be important for further comparison with experimental NMR spectra.

Finally, the results presented here suggest that B3LYP level of theory could be a good choice in the study of interactions between Complex-A and its substrates.

3 Mobleclimerios

CNPq, FAPEMIG, FINEP

[^90]
THEORETICAL APPROACH AND ITS CONTRIBUTION TO METALLOENZYMES CHEMISTRY. Part 2- Phosphate diester interaction mode to [$\left.\mathrm{CU}_{2}(\mu-\mathrm{OH})\left(\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{ON}_{6}\right)\right]^{2+}$

Nicolás A. Rey (PG) ${ }^{1}$, Ademir Neves (PQ) ${ }^{1}$, Wagner B. De Almeida (PQ) ${ }^{2}$, Hélio F. Dos Santos (PQ) ${ }^{3}$, Luiz Antônio S. Costa, ${ }^{4, *}$ (PQ) *Ircosta@netuno.qui.ufmg.br
${ }^{1}$ LABINC, Departamento de Química, UFSC, Florianópolis-SC, 88040-900, Brazil
${ }^{2}$ LQC-MM, Departamento de Química, ICEx, UFMG, Belo Horizonte-MG, 31270-901, Brazil
${ }^{3}$ NEQC, Departamento de Química, ICE, UFJF, Juiz de Fora-MG, 36036-330, Brazil
${ }^{4}$ EPCAR, Escola Preparatória de Cadetes do Ar, Barbacena-MG, 36205-970, Brazil.
Palavras Chave: hydrolytic activity, DFT calclations, substrate coordination can be attributed to $\mathrm{O}-\mathrm{P}-\mathrm{O}$ angle deformation

Thiro ricag

Catalytic promiscuity, defined as the ability of a single active site to catalyze more than one chemical transformation, constitutes a very important property of many enzymes, having a natural role in evolution and, occasionally, in the biosynthesis of secondary metabolites [1]. In a recent article published by us [2], we have demonstrated that the dicopper(II) complex $\left[\mathrm{Cu}_{2}(\mu-\mathrm{OH})\left(\mathrm{C}_{21} \mathrm{H}_{33} \mathrm{ON}_{6}\right)\right]\left(\mathrm{ClO}_{4}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ exhibits a broad spectrum of catalytic activities, such as DNA and phosphate diesters hydrolysis. An increasing theoretical approach has been very useful in attempt of study bimetallic copper systems. Here, we have continued a previous work based on DFT calculations with a dinuclear copper(II) cation, named as ComplexA, considering the interactions between this cation and the phosphate diester model substrate 2,4bis(dinitrophenyl)phosphate (BDNPP); the new complex is called here as Complex-B.

B3LYP functional has been well applied in similar systems reported recently [3]. Geometry optimizations were performed using $6-311 \mathrm{G}^{*}$ for all atoms, except Cu atoms for which the ECP LanL2DZ was employed. Frequencies calculations were used to define the resulting structure as true minima using Gaussian 03 program.

RHESMLTMOS E DECUSSAO

Two different visions of the optimized structure of Complex-B are shown in Figure 1. The $\mathrm{Cu}^{\text {II... }} \mathrm{Cu}^{\text {II }}$ calculated distance is equal to $3.058 \AA$, shorter than the calculated for Complex-A ($3.117 \AA$). One copper atom is bonded to the oxygen of phosphate (Cu…O-P) by $2.394 \AA$, which suggests a monodentate interaction leading to a new mechanism involving terminal substrate coordination and subsequent intramolecular nucleophilic attack by a bridging hydroxide. This reaction pathway can possibly be view as a fusion of two other mechanisms already proposed in literature [4]. It is worth noting that the relatively short nucleophile-phosphorus atom distance ($3.680 \AA$) and the nucleophile-phosphorusleaving group angle of 165.1°, very close to the "ideal" value of 180°, should facilitate the attack. The frequency of $\delta=447 \mathrm{~cm}^{-1}$
pushing a third oxygen towards Cu .
Figura 1. Gas phase optimized structure of Complex-B.

The most important feature observed in Complex-B is the linkage Cu‥O-P indicating a bond not present before. Furthermore, the results suggest that B3LYP level of theory could be a good choice in the study of interactions between biomimetic dinuclear complexes and their substrates.

[^91]
Espectroscopia de Fotoabsorção de Camada Interna de Nitroanilinas COM PROPRIEDADES "PUSH-PULL".

Antonio C.O. Guerra ${ }^{1,2}(\mathbb{P Q})^{*}$, Glaucio B. Ferreira ${ }^{1}(\mathbb{P Q})$, Sérgio P. Machado ${ }^{1}(\mathbb{P Q})$, Cássia C. Turci ${ }^{1}(\mathbb{P Q})$ acog@cefet-rj.br

1- Instituto de Química, Universidade Federal do Rio de Janeiro,
2- Centro Federal de Educação Tecnológica Celso Suckow da Fonseca, DEPBE, Rio de Janeiro.
Palavras Chave: ab initio, IVO, TEY.

As moléculas "push-pull" são caracterizadas pela presença de grupos doadores e receptores de elétrons interligados por um sistema π conjugado ${ }^{1,2}$. Como conseqüência, as transferências de carga intramoleculares podem conferir propriedades de óptica não linear (NLO) para estas moléculas ${ }^{2,3}$. A pNitroanilina representa um modelo clássico para a investigação de propriedades de sistemas push-pull ${ }^{5}$.

Neste trabalho, foram obtidos espectros de força do oscilador generalizada na borda do N 1 s da anilina, do nitrobenzeno e das m-e p-nitroanilinas, derivados dos espectros de detecção de produção total de íons (TIY) e elétrons (TEY), adquiridos por radiação síncrotron. Também foi aplicado o modelo de blocos de construção (Building Block) para a simulação dos espectros das nitroanilinas. Para corroborar os dados experimentais, foram realizados cálculos ab initio por diferentes metodologias para a atribuição das estruturas observadas nos espectros NEXAFS.

Os espectros experimentais foram adquiridos usando a linha de luz com monocromador de grade esférica (SGM) do Laboratório Nacional de Luz Síncrotron (LNLS). Todas as amostras foram obtidas comercialmente. As nitroanilinas foram prensadas sobre uma placa de cobre para a realização das análises, enquanto a anilina e o nitrobenzeno foram vaporizados.
Os espectros da anilina e nitrobenzeno adquiridos em fase gasosa permitiram, através da simulação por building block, descrever as principais estruturas encontradas nas nitroanilinas, como descrito na tabela 1. Entretanto, foram evidenciadas diferenças nas estruturas dos espectros experimentais da m-e pnitroanilinas entre 397 e 403,6 eV, que não foram observadas na análise por blocos de construção. As três estruturas encontradas nesta região foram relacionadas ao canal de excitação do grupo NH_{2} por cálculos EICVOM baseados em O.M. de Hückel Estendido em espectros obtidos por impacto de elétrons destes sistemas.
Para confirmar estas e outras atribuições, foram realizados inicialmente cálculos de otimização sem simetria com método Hartree-Fock (HF) utilizando a
base 6-31G** com o pacote Gamess. As geometrias obtidas foram compatíveis com as informações estruturais disponíveis na literatura ${ }^{2}$. Então, empregamos duas metodologias: a EICVOM a partir dos orbitais HF, pela contribuição dos coeficientes dos O.M.; e o cálculo dos orbitais virtuais melhorados (IVO), utilizando o pacote GSCF3 ${ }^{4}$. Neste último foram empregadas bases Huzinaga double-zeta, além de uma base expandida de alta qualidade com polarização d segundo o esquema de contração [3111121/3111/1*/1*] para o buraco. Os espectros teóricos foram simulados pelo programa SIMILE2 ${ }^{5}$, através da soma de funções gaussianas.
Os cálculos EICVOM e IVO confirmaram a presença de estruturas relacionadas ao canal N 1s $\left(\mathrm{NH}_{2}\right)$ nas nitroanilinas, com variações entre os sistemas meta e para. Também foi averiguada uma boa concordância entre o potencial de ionização teórico e experimental utilizando os orbitais IVO. A maior variação está relacionada com o P.I. do NO_{2}, com $\Delta \mathrm{E}$ de 1,9 a 1,5 eV.
Tabela 1. Energias (eV) e atribuições propostas para algumas estruturas da m-e p-nitroanilinas.

Meta (m)	Para (p)	IVO (m)	IVO (p)	Atrib.
402,4	402,4	403,86	403,95	$3 p / \pi^{*}{ }_{\mathrm{c}=\mathrm{c}}$
403,7	403,8	406,14	406,20	$\pi^{*} \mathrm{No}$
$406,0^{*}$	$406,0^{*}$	405,75	405,91	P.I. $\left(\mathrm{NH}_{2}\right)$
$411,2^{*}$	$411,2^{*}$	413,07	412,70	P.I. $\left(\mathrm{NO}_{2}\right)$

* ref2

PY Hemolicores
As regiões discretas do N 1s das nitroanilinas são dominadas por estruturas atribuídas a transição do N $1 \mathrm{~s}\left(\mathrm{NH}_{2}\right)$, com dependência da posição do substituinte NO_{2}.
Thu chacement

CAPES e LNLS

[^92]
ESTUDO EXPERIMENTAL E TEÓRICO DOS ESPECTROS ELETRÔNICOS DE $\left[\mathrm{NET}_{4}\right]_{x}\left[\mathrm{M}(\mathrm{L})_{3}\right]\left(\mathrm{M}, \mathrm{X}=\mathrm{SN}^{+4}, 2 \mathrm{E} \mathrm{SB}{ }^{+5}, 1 ; \mathrm{L}=\right.$ DMIT E DMIO)

Glaucio B. Ferreira (PQ) ${ }^{1 *}$, Nadia M. Comerlato (PQ) ${ }^{1}$, James L. Wardell (PQ) ${ }^{1}$, Eduardo Hollauer (PQ) ${ }^{2}$ glauciob@iq.ufri.br glauciob@iq.ufrj.br

1-Departamento de Química Inorgânica - Instituto de Química - Universidade Federal do Rio de Janeiro,
2- Departamento de Físico-Química, Instituto de Química, Universidade Federal Fluminense.

Palavras Chave: dmit, dmio, $U V$-vis.

Os compostos com 1,2-ditiolatos têm sido estudados intensivamente nas últimas duas décadas. Contudo, em contraste com o largo número de estruturas estudadas, poucos estudos espectroscópicos foram realizados, sendo os trabalhos relacionados principalmente as propriedades não usuais, como condutividade elétrica, ferromagnetismo e ótica não linear de complexos de transição do grupo do níquel ${ }^{1}$.
Nos últimos anos nosso grupo vem trabalhando na caracterização vibracional e eletrônica destes ligantes com elementos representativos a nivel teórico experimental ${ }^{2-4}$. Entretanto, estudos da estrutura eletrônica de complexos com elementos representativos ainda não foram realizados a nível teórico, o que gera atribuições dúbias.
Assim, o objetivo deste trabalho foi o de avaliar metodologias para a caracterização dos espectros UV-vis de complexos de dmit e dmio, utilizando os compostos $\left[\mathrm{NEt}_{4}\right] \times\left[\mathrm{M}(\mathrm{L})_{3}\right]\left(\mathrm{M}, \mathrm{x}=\mathrm{Sn}^{+4}\right.$ e Sb ${ }^{+5} ; \mathrm{L}=$ dmit e dmio).

Pa Resurio os ch pleacer

Os compostos $\left[\mathrm{NEt}_{4}\right]$] $\left[\mathrm{M}(\mathrm{L})_{3}\right](\mathrm{M}, \mathrm{x}=\mathrm{Sn}, 2$ e $\mathrm{Sb}, 1 ; \mathrm{L}=$ dmit e dmio) foram sintetizados segundo a literatura ${ }^{5,6}$. Os mesmos foram recristalizados e suas propriedades físicas foram concordantes com os valores da literatura. Os espectros UV-vis dos sais complexos e do cátion $E t_{4} \mathrm{NBr}$ foram obtidos entre 900 e 190 nm em solução de concentração de 10^{-5} a $10^{-4} \mathrm{M}$ em acetonitrila, utilizando celas de quartzo de $1,0 \mathrm{~cm}$, em um espectrômetro VarianCary 1 E . Os espectros foram desconvoluídos usando múltiplas gaussianas com o programa Origin 5.0 e não indicaram interferência do cátion nesta faixa espectral. Assim os estudos teóricos consideraram as unidades aniônicas independentes.

Os cálculos empregados na análise dos espectros elet:ônicos envolveram a otimização prévia das geometrias, análise vibracional, definindo as estruturas com mínimo de energia global. Foram utilizados métodos RHF e DFT-B3LYP com bases double zeta, 6-31G para C, S e O e SBK-ECP para Sn e Sb presentes nos pacotes Gamess/Gaussian. Os orbitais moleculares foram analisados através
da análise populacional de Mulliken. Finalmente, a avaliação das energias de transição e forças do oscilador destas estruturas otimizadas foi realizada a partir de cálculos CIS, TD, CISD e TD-DFT, que consistem de metodologias de interação de configuração muito utilizadas para este fim. Algumas atribuições estão dispostas na tabela 1.

Figura1.
Espectros UV-vis desconvoluídos do $\left[\mathrm{NEt}_{4}\right]_{2}\left[\mathrm{Sn}(\mathrm{dmit})_{3}\right] \mathrm{e}$ $\left[\mathrm{NEt}_{4}\right]\left[\mathrm{Sn}(\mathrm{dmio})_{3}\right]$.

Tabela 1. Atribuição das transições eletrônicas dos ânions $\left[\mathrm{M}(\mathrm{dmit})_{3}\right]^{-\mathrm{x}} \mathrm{e}\left[\mathrm{M}(\mathrm{dmio})_{3}\right]^{-x}$.

Sn dmit	Sn dmio	Sb dmit	Sb dmio
464 nm	435 nm	580 nm	568 nm
$\pi\left(S_{\mathrm{m}}\right) \rightarrow$	$\pi\left(\mathrm{S}_{\mathrm{m}}\right) \rightarrow$	$\pi\left(\mathrm{S}_{\mathrm{m}}\right) \rightarrow$	$\pi\left(\mathrm{S}_{\mathrm{m}}\right) \rightarrow$
$\pi^{*} \mathrm{C}=\mathrm{S}$	$\sigma^{*} \mathrm{Sn}-\mathrm{S}_{\mathrm{m}}$	$\sigma^{*} \mathrm{Sb}-\mathrm{S}_{\mathrm{m}}$	$\sigma^{*} \mathrm{Sb}-\mathrm{S}_{\mathrm{m}}$
442 nm	332 nm	438 nm	375 nm
$\pi\left(\mathrm{S}_{\mathrm{m}}\right) \rightarrow$	$\pi\left(\mathrm{S}_{\mathrm{m}}\right) \rightarrow$	$\pi\left(\mathrm{S}_{\mathrm{m}}\right) \rightarrow$	$\pi\left(\mathrm{S}_{\mathrm{m}}\right) \rightarrow$
$\sigma^{*} \mathrm{Sn}-\mathrm{S}_{\mathrm{m}}$	$\sigma^{*} \mathrm{Sn}-\mathrm{S}_{\mathrm{m}}$	$\pi^{*} \mathrm{C}=\mathrm{S}$	$\sigma^{*} \mathrm{Sb}-\mathrm{S}_{\mathrm{m}}$

A combinação de observações experimentais dos ânions com estruturas semelhantes, a alteração do cromóforo $\mathrm{C}=\mathrm{S} / \mathrm{C}=\mathrm{O}$ e o acompanhamento por métodos teóricos adequados foi possível obter uma atribuição consistente para estes compostos.

CAPES, CNPq e FAPERJ

[^93]
An efficient Procedure to Study Cyclodextrin Clusters: Application to a-Cyclodextrin Hydrated Monomer, Dimer, Trimer and Tetramer

Clebio S. Nascimento, Jr (PG) $)^{\mathrm{a}^{*}}$, Cleber P. A. Anconi (PG) ${ }^{\mathrm{a}}$, Juliana Fedoce Lopes (PG) ${ }^{\text {a }}$, Hélio F. Dos Santos (PQ) ${ }^{\mathrm{b}}$, Wagner B. De Almeida (PQ) ${ }^{\mathrm{a}}$
${ }^{\text {a LQC-MM: }}$ Laboratório de Química Computacional e Modelagem Molecular- Departamento de Química, ICEx, Universidade Federal de Minas Gerais (UFMG), Campus Pampulha, Belo Horizonte, MG, 31270-901, Brazil.
${ }^{b}$ NEQC: Núcleo de Estudos em Química Computacional- Departamento de Química, ICE, Universidade Federal de Juiz de Fora (UFJF), Campus Universitário, Martelos, Juiz de Fora, MG, 36036-900, Brazil.

*clebio@netuno.qui.ufmg.br

Keywords: Self Assembly, Cyclodextrins, Basis Set

memmaron

Cyclodextrins (CDs) are able to form supramolecular self-assembled species by association of two or more CDs through weak interactions such as electrostatic forces, hydrogen bonding and hydrophobic effect or van der Waals interactions ${ }^{1}$. In this way, a type of cyclodextrin dimer, trimer, tetramer can be obtained and hence, high level ab initio calculations becomes unfeasible due to the increase of CD cluster size.

In this context, in order to solve this computational task, we proposed an alternative and efficient procedure to make the calculations with large $\alpha-C D$ system feasible. This is based on a prior choice of atom by atom basis sets, using common chemical sense, with the aid of a computer program developed from a Fortran 77 designed to ease the basis set selection for very large molecular I-CD interacting systems.

The procedure was performed considering the key atoms of cyclodextrin as being treated with a better quality basis, hence, oxygen atoms and hydrogen attached to them (O...H) were treated with a basis set containing polarization functions, leaving the carbon atoms, and also the hydrogen attached to them $\left(\mathrm{CH}_{n}\right)$ with a minimal STO-3G basis set. Our goal with this approach was an attempt to decrease the computational cost with no significant loss in the quality of the interaction energies, through a careful choice, based on chemical sense, of atom-by-atom basis set.

The geometries of eight hydrated forms considering the $\alpha-C D$ monomer ${ }^{2}$, dimer ${ }^{3}$, trimer and tetramer were fully optimized without any geometrical or symmetry constraints using the semiempirical PM3 method. The electronic plus nuclear repulsion contribution ($\Delta \mathrm{E}_{\text {ele-nuc }}$) was evaluated at the Density Functional Theory (DFT) level using the gradient generalized BLYP functional, in single point calculations at the fully optimized PM3 geometries.

As result ${ }^{4}$, the stabilization energies BLYP/631(d,p)//PM3 and mixed basis sets, named here BLYP/Gen, for all species $\alpha-C D$ clusters are given
in Table 1, along with the number of basis functions in the 6-31G(d,p) and Gen-1 basis sets.

Table 1. BLYP single point energy calculations using the fully optimized PM3 geometry (BLYP//PM3) for the process: $\mathrm{n} \alpha-\mathrm{CD}$ (free) $+\mathrm{n}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6} \rightarrow \alpha-$ $\mathrm{CD}_{\mathrm{n}} .6 \mathrm{nH}_{2} \mathrm{O}$.

	$\begin{gathered} \text { Number of } \\ \text { Atoms } \end{gathered}$	$\begin{gathered} \Delta \mathrm{E}_{\text {cle-nua }} \\ 6-31 \mathrm{G}(\mathrm{~d}, \mathrm{p}) \end{gathered}$	$\begin{aligned} & \hline \text { Number of } \\ & \text { Basis } \\ & \text { Functions } \end{aligned}$	$\Delta \mathrm{E}_{\text {cle-nuc }}$ Gen-1 6.31G(d,p): OH STO-3G: CH_{n}	$\begin{array}{\|c\|} \hline \text { Number of } \\ \text { Basis } \\ \text { Functions } \end{array}$	Energy differences ${ }^{\text {c }}$
$\begin{gathered} \alpha \cdot{\mathrm{CD} .6 \mathrm{H}_{2} \mathrm{O}}_{\text {"down" }}^{\text {down }} \\ \hline \end{gathered}$	144	-24,6	(1440/2520)	-23,3	912/1884)	1,3(5\%)
	144	-17,9	(1440/2520)	$-15,8$	(912/1884)	2,1(12\%)
$\begin{gathered} (\alpha-\mathrm{CD})_{2} \cdot 12 \mathrm{H}_{2} \mathrm{O} \\ 4 \mathrm{HH}^{4} \end{gathered}$	288	-82,6	(2880/5040)	-78,2	(1824/3768)	4,4 (5\%)
$\begin{gathered} \left(\alpha-\mathrm{CD}_{2}\right)_{2} .12 \mathrm{H}_{2} \mathrm{O} \\ { }^{\mathbf{H H H S}}{ }^{2} \\ \hline \end{gathered}$	288	-72,2	(2880/5040)	-68,5	(1824/3768)	3,6 (5\%)
$\begin{gathered} (\alpha-\mathrm{CD})_{3} .18 \mathrm{H}_{2} \mathrm{O} \\ { }_{\text {down-TTSS }}{ }^{\text {dow }} \end{gathered}$	432	-100,3	(4320/7560)	-98,2	(2736/5652)	2,1(2\%)
$\begin{gathered} \left(\alpha-\mathrm{CD}_{3} .18 \mathrm{H}_{2} \mathrm{O}\right. \\ { }_{u p}-\mathrm{TTSS}{ }^{n} \\ \hline \end{gathered}$	432	$-86,1$	(4320/7560)	-79,1	(2736/5652)	7,0(8\%)
$\begin{aligned} & (\alpha-\mathrm{CD})_{4} .24 \mathrm{H}_{2} \mathrm{O} \\ & \text { "down-TTSS-up } \end{aligned}$	576	$-143,7$	(5760/10080)	-141,1	(3648/7536)	2,6 (7\%)
$\begin{aligned} & (\alpha \cdot \mathrm{CD})+24 \mathrm{H}_{2} \mathrm{O} \\ & a_{u p \cdot} \mathrm{TTSS}-u p^{\prime \prime} \end{aligned}$	576	-124,9	(5760/10080)	-116,5	(3648/7536)	8,4 (2\%)

From Table 1, It can be promptly seen that the effect of treating the CH_{n} groups as "spectators", having a minimal basis set, is to cause a small variation in the stabilization energies within 2$10 \%$, also maintaining the relative energies of the two complexes within $1-5 \mathrm{kcal} / \mathrm{mol}$, systematically for monomer, dimer, trimer and tetramer species. Besides, an enormous gain in computational cost is observed, without significant loss in the quality of the evaluation of stabilization energies.

Conemistors

The procedure ${ }^{4}$ proved to be adequate for treating $\alpha-C D$ monomer, dimer, trimer and tetramer hydrated species, and can also be extended to H -bonded interacting systems of any size and inclusion complexes. The mixed basis set in conjunction with the BLYP functional, was found to produce very satisfactory interaction energy values, at a computational reasonable cost, and therefore, may be recommended in further studies on larger CD molecular associations. Detailed results can be found in ref. ${ }^{4}$

Facemomicobrinatis

CNPq and FAPEMIG

[^94]
Espectroscopia de Fotoabsorção de Camada Interna de Derivados OrgÂnicos de DMIT, DMIO e DMT

Glaucio B. Ferreira (PQ) ${ }^{1 *}$, Antonio C.O. Guerra ${ }^{1,2}(\mathrm{PQ})$, Nadia M. Comerlato (PQ) ${ }^{1}$, Cássia C. Turci (PQ) ${ }^{1^{*}}$ cassia@iq.ufrj.br e glauciob@iq.ufrj.br
1- Instituto de Química, Universidade Federal do Rio de Janeiro,
2- Centro Federal de Educação Tecnológica Celso Suckow da Fonseca, DEPBG, Rio de Janeiro.
Palavras Chave: dmit, dmio, dmt, IVO, fotoabsorção
\section*{}
Os sistemas heterocíclicos de enxofre representam um grupo de ligantes importante na

química de coordenação por apresentarem condução elétrica, ferromagnetismo e ótica não linear ${ }^{1}$. O 1,3-ditiola-2-tiona-4,5-ditiolato (dmit) é o ligante mais estudado deste grupo. Dentre os principais fatores de tais propriedades estão a variada química redox e a acentuada polarizabilidade dos átomos de enxofre.
Assim, devido a necessidade de compreender as transições eletrônicas destes compostos, o objetivo deste trabalho foi o estudo sistemático dos derivados orgânicos de dmit em conjunto com seus isólogos 1,3-ditiola-2-ona-4,5-ditiolato (dmio) e 1,2-ditiola-3-tiona-4,5-ditiolato (dmt), para avaliar os diferentes ambientes químicos dos átomos de enxofre nestes ligantes, através da espectroscopia de fotoabsorção de camada interna para S 1s. As principais transições observadas também foram analisadas em nível $a b$ initio para uma atribuição mais precisa.

Resulaiose ilscussalo

Os compostos $(\mathrm{PhCO})_{2} \mathrm{dmit}$, $\quad(\mathrm{PhCO})_{2} \mathrm{dmio}$, $(\mathrm{PhCO})_{2} \mathrm{dmt},(\mathrm{Me})_{2} \mathrm{dmit} \mathrm{e}$ o sal $\mathrm{Cs}_{2} \mathrm{dmit}$ foram sintetizados e purificados e suas propriedades físicas e espectroscópicas estão de acordo com a literatura ${ }^{1-3}$. Os espectros de fotoabsorção de camada interna na região do enxofre 1 s foram adquiridos em fase sólida na forma de pó, por detecção da produção total de elétrons (TEY), com a utilização da radiação síncrotron, na estação experimental de espectroscopia de absorção de raios-X moles (SXS), localizada no Laboratório Nacional de Luz Síncrotron (LNLS).
O dmit apresenta três conjuntos de átomos de enxofre não equivalentes em ambientes químicos distintos: tiona, tiola e tiolato. O dmio é estruturalmente semelhante ao dmit, com o enxofre da tiona substituído por um átomo de oxigênio. O dmt, também chamado de β-dmit, apresenta uma conjugação efetiva entre a $C=S$ e o $C=C$ do anel, além de uma ligação S-S, como observado na figura 1. Assim, as estruturas nos espectros devem variar em função destes ambientes químicos.

Figura 1. Esquema estrutural do dmit e dmio.
Para avaliar corretamente estes diferentes ambientes químicos, foram realizados cálculos com o pacote GSCF3, que utiliza o método de orbitais virtuais melhorados (IVO) através da utilização de um estado buraco no Hamiltoniano Hartree-Fock ${ }^{4}$. Inicialmente, foram determinadas as geometrias por otimização com a base $6-31 \mathrm{G}^{* *}$ com o pacote Gamess, para as moléculas neutras. No $\mathrm{Cs}_{2} \mathrm{dmit}$ foram adicionadas funções difusas p e d, além de SBKJC para o cátion. As estruturas dos anéis são compatíveis com as informações cristalográficas ${ }^{2,3}$. Os cálculos do estado buraco foram realizados com bases Huzinaga, e com base de alta qualidade para o S excitado [3112121/5111/1*1*]. Também foram avaliadas funções justas ${ }^{5}$ compactas (1^{+}) para analisar o efeito das energias de excitação e ionização seguindo o arranjo de contração [31121211 $\left.1^{+} / 51111^{+} / 1^{+} 1^{+} 1^{*} 1^{*}\right]$. Por exemplo, a tabela 1 relaciona os resultados da transição $S 1 \mathrm{~s}(\mathrm{C}=\mathrm{S}) \rightarrow \pi^{*}$ para valores teóricos e experimentais.
Tabela 1. Atribuição da $1^{\underline{a}}$ transição $S 1 \mathrm{~s}(\mathrm{C}=\mathrm{S}) \rightarrow \pi^{*}$.

	Exp. (eV)	IVO(eV)	IVO(1 $\left.{ }^{+}\right)^{*}(\mathrm{eV})$
(PhCO) ${ }_{2}$ DMIT	2468,4	2472,4	2467,7
$(\mathrm{PhCO})_{2} \mathrm{DMT}$	2467,6	2471,6	2466,9
Cs_{2} DMIT	2468,2	2472,3	2467,6
${ }^{*}\left(1^{+}\right)$função justa.			
MiN	Come	1501es)	2terse

Os cálculos IVO apresentam resultados compatíveis com o experimental, auxiliando na atribuição de diversas estruturas.

CAPES, CNPq e FAPERJ

[^95]
Caracterização Espectroscópica de Complexos de Cu (III) com DMIT e DMT

Laura Joana Silva Lopes (IC) ${ }^{1}$, Glaucio B. Ferreira (PQ) ${ }^{1 *}$, Antonio C.O. Guerra ${ }^{1,2}(P Q)$, Nadia M. Comerlato (PQ) ${ }^{1}$, Cássia C. Turci (PQ) ${ }^{1 *}$ cassia@iq.ufrj.br

1- Instituto de Química, Universidade Federal do Rio de Janeiro,
2- Centro Federal de Educação Tecnológica Celso Suckow da Fonseca, DEPBG, Rio de Janeiro.
Palavras Chave: dmit, dmio, dmt, IVO, fotoabsorção.

Nas últimas duas décadas os compostos de coordenação do 1,3-ditiola-2-tiona-4,5-ditiolato (dmit) têm sido objeto de inúmeros estudos, devido às suas propriedades de condução elétrica, ferromagnetismo e óptica não linear ${ }^{1}$. Dentre os principais fatores de tais propriedades estão a variada química redox e a acentuada polarizabilidade dos átomos de enxofre. Em especial, as técnicas de fotoabsorção são extremamente úteis no estudo de estados não ocupados da camada de valência, cuja participação nos fenômenos de condução e magnetismo é extremamente importante. Assim, devido a necessidade de compreender as transições eletrônicas destes compostos, o objetivo deste trabalho foi o estudo sistemático de complexos de dmit com Cu (II) em conjunto com seu isólogo 1,2-ditiola-3-tiona-4,5-ditiolato (dmt), para avaliar os diferentes ambientes químicos dos átomos de enxofre nestes ligantes, através da espectroscopia de fotoabsorção de camada interna para S 1s. As principais transições observadas também foram analisadas em nível ab initio para uma atribuição mais precisa.

Os compostos $\left[\mathrm{Cu}(\mathrm{dmit})_{2}\right]\left[\mathrm{NEt}_{4}\right]_{2}, \quad\left[\mathrm{Cu}(\mathrm{dmit})_{2}\right] \mathrm{Cs}_{2}$ foram isolados como sólidos de cor preta e o composto $\left[\mathrm{Cu}(\mathrm{dmt})_{2}\right] \mathrm{Cs}_{2}$ apresentou cor marrom. Todos são estáveis ao ar e solúveis em acetona, acetonitrila, dimetilsulfóxido e dimetilformamida. Os resultados da análise elementar dos complexos $\left[\mathrm{Cu}(\mathrm{dmit})_{2}\right]\left[\mathrm{NEt}_{4}\right]_{2}$ e $\left[\mathrm{Cu}(\mathrm{dmit})_{2}\right] \mathrm{Cs}_{2}$ confirmam a obtenção de complexos tetracoordenados de Cu^{2+} com dmit e dmt. Os espectros de fotoabsorção de camada interna (NEXAFS) na região do enxofre 1 s foram adquiridos em fase sólida na forma de pó, por detecção da produção total de elétrons (TEY), com a utilização da radiação síncrotron, na estação experimental de espectroscopia de absorção de raios-X moles (SXS), localizada no Laboratório Nacional de Luz Síncrotron (LNLS). Espectros de fotoemissão na região de raios-X (XPS) também foram adquiridos e resultados preliminares serão apresentados.

Figura 1. Esquema estrutural do dmit e dmio.
O dmit apresenta três conjuntos de átomos de enxofre não equivalentes em ambientes químicos distintos: tiona, tiola e tiolato. O dmt, também chamado de β-dmit, apresenta uma conjugação efetiva entre a $C=S$ e o $C=C$ do anel, além de uma ligação S-S, como observado na figura 1. Assim, as estruturas nos espectros devem variar em função destes ambientes químicos.
Para avaliar corretamente estes diferentes ambientes químicos, foram realizados cálculos $a b$ initio Hartree-Fock com base 6-31G+(d) para os enxofres e carbonos e SBKJC para o átomo metálico, utilizando o pacote Gamess para otimização estrutural e avaliação dos orbitais moleculares destes sistemas. Também foi aplicado o método EICVON sobre os canais de enxofre observados. Estes resultados são preliminares para investigações em andamento para o método de orbitais virtuais melhorados (IVO), utilizando um estado buraco no Hamiltoniano Hartree-Fock ${ }^{2}$. Os resultados preliminares mostram que as estruturas dos anéis são compatíveis com as informações cristalográficas ${ }^{3,4}$.

Os cálculos apresentam resultados compatíveis com o experimental, auxiliando na atribuição das principais estruturas. Resultados preliminares das análises de XPS revelam, respectivamente, os seguintes potenciais de ionização dos complexos $\left[\mathrm{Cu}\left(\mathrm{dmit}_{2}\right)_{2}\left[\mathrm{NEt}_{4}\right]_{2},\left[\mathrm{Cu}\left(\mathrm{dmit}_{2}\right)_{2}\right] \mathrm{Cs}_{2}\right.$ e $\left[\mathrm{Cu}(\mathrm{dmt})_{2}\right] \mathrm{Cs}_{2}$ na região do S 1s: $2.468,2 \mathrm{eV}, 2.468,6 \mathrm{eV}$ e $2.468,0 \mathrm{eV}$.

CAPES, CNPq e FAPERJ

[^96]
XIV Simpósio Brasileiro de Quimica Teorica (SBQT)

DFT STUDY OF THE ACTIVATION BARRIER FOR INTRAMOLECULAR 1,5-HYDROGEN SHIFT IN INTERMEDIATE RADICALS DERIVED FROM ARTEMISININ.

Martha T. de Araujo ${ }^{\text {a }}$ (PQ), José Walkimar de M. Carneiro ${ }^{\text {b }}$ (PQ) ${ }^{*}$ and Alex G. Taranto c (PQ)
${ }^{a}$ Departamento de Físico-Química, ${ }^{b}$ Departamento de Química Inorgânica, "(walk@vm.uff.br) ${ }^{a, b}$ Universidade Federal Fluminense, Outeiro de São João Batista, s/n, 24020-150, Niterói, RJ, Brazil. ${ }^{\text {a }}$ Departamento de Saúde, Universidade Estadual de Feira de Santana, Br 116, km 03, 44031-460, Feira de Santana.
Keywords: Malaria, Artemisinin, Mechanism of action, DFT, 1,5 hydrogen transfer.

Malaria has been described as the most prevalent and severe infection among the tropic diseases. The prevalent type of malaria is caused by the parasite Plasmodium falciparum, which has acquired resistance to the traditional clinical treatments. The advance in the chemotherapy has come from the natural product artemisinin (Figure 1) and its derivatives, due to their potent activity and low toxicity.

Figure 1: artemisinin structure
The mechanism of action of artemisinin is still under debate. It has been suggested that the mechanism is mediated by heme $\mathrm{Fe}(\mathrm{II})$ ion present in the parasite vacuole or in the erythrocytes they infect. It may be accepted that the reaction between artemisinin and $\mathrm{Fe}(\mathrm{II})$ starts with a single electron transfer from the $\mathrm{Fe}(\mathrm{II})$ ion to the peroxide bond resulting in two possible O-centred radical (radical on O_{1} or on O_{2}) anions. These may then undergo rearrangement by intramolecular 1,5 hydrogen shift to produce a secondary C_{4}-centred radical, which is presumed to be a potentially cytotoxy species. This process may cause morphological changes in the parasite with its consequent inactivation. In a previous study we used the DFT B3LYP method with the $6-31 \mathrm{G}(\mathrm{d})$ basis set to calculate relative energies of intermediates and key transition states of the mechanism of decomposition of artemisinin. Secondary C_{4}-centred radical was found as the most stable ones. The activation energy of $23.62 \mathrm{kcal} / \mathrm{mol}$ was found for 1,5 hydrogen shift in artemisinin. It also has been observed the enlargement of the $\mathrm{C}_{3}-\mathrm{O}_{13}$ bond lenght, going from $1.520 \AA$ to $1.582 \AA$, which was considered to be the main origin for the high activation energy for this intramolecular hydrogen shift. In this case, it could be predict that the migration of the hydrogen atom is coupled with
breaking. of the $\mathrm{C}_{3}-\mathrm{O}_{13}$ bond, forming after rearrangement a stable intermediate with a double bond between C_{3} and O_{2} [1].

Resulf anceriscussiop

To test the hypothesis described above, in the present work we employed the same methodology to calculate the activation barriers for intramolecular 1,5-hydrogen shift of several compounds derived from artemisinin. These compounds have the O_{13} and/or the carbonyl group replaced by a methylene group and lower antimalarial potency (Figure 2). Similarly to the results obtained before, for the present compounds we also found a high activation energy, with values between 22.0 and $24.5 \mathrm{kcal} / \mathrm{mol}$.

2

3

4

5

Figure 2: Artemisinin derivatives with the oxygen O_{13} and/or the carbonyl group replaced by a CH_{2} unit.

Gonelision

From these results, we can conclude that although all anionic species with radical centred on C_{4} are more stable, the O-centred radical may survive for a time long enough to have some activity. Additionally, the low probability of cleavage of the $\mathrm{C}_{3}-\mathrm{C}_{13}$ bond to form stable intermediates may be related to the lower antimalarial activity of these derivatives.

Achamedolinemis

CAPES, CNPq
${ }^{1}$ Taranto, A.G; Carneiro, J.W.M. and Araujo, M.T. de, Bioorganic \& Medicinal Chemistry 2006, 14, 1546-1557.

INTERACTION BETWEEN ARTEMISIIIN AND HEMIN ${ }^{+}$ION.

A DFT STUDY OF STRUCTURES AND INTERACTION ENERGIES

Martha T. de Araujo ${ }^{\text {a }}(\mathrm{PQ})$, Lílian Weitzel C. Paes ${ }^{\text {b }}(\mathrm{PQ})$, José Walkimar de M. Carneiro ${ }^{\text {b }}$ (PQ) ${ }^{*}$ and Alex G. Taranto ${ }^{\mathrm{c}}$ (PQ)
${ }^{a}$ Departamento de Físico-Química, ${ }^{b}$ Departamento de Química Inorgânica *(walk@vm.uff.br), a, bUniversidade Federal Fluminense, Outeiro de São João Batista, sln, 24020-150, Niterói, RJ, Brazil. ${ }^{〔}$ Departamento de Saúde, Universidade Estadual de Feira de Santana, Br 116, km 03, 44031-460, Feirà de Santana, BA, Brazil.
Keywords: Artemisinin, Hemin, Heme, DFT, Malaria.

Human malaria is caused by four protozoa parasite types of the genus Plasmodium. Among them, P. Falciparum is the most virulent. Currently, artemisinins form the most important class of antimalarial available due to their effectiveness against parasites resistance [1]. Their activity is undoutbtfully due to the peroxide function. Studies have shown that the reactivity of the peroxide function of artemisinin is related to the following metabolic pathway. Malaria parasite digests the host hemoglobin within its food vacuole to provide itself with aminoacids and to build its own proteins. In this metabolic process, the hemoglobin is degraded into the potentially toxic Fe (II)-heme, which is rapidly oxidized to Fe(III)-heme (hemin ${ }^{+}$ion) figure 1.

Figure 1: Fe (III)-heme (hemin ${ }^{+}$ion) structure coordinated to a histidine residue

The activation of artemisinins may produce covalent heme-artemisinin adducts via alkylating free radicals formed by this process. The accumulation of these adducts in the parasites should be toxic and cause their consequent inactivation [1].
In the present work, we study the interaction between the hemin ${ }^{+}$ion and the artemisinin figure 2.

Figure 2: hemin ${ }^{+}$ion and the artemisinin complex
In a previous work [2], we studied the interaction between the Fe (II)-heme and the artemisinin by means of DFT/UB3LYP calculations using several hybrid basis sets and the LANL2DZ pseudopotential for the iron atom. The hybrid (3-21G $+6-31 \mathrm{G}(\mathrm{d})$) and
the 6-31G(d) basis set show that, for Fe II-heme, the quintet spin state is most stable. For the complexes between heme and artemisinin the quintet state is the most stable at long distances while at short distances the quintet and the septet states are almost isoenergetic. Evaluation of the electron transfer process from the heme group to artemisinin indicated that it involves an activation energy lower than $10 \mathrm{kcal} / \mathrm{mol}$, supporting the possibility that artemisinin reduction may be an important step for its activation.

In order to better represent the coordination environment found in hemoglobin, we added a histidine residue to one of the pseudoaxial positions of the hemin unit, which coordinated to the iron Fe^{+3} ion through its sp^{2} nitrogen atom. The calculations were done using the hybrid basis set described above for three different electronic spin states (doublet, quartet and sextet). Our preliminary results show that, for hemin ${ }^{+}$ion coordinated to a histidine residue, the sextet spin state is $6.1 \mathrm{kcal} / \mathrm{mol}$ more stable than the doublet state but only $0.5 \mathrm{kcal} / \mathrm{mol}$ more stable than the quartet spin state. Comparison of the dihedral angles taken as a measure of the degree of planarity of the porphirinic ring show that the quartet spin state has a less distorted geometric arrangement which is closer to X-ray crystal structure of Fe (II)-heme. Similar results were found for hemin ${ }^{+}$group without histidine residue. Calculations of the hemin ${ }^{+}$ion-artemisinin complexes at different distances, for both quartet and sextet spin states are in progress.

For Fe (III)-heme coordinated to a histidine residue and without histidine residue, the DFT calculations show that the sextet spin state is more stable than the quartet and doublet spin states, in this order. The results show the sextet spin state has the most distorted geometry.

4SThomie onielis

CAPES, CNPq, FAPERJ.

[^97]
The Nature or the pu-no Bond in trans-[Rullel(NO)(NH3)4] ${ }^{2+/+}$ AND TRANS-[RU"CL(NO)(MAC)] ${ }^{2+/+}$ COMPLEXES (MAC $=$ TETRAAZAMACROCYCLIC LIGANDS)

Giovanni F. Caramori* (PQ) and Gernot Frenking (PQ)

Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse, D-35032 Marburg, Germany. caramori@chemie.uni-marburg.de
Keywords: Ruthenium nitrosyl complexes, cyclam, AIM, NBO, and energy decomposition analysis EDA. indicate that the $\Delta \mathrm{E}_{\text {int }}$ is much more negative for 2 and 3 than for 1 . It is atributed to the increase of the orbital $\Delta \mathrm{E}_{\text {orb }}$, and to the decrease of the electrostatic contribution, $\Delta \mathrm{E}_{\text {int }}$. The complexes have C_{s} symmetry with irreducible representation a' and $\mathrm{a}^{\prime \prime}$.The orbital interactions can be separated into σ and π. An increase of the $\Delta \mathrm{E}_{\pi}$ component is observed from 1 to 3 . The largest contribution to $\Delta \mathrm{E}_{\text {orb }}$ stems from the π-back-donation interaction, which yields $83.4 \%-85.9 \%$ of the total covalent bonding in the complexes. A similar trend was also observed after the reduction of NO^{+}group to NO°.
 (1) and trans-[Ru" $(\mathrm{mac})(\mathrm{Cl}) \mathrm{NO}^{2+}$, $(2-3)$ complexes at BP86/TZ2P ${ }^{\text {a }}$

Parameters	1	2	3
	GS	GS	GS
symmetry	C_{s}	C_{s}	$\mathrm{C}_{\text {s }}$
$\Delta \mathrm{E}_{\text {int }}$	-69.2	-94.9	-97.8
$\Delta \mathrm{E}_{\text {pauli }}$	144.2	157.5	157.1
$\Delta \mathrm{E}_{\text {elstat }}$	46.3	38.5	37.4
$\Delta \mathrm{E}_{\text {orb }}$	-259.6	-290.9	-292.3
$\Delta \mathrm{E}_{\left(\mathrm{A}^{\prime}\right)}$	-151.3	-166.4	-166.8
$\Delta \mathrm{E}_{\left(\mathrm{A}^{\prime \prime}\right)}$	-108.3	-124.5	-125.5
$\Delta \mathrm{E}_{\text {G }}$	-43.0	-41.9	-41.3
$\Delta \mathrm{E}_{\pi}{ }^{\text {b }}$	-216.6	-249.0	-251.0
	(83.4\%)	(85.6\%)	(85.9\%)
- $\mathrm{D}_{\text {e }}$	-58.7	-79.7	-82.1
$\Delta \mathrm{E}_{\text {prep }}$	10.5	15.2	15.7
$\mathrm{q}(\mathrm{f} 1)^{\text {c }}$	1.81	1.88	1.89
$\mathrm{q}(\mathrm{f} 2)$	0.19	0.12	0.11

*Energy contributions in kcal.mol ${ }^{-1}$. ${ }^{\text {b }}$ The value in parentheses gives the percentage contribution to the total orbital interactions, $\Delta \mathrm{E}_{\text {orb }}$. CHirshfeld charges for fragments

Cong us on

Not only the EDA, but also, geometries, NBO, and AIM analyses are convergent, indicating that the Ru-NO bonds become stronger when tetraazamacrocycles are employed as equatorial ligands while a weakening of the $\mathrm{Ru}-\mathrm{Cl}$ bond is observed as well.

The authors thank the computer center at HRZ Marburg. G. F Caramori thanks the CNPq - Brasil, for a post-doctoral scholarship (grant: 200786/2006-7).

[^98]
DESENVOLVIMENTO E TEORIA GAUSSIAN-3 + CEP (G3CEP) EM CÁLCULOS DE BARREIRAS DE ROTAÇÃO.

Lucas Colucci Ducati (PG), Roberto Rittner (PQ), Rogério Custodio* (PQ). roger@iqm.unicamp.br.

Instituto de Química, UNICAMP - Caixa Postal 6154; CEP-13084-862.
Palavras Chave: G3, Barreira de Rotação, ECP, CEP.

1THT3 1 U(086)

O método G3, tem sido utilizado para predição de dados termoquímicos experimentais com boa precisão a baixo custo computacional. ${ }^{1}$
Outra opção para minimizar o custo computacional sem perda significativa de precisão é o uso de ECP para "simplificar" as funções de base utilizadas.
Esta opção tem sido evitada por falta de desenvolvimento apropriado. Neste trabalho utilizamos uma nova combinação do método G3 incluindo o pseudo potencial do tipo CEP para predição de barreira de rotação. ${ }^{2}$
Detalhes do método estão sendo apresentados em outro trabalho.

hesultalos c biscricsalo

A superfície de energia potencial (SEP) G3CEP (Figura 1, esquerda) para $\mathrm{H}_{2} \mathrm{O}_{2}$ superestima a energia experimental da maior barreira ($\mathrm{H}-\mathrm{O}-\mathrm{O}-\mathrm{H}=$ 0°) em $12,38 \%$ e subestima a menor em $9,02 \%$ ($\mathrm{H}-$ $\mathrm{O}-\mathrm{O}-\mathrm{H}=180^{\circ}$). Entretanto reproduziu fielmente a conformação mais estável obtida experimentalmente ${ }^{3}$ (anticlinal, $\mathrm{H}-\mathrm{O}-\mathrm{O}-\mathrm{H}=110^{\circ}$).
Para o $\mathrm{H}_{3} \mathrm{COH}$, a SEP (Figura 1, direita) calculada subestima a energia das barreiras experimentais ($\mathrm{H}-\mathrm{C}-\mathrm{O}-\mathrm{H}=0^{\circ}$ e 120°) em $11,89 \%$, predizendo corretamente a conformação estável (sinclinal, H-$\mathrm{C}-\mathrm{O}-\mathrm{H}=60^{\circ}$) obtida experimentalmente ${ }^{4}$.

Figura 1. Barreira de energia potencial do peróxido de hidrogênio (esquerda) e metanol (direita) em nível G3CEP.

A SEP da $\mathrm{H}_{4} \mathrm{~N}_{2}$ (Figura 2, esquerda) superestima a energia da maior barreira ($\mathrm{H}-\mathrm{N}-\mathrm{N}-\mathrm{H}=0^{\circ}$) em $5,25 \%$. Entretanto para menor barreira ($\mathrm{H}-\mathrm{N}-\mathrm{N}-\mathrm{H}=$ 180°) esse valor é subestimando $7,62 \%$. Contudo o confôrmero mais estável apresentado é o mesmo que o obtido experimentalmente ${ }^{5}$ (sinclinal, H-N-N$H=90^{\circ}$).
Para a $\mathrm{H}_{3} \mathrm{CNH}_{2}$ a superficie de energia potencial também subestima a energia da barreira de rotação experimental ($\mathrm{H}-\mathrm{C}-\mathrm{N}-\mathrm{H}=0^{\circ}$ e 120°) em 4,55\% entretanto, reproduzir fielmente a conformação experimental (sinclinal, $\mathrm{H}-\mathrm{C}-\mathrm{N}-\mathrm{H}=$ 60°) mais estável ${ }^{6}$ (Figura 2, direita).

Para a $\mathrm{H}_{6} \mathrm{C}_{2}$, a SEP (Figura 3) subestimou a energia experimental da barreira de rotação (H-C-$\mathrm{C}-\mathrm{H}=0^{\circ}$ e 120°) em $2,75 \%$, sendo que confôrmero sinclinal ($\mathrm{H}-\mathrm{C}-\mathrm{C}-\mathrm{H}=60^{\circ}$) é o mais estável, o que condiz com os dados experimentais. ${ }^{7}$

Figura 2. Barreira de energia potencial da hidrazina (esquerda) e metilamina (direita) em nível G3CEP.

Figura 3. Barreira de energia potencial do etano em nível G3CEP.

Dentre todas as energias que constituem a energia G3CEP a componente MP4CEP é responsável 99% da energia total do método, sendo que as correções da base G3LargeCEP e E(2DF,P)CEP contribuem com aproxidamente 0,5\% cada. Apesar de pequenas, essas correções influenciam na altura das barreiras das SEP.

Conclisercs

O método G3CEP apresentou desvio máximo de até 8% de resultados G3; e de $2,75 \%$ a $12,38 \%$ de resultados para as barreiras de rotação experimentais, sendo que a contribuição EMP4CEP é responsável por 99\% da energia total G3CEP e as correções E(G3Large)CEP e E(2DF,P)CEP são determinantes na modulação das barreiras rotacionais.

FAPESP, CNPq e CAPES.

[^99]
On relationship between Core-electron binding energy shift and Taft Inductive Constant (Σ_{1}) in CYCLOHEXANE DERIVATIVES.

Yuji Takahata (PQ)*

Department of Chemistry, State University of Campinas, Cidade Universitária Zeferino Vaz, Distrito de Barão Geraldo, Campinas 13084-862, Brazil, taka@iqm.unicamp.br
Palavras Chave: CEBE, $\sigma_{I}, D F T$, cyclohexanes.

According to Taft ${ }^{1}$, Hammett substituent constants at para (σ_{p}) and metha (σ_{m}) positions of a substituted benzene, can be given by the sum of inductive σ_{l} and resonance σ_{R} contributions: $\sigma_{\mathrm{p}}=\sigma_{\mathrm{t}}$ $+\sigma_{\mathrm{R}}$, and $\sigma_{\mathrm{m}}=\sigma_{1}+0.33 \sigma_{\mathrm{f}}$. If experimental σ_{p} and σ_{m} are substituted into the two equations, experimental σ_{1} and σ_{f} values can be obtained ${ }^{2}$. Because benzene ring is a system, substitution effect on the ring atoms is caused by both inductive(I) and resonance(R) effect. The inductive effect exerts through -bonds, while resonance effect through -bonds. In the present work we assume that there exists a linear relationship between core-electron binding energy shift(CEBE) and σ_{1} in -systems such as cyclohexane derivatives $\mathrm{C}_{6} \mathrm{H}_{11}-\mathrm{X}$. Substituent effect in cyclohexane derivatives is only through inductive. There is no resonance effect in the -systems. The object of the present work is to investigate the relation between CEBE of cyclohexane derivatives $\mathrm{C}_{6} \mathrm{H}_{11}-\mathrm{X}$ and the experimental σ_{1}. The CEBEs of ring carbon atoms in cyclohexane derivatives were calculated using DFT with the previously established scheme ${ }^{3}$: $\Delta \mathrm{E}_{\mathrm{KS}}$ (PW86x-PW91c/TZP+C Cel $_{\text {re }} / / / \mathrm{HF} / 6-31 \mathrm{G}^{*}$. Molecular geometry was optimized with HF/6-31G**. We used the Amsterdam Density Functional (ADF) package to calculate CEBEs in this study.

Resulis eniscussions

Table 1 lists \triangle CEBEs, in unit of eV , at ortho, meta and para carbon atom in cyclohexane derivatives. Also listed is experimental Taft inductive constant $\left(\sigma_{\mathrm{t}}\right)$. The numerical \triangle CEBE values are generally close to those of σ_{1}. Agreement between \triangle CEBE and σ_{1} is especially good for electron withdrawing substituents such as NO2, CN, CHO. Table 2 lists results of linear regression in a form of $Y=A+B * X$ between $\sigma_{1}(=Y)$ and $\triangle \operatorname{CEBE}(=X)$ for the three data sets, ortho, meta and para in Table 1. The quality of fitting is almost identical for meta and para data sets. Correlation coefficient (R) for the meta data set is 0.94 , which is the highest among the three. Its standard deviation (SD) is 0.07 . Fig. 1 plots the linear regression for the meta data set.
Table 1. \triangle CEBE (in eV) of cyclohexane derivative vs. Taft inductive constant σ_{l}

Substituent	Δ CEBE	Δ CEBE	Δ CEBE	σ_{\perp}
	C2(ortho)	C3(meta)	C4(para)	
NO_{2}	0.74	0.633	0.544	0.70
CN	0.696	0.568	0.506	0.60
CHO	0.434	0.348	0.32	0.37
COOH	0.137	0.181	0.177	0.30
COMe	0.279	0.233	0.232	0.31
F	0.295	0.384	0.307	0.48
OH	0.015	0.166	0.132	0.33
Me	-0.121	-0.036	-0.027	-0.01
$\mathrm{CH}=\mathrm{CH}_{2}$	-0.074	0.014	0.025	0.16
OMe	-0.069	0.111	0.077	0.31
NH_{2}	-0.073	0.049	0.02	0.31

Table 2. Llinear regression $\mathrm{Y}=\mathrm{A}+\mathrm{B}^{*} \mathrm{X}$ between σ_{1} ($=\mathrm{Y}$) and \triangle CEBE ($=\mathrm{X}$). R: correlation constant, SD: standard deviation, n : number of samples

	A	B	R	SD	n
ortho	0,24	0,55	0,87	0,1	11
meta	0,15	0,83	0,94	0,07	11
para	0,16	0,92	0,91	0,08	11

Figura 1. Linear regression between σ_{l} and $\triangle C E B E$ of meta carbon.

Conimblons

High correlation was observed between $\triangle C E B E$ at meta (and para) carbon atom in cyclohexane derivative and experimental Taft inductive constant (σ_{1}). Numerical value of \triangle CEBE expressed in unit of eV coincides close to that of σ_{1}.

A Whicerargimemb

FAPESP, CNPq

[^100]
CORREÇÃO DE ANARMONICIDADE DO TRANS-ÁCIDO FÓRMICO.

Marcelo de Sousâ ${ }^{1 *}$ (PG), Yoshiuky Hase ${ }^{1}$

${ }^{1}$ DFQ-IQ-Unicamp, CP 6154, CEP 13084-862, Campinas, $S P$
*sousa@iqm.unicamp.br
Palavras chaves: correcão de anarmonicidade, ácido fórmico, freqüências harmônicas.
eram 5.62. Pode ser visto que os coeficientes de correção de anarmonicidades dos modos de estiramentos $\mathrm{OH}(1,077)$ e $\mathrm{CH}(1,086)$ eram os maiores e apresentavam módulos relativamente próximos. Da mesma maneira os coeficientes dos outros modos de vibração também apresentavam valores aproximados entre si. Visto esta proximidade entre estes coeficientes um novo ajuste foi submetido. Agora, considerando um coeficiente para os modos de estiramentos OH e CH e outro para todos os modos no plano. A tabela a seguir mostra os coeficientes obtidos com o novo ajuste,
2. Coeficientes de correção de anarmonicidades

Esti. OH e CH	1,080
Outros modos	1,029

Para estes coeficientes as diferenças médias entre as frequaências harmônicas corrigidas por Dennison e as freqüências harmônicas calculadas eram 6,12.
Neste sentido, pode ser visto que dois entre aqueles sete coeficientes puderam explicar a correção de anarmonicidade para molécula que foi estudada.

Este trabalho mostrou uma maneira uma menos complicada de se fazer a correção de anarmonicidade para o trans-ácido fórmico. Assim, a partir destes resultados há o interesse de se expandir este método e estes coeficientes para se fazer a correção de anarmonicidade de moléculas mais complexas.

```
Ma|ro|mmemios
```

O autor(M.S) deste trabalho agradece ao CNPq pela bolsa de estudos concedida (processo 135177/2005-7)

[^101]Para estes coeficientes a diferença média entre as freqüências harmônicas corrigidas por Dennison e freqüências harmônicas calculadas

ANÁLISE DE COORDENADAS NORMAIS DO DÍMERO DO ÁCIDO FÓRMICO UTILIZANDO UM CAMPO DE FORÇA CCSD.

Marcelo de Sousa (PG) ${ }^{1 *}$, Luciano N. Vidal (PG) , Yoshiyuki Hase (PQ) e Pedro A. M. Vazquez ${ }^{1}$ (PQ).
*sousa@iqm.unicamp.br
${ }^{1}$ DFQ-IQ-UNICAMP, CP 6154, CEP 13084-862, Campinas, SP.
Palavras Chave: Ácido Fómico - dímero, Campo de Força, Analise de Coordenadas Normais, CCSD, Potential Energy Distribution.

Flinlormabo

As constantes de força quadráticas do dímero do ácido fórmico foram calculadas utilizando o método Coupled Clüster com excitações simples e duplas, CCSD, com funções de base correlation consistent dupla- ζ aumentadas, aug-
 tratamento de coordenadas normais para determinar a Distribuição de Energia Potencial e, por conseguinte, obter uma atribuição para os modos normais de vibração do dímero neste campo de força. Para fins de comparação, campos de força quadráticos também foram calculados nos níveis Hartree-Fock, MP2 e B3LYP, com bases aug-cc-pVDZ, e comparados com as previsões do método CCSD.

As frequências harmônicas CCSD/aug-cc-pVDZ são comparadas com os valores medidos, relativos à transições fundamentais, onde o método de scaling é aplicado sobre os valores observados para que se possa obter uma estimativa das frequências harmônicas experimentais. Em virtude da restrição de espaço, somente as frequências dos modos de simetria A_{g} são listados na Tabela I, que contém valores MP2, B3LYP, CCSD e experimentais das frequências vibracionais do dímero.

Conctusors

Restringindo a análise dos resultados somente às frequências das vibrações A_{g} listadas na Tabela I, a previsão dos métodos B3LYP, MP2 e CCSD são similares a bastante satisfatórias, quando comparadas aos valores observados experimentalmente. Por outro lado, quando todas
as 24 freqüências fundamentais do dímero do ácido fórmico são tomadas para análise, observase um menor desvio entre as freqüências observadas às calculadas no nível de teoria CCSD/aug-cc-pVDZ. Isso mostra que os métodos mais sofisticados, que incluem a correlação eletrônica, descrevem o campo de força com mais precisão.

Tabela I. Frequências harmônicas calculadas e experimentais (em cm-1) das vibrações de espécie A_{g} do dímero de ácido fórmico.

	MP2	B3LYP	CCSD	EXP ${ }^{1}$
$v_{1}\left(\mathrm{a}_{\mathrm{g}}\right)$	3160,82	3085,20	3330,89	3195,86
$v_{2}\left(\mathrm{a}_{\mathrm{g}}\right)$	3151,26	3072,17	3136,51	3105,30
$v_{3}\left(\mathrm{a}_{\mathrm{g}}\right)$	1690,49	1686,18	1732,68	1694,05
$v_{4}\left(\mathrm{a}_{\mathrm{g}}\right)$	1478,55	1478,03	1487,11	1435,38
$v_{5}\left(\mathrm{a}_{\mathrm{g}}\right)$	1393,68	1386,65	1404,63	1394,80
$v_{6}\left(\mathrm{a}_{\mathrm{g}}\right)$	1240,69	1254,37	1238,55	1231,48
$v_{7}\left(\mathrm{a}_{\mathrm{g}}\right)$	672,27	680,17	675,80	686,75
$v_{8}\left(\mathrm{a}_{\mathrm{g}}\right)$	211,39	211,11	198,37	no
$v_{9}\left(\mathrm{a}_{\mathrm{g}}\right)$	169,94	174,19	165,29	138,97

Os autores agradecem ao CENAPAD-SP pelos recursos computacionais alocados. MS e LNV agradecem ao CNPq (processos 135177/2005-7 e 141888/2004-0, respectivamente) pelas bolsas de estudo concedidas.

[^102]THE LOWEST=LYING SINGLET AND TRIPLET ELECTRONIC STATES OF RHB

Antonio Carlos Borin ${ }^{1, *}$ (PQ) and João Paulo Gobbo ${ }^{1}$ (PG)

*ancborin@iq.usp.br
${ }^{1}$ Instituto de Química, Universidade de São Paulo, Av. Professor Lineu Prestes 748, 05508-900, São Paulo, SP, Brazil Palavras Chave: Transition Metal Borides, Rhodium Boride and Diatomics.

lhmod Matom

There has been a great interest in transition metal compounds because of their importance in high temperature physics and catalysis, for instance. Despite of it, very little is known about transition metal borides, of which RhB is the only species that has been studied experimentally ${ }^{1}$. But, the experiment is not conclusive and the authors have risen a question about the electronic nature of the so called $[20.0]^{1} \Sigma^{+}$excited state. In order to answer the questions posed by the experimentalists, in this work we have investigated the lowest-lying singlet and triplet electronic states of RhB, employing the CASSCF/CASPT2 approach, with quadruple-zeta basis sets. Relativistics corrections were taken into account through Douglas-Kroll approximation.

Result ano bliccussion

The potential energy curves for the lowest-lying states of RhB are shown in Fig. 1 and spectroscopic constants are in Table 1.

Figure 1. Potential Energy Curves for RhB.
Table 1. Spectroscopic constants for the experimentally observed states.

State	$\mathrm{R}_{0}(\AA)$	$\omega_{\mathrm{e}}\left(\mathrm{cm}^{-1}\right)$	$\Delta \mathrm{G}_{1 / 2}\left(\mathrm{~cm}^{-1}\right)$	$\mathrm{T}_{0}\left(\mathrm{~cm}^{-1}\right)$
$\mathrm{X}^{\top} \Sigma^{+}$	1.698	924	922	0
Exp.	1.691		920	0
$\mathrm{D}^{\top} \Sigma^{\dagger}$	1.823	750	712	20700
Exp.	1.818		628	19979

Our findings ${ }^{2}$ corroborate the interpretation given by Chowdhury and Balfour ${ }^{1}$ to the ground state $\left(X^{1} \Sigma^{+}\right)$, which is described by a single configuration, (0.92)|... $10 \sigma^{2} 11 \sigma^{2} 5 \pi^{4} 2 \delta^{4}>$. As to the $[20.0]^{1} \Sigma^{+}\left(D^{1} \Sigma^{+}\right)$state, which could not be determined experimentally, our results indicate that its wave function $\left((0.85) \mid \ldots 10 \sigma^{2} 11 \sigma^{1} 5 \pi^{4} 2 \delta^{4} 12 \sigma^{1}>\right)$ differs from that of the ground state by a single excitation, $11 \sigma \rightarrow$ 12σ.

We have also found three other electronic states below the $[20.0]^{1} \Sigma^{+}$state: $A^{1} \Delta\left(R_{e}=1.777\right.$ $\AA, \omega_{e}=793 \mathrm{~cm}^{-1}$ and $\left.T_{e}=9221 \mathrm{~cm}^{-1}\right), \mathrm{B}^{1} \Pi\left(R_{e}=\right.$ $1.893 \AA, \omega_{e}=657 \mathrm{~cm}^{-1}$ and $T_{e}=18881 \mathrm{~cm}^{-1}$) and $C^{1} \Phi\left(R_{e}=1.810 \AA, \omega_{e}=694 \mathrm{~cm}^{-1}\right.$ and $T_{e}=20551$ $\left.\mathrm{cm}^{-1}\right)$. The $A^{1} \Delta$ state differs from the $X^{1} \Sigma^{+}$state by a single excitation of the type $2 \delta \rightarrow 12 \sigma$, while the B and C states differ from the ground state by a single excitation of the type $2 \delta \rightarrow 6 \pi$.

The others low-lying states are: $a^{3} \Delta\left(R_{e}=\right.$ $1.782 \AA, \omega_{e}=805 \mathrm{~cm}^{-1}$ and $\left.T_{e}=7337 \mathrm{~cm}^{-1}\right), \mathrm{b}^{3} \Sigma^{+}$ $\left(R_{e}=1.782 \AA, \omega_{e}=800 \mathrm{~cm}^{-1}\right.$ and $T_{e}=14628 \mathrm{~cm}^{-}$ $\left.{ }^{1}\right), c^{3} \Pi\left(R_{e}=1.902 \AA, \omega_{e}=630 \mathrm{~cm}^{-1}\right.$ and $T_{e}=$ $\left.19453 \mathrm{~cm}^{-1}\right), E^{1} \Pi\left(R_{e}=1.823 \AA, \omega_{e}=741 \mathrm{~cm}^{-1}\right.$ and $\left.T_{e}=22455 \mathrm{~cm}^{-1}\right), d^{3} \Phi\left(R_{e}=2.106 \AA, \omega_{e}=\right.$ $493 \mathrm{~cm}^{-1}$ and $\left.T_{e}=25407 \mathrm{~cm}^{-1}\right)$ and $e^{3} \Pi\left(R_{e}=\right.$ $2.083 \AA, \omega_{\mathrm{e}}=584 \mathrm{~cm}^{-1}$ and $\mathrm{T}_{\mathrm{e}}=27657 \mathrm{~cm}^{-1}$).

TOMC [BIOM

In agreement with the experimental findings, the RhB ground state was identified as being the $X^{1} \Sigma^{+}$state. However, in contrast to the proposed explanation, the low-lying $[20.0]^{1} \Sigma^{+}$ state located at $20700 \mathrm{~cm}^{-1}$ (experimental: 19979 cm^{-1}) is dominated by the $\mid \ldots 10 \sigma^{2} 11 \sigma^{1} 5 \pi^{4} 2 \delta^{4} 12 \sigma^{1}>$ electronic configuration. Other singlet and triplet electronic states have been studied, thus supplying important information to help understanding the nature of this transition metal diatomic species.

FAPESP, CNPq

[^103]
A THEORETICAL STUDY OF BINDING AND ELECTRONIC SPECTRUM OF THE MO M_{2}

Antonio Carlos Borin ${ }^{1, *}$ (PQ), João Paulo Gobbo ${ }^{1}$ (PG) and Björn O. Roos ${ }^{2}$

*ancborin@iq.usp.br
${ }^{1}$ Instituto de Química, Universidade de São Paulo, Av. Professor Lineu Prestes 748, 05508-900, São Paulo, SP, Brazil ${ }^{2}$ Departament of Theoretical Chemistry, Chemical Center, P. O. Box 124, S-22100, Lund, Sweden

Palavras Chave: Transition Metal Dimers, Molybdenum dimer, metal-metal multiple bond

Thincomerion

During the last decade, theoretical and experimental methods have contributed to increase our knowledge on the nature of metalmetal chemical bond between transition metal atoms, which has been important to our understanding of both technological and fundamental features, such as chemisorption and catalysis of surface chemical reactions. If one focuses on the metal-metal bonding aspects, the group VIB transition metal dimers $\left(\mathrm{Cr}_{2}, \mathrm{Mo}_{2}\right.$ and W_{2}) have the possibility to form chemical bonds of order six, involving the nd and the ($n+1$)s atomic orbitals. In this work ${ }^{1}$ we have tried to clarify the chemical bond and the electronic spectrum of Mo_{2} with the CASSCF/CASPT2 approach, with extended basis sets (ANO-RCC type) and inclusion of scalar relativistic effects (Douglas-Kroll-Hess approximation).

Resulis and liscussion

The potential energy curves for the seven low-lying singlet and triplet states of Mo_{2} are shown in Figure 1.

Figure 1. Potential Energy Curves for Mo_{2}.

The ground state of the Mo atom is ${ }^{7} \mathrm{~S}_{3}$ with electronic configuration $4 d^{5} 5 s^{1}$, with the first excited state of the same configuration 1.33 eV
above it. So, the ${ }^{1} \Sigma_{\mathrm{g}}{ }^{+}$is the ground state, and dissociates to two ground state atoms. The six unpaired electrons on each atom can, in principle, form a sextuple bond. This is what happens to Mo_{2}, to a greater extent than in Cr_{2}. The computed spectroscopic constants for the X state corresponds to an equilibrium internuclear distance of $1.950 \AA, \omega_{e}=459 \mathrm{~cm}^{-1}$ and a dissociation energy of 4.41 eV , that is in good agreement with the experimental values ${ }^{3}$ (1.938 $\AA, 477 \mathrm{~cm}^{-1}$ and 4.28 eV for $\mathrm{R}_{\mathrm{e}}, \omega_{\mathrm{e}}$ and D_{0} respectively).

The effective bond order ${ }^{1,2}$ for the ground state is 5.2 , indicating that its multiplicity is actually close to 6 . Its wave function is dominated by one configuration (0.81)| $9 \sigma_{\mathrm{g}}{ }^{2} 2 \delta_{\mathrm{g}}{ }^{4} 10 \sigma_{\mathrm{g}}{ }^{2} 5 \pi_{\mathrm{u}}{ }^{4}>$.

The first excited state is computed to be the $\mathrm{a}^{3} \Sigma_{\mathrm{u}}{ }^{+}\left(\mathrm{R}_{\mathrm{e}}=2.063 \AA, \omega_{\mathrm{e}}=393 \mathrm{~cm}^{-1}\right.$ and $\mathrm{T}_{\mathrm{e}}=$ $8192 \mathrm{~cm}^{-1}$) in agreement with experiment values $\left(\omega_{\mathrm{e}}=393 \mathrm{~cm}^{-1}\right.$ and $\left.\mathrm{T}_{\mathrm{e}}=8023 \mathrm{~cm}^{-1}\right)$. This state differs from the ground state by a $\delta_{g} \rightarrow \delta_{u}$ excitation.

The others low-lying states are: $\mathrm{b}^{3} \Sigma_{\mathrm{u}}{ }^{+}\left(\mathrm{R}_{\mathrm{e}}\right.$ $=1.931 \AA, \omega_{e}=581 \mathrm{~cm}^{-1}$ and $\left.T_{e}=8912 \mathrm{~cm}^{-1}\right)$, $c^{3} \Gamma_{u}\left(R_{e}=2.010 \AA, \omega_{e}=447 \mathrm{~cm}^{-1}\right.$ and $T_{e}=15671$ $\left.\mathrm{cm}^{-1}\right), \mathrm{d}^{3} \Sigma_{\mathrm{u}}^{-}\left(\mathrm{R}_{\mathrm{e}}=2.008 \AA, \omega_{\mathrm{e}}=450 \mathrm{~cm}^{-1}\right.$ and $\mathrm{T}_{\mathrm{e}}=$ $\left.17990 \mathrm{~cm}^{-1}\right), A^{-1} \Sigma_{\mathrm{u}}{ }^{-}\left(\mathrm{R}_{\mathrm{e}}=2.004 \AA, \omega_{\mathrm{e}}=458 \mathrm{~cm}^{-1}\right.$ and $\left.T_{e}=18831 \mathrm{~cm}^{-1}\right)$ and $A^{1} \Sigma_{u}{ }^{+}\left(R_{e}=1.947 \AA, \omega_{e}\right.$ $=392 \mathrm{~cm}^{-1}$ and $\mathrm{T}_{\mathrm{e}}=20103 \mathrm{~cm}^{-1}$).

ConctusIOT

Based on the effective bond ${ }^{1,2}$ order analysis, the chemical bond between the molybdenum atoms in the $\mathrm{Mo}_{2} \mathrm{X}^{1} \Sigma_{\mathrm{g}}{ }^{+}$state can be described as a sextuple bond. We have also identified the experimentally observed $\mathrm{A}^{1} \Sigma_{\mathrm{u}}{ }^{+}$ state.

FAPESP, CNPq, Lund University.

[^104]
Estudo QSAR para Pirazolina e análogos com a atividade inibidora do Vírus do Nilo Ocidental ("West Nile Virus")

Michely Cristina Silveira ${ }^{1}$ (IC), Rafael Rodrigues do Nascimento ${ }^{1}$ (PG), Mariane Lopes de Paiva ${ }^{1}$ (PG) Aline Thaís Brunii* ${ }^{2 *}(P Q)$.
*atbruni@gmail.com
${ }^{\prime}$ Departamento de Fisica, IBILCE-UNESP. Rua Cristóvão Colombo, 2265. Jardim Nazareth. São José do Rio Preto, SP. ${ }^{2}$ Centro Universitário de Rio Preto (UNIRP). Rua Yvette Gabriel Atique, 45. Boa Vista São. José do Rio Preto, SP.

Palavras Chave: Pirazolina, Dengue, QSAR.

PMTHModredo
A dengue é uma doença que se tornou um problema mundial de saúde pública devido a sua rápida expansão. É causada por um arbovirus, membro do gênero Flavivirus pertencente à família dos Flaviviridae. Neste trabalho foram analisadas 13 estruturas contendo três substituintes para a Pirazolina. ${ }^{1}$ Estes compostos apresentam atividade de inibir o Vírus do Nilo Ocidental (West Nile Vírus), um dos membros da família Flaviviridae, do qual também fazem parte os vírus da dengue, da hepatite C (HCV), da febre amarela etc. A Figura 1 mostra a estrutura básica da Pirazolina e seis desses compostos com os respectivos substituintes e valores de atividade.

cmple	${ }^{11}$	${ }^{2}$		Ecomer Comme
	D		$\left.\mathrm{x}^{-1}\right)^{+0}$:" som
	0	${ }^{\prime}$	710	:\%
	$1)^{+}$	${ }^{\text {a }}$	7	19.8
	$1)^{+}$	${ }^{\text {a }}$	$3<$	c 0
	10t	*	-	19.300
	O_{6}		<	\% ${ }^{\text {tom }}$

Figura 1. Estrutura básica da Pirazolina e alguns de seus derivados.

O objetivo deste trabalho é determinar quais descritores teóricos estão associados às respostas biológicas desses compostos, possibilitando, assim, o esclarecimento de seus mecanismos de ação. Para o estudo, a análise conformacional foi conduzida e os confórmeros de menor energia foram otimizados pelo método semi-empírico AM1. Após a otimização, um cálculo single point com o método ab-initio HF/6-31G** foi realizado como o objetivo de se calcularem os descritores utilizados: valor da entalpia, dipolo, log_P, cargas parciais de Mülliken e eletrostáticas, energias de HOMO e LUMO, volume, área, ovalidade, eletronegatividade, massa molar. Todo esse procedimento foi realizado no programa SPARTAN'06 para Linux. Em relação à análise quimiométrica foram utilizados os programas de

Matlab e Pirouette; os dados foram autoescalados e submetidos às sub-rotinas correspondentes de PCA e PLS.

Resintore bleculseo

O gráfico de scores resultante da PCA mostrou que surgiram dentre os compostos estudados três classes distintas, privilegiando os três níveis de atividade: baixo (compostos $2,3,5,7,9,10,11,13$), médio (compostos 5 e 6) e alto (compostos 1 e 8). Para os loadings foi obtido o seguinte resultado:
PC1 $=0,5323$ Еномо $+0,3347 \mathrm{qR}_{3}-0,4914$ Dip_x 0,3675Volume.
PC2 $=0,6235$ E номо $+0,2437$ qR $_{3}-0,2943$ Dip_x 0,1275 Volume.
Para o modelo PLS foram encontrados bons coeficientes de correlação ($\mathrm{R}^{2}=0,91$ e $\mathrm{Q}^{2}=0,87$) para $\log E C_{50}$. O vetor de regressão ($Y=0,4028$ $\mathrm{E}_{\text {номо }}+0,3914 \mathrm{qR}_{3}+0,1085$ Dip_x $-0,2089$ Volume) mostra que a energia do HOMO e a carga eletrostática no substituinte R_{3} são as variáveis de maior influência na descrição da atividade. Para o $\log C_{50}$ não foi encontrada uma boa correlação.

concmberes

De acordo com os resultados obtidos, variáveis eletrostáticas e de estrutura foram importantes para descrever a atividade. O modelo PLS encontrou uma boa correlação com as variáveis teóricas estudadas, mostrando que para os derivados da Pirazolina a carga no substituinte na posição 3 e a energia do orbital molecular de mais alta energia ocupado (HOMO) são importantes para a construção de um modelo preditivo. Novas variáveis serão investigadas para a obtenção de uma correlação adequada com o $\operatorname{LogCC} 50$ e para a elucidação da influência dos substituintes na atividade desses compostos.

Renrogmonide

Agradecemos ao CENAPAD e ao Prof. Dr. Vitor Barbanti Pereira Leite pelos equipamentos e programas utilizados nos cálculos.

[^105]
The particle in the box in the momentum representation

Willian Hermoso* (PG), Fernando Rei Ornellas (PQ)
*whermoso@iq.usp.br
Instituto de Química, Universidade de São Paulo, Caixa Postal 26.077, São Paulo, 05513-970, São Paulo, Brazil Keywords: momentum representation, particle in the box.

HHROU CuTO1

Usually, the wavefunction is pictured in the position representation, but can also be pictured in the momentum representation. There are two ways to obtain these wavefunctions. One is through a Fourier transform of the solution in the position representation, and the other is to solve the wave equation in the momentum representation. In this work, we are concerned with the particle in the box model and we will show a different perspective of approaching and solving the quantum mechanical equations.

Resurfanclimberssion

Fourier transform

For simplicity and ease of visualization, we restrict ourselves to the ground state. As it is well-kn the wavefunction can be written as

$$
\Psi_{1}(x)=\sqrt{\frac{2}{a}} \sin \frac{\pi x}{a} .
$$

Its Fourier transform leads to the corresponding wavefunction in the momentum representation, which can be written as

$$
\begin{equation*}
\Phi_{1}(p)=\sqrt{\frac{h}{2 \pi^{2} a}}\left(\frac{p_{1}}{p_{1}^{2}-p^{2}}\right)\left(1+e^{-i p a / \hbar}\right) \tag{2}
\end{equation*}
$$

A graphical picture of the ground state wavefunction in these two representations is shown in Figure 1.

Figure 1. Ground state wavefunctions in the position(left) and momentum (right). representations.

Clear in it is that there is a spread in the momentum of the particle, contrasting with what is usually discussed in the text-books that the momentum is given by $\pm(2 m E)^{1 / 2}$. A general solution to this problem can be written as where p_{n} is the classical value of the momentum'.

Equation in the momentum representation

$$
\Phi_{n}(p)=\sqrt{\frac{h}{2 \pi^{2} a}}\left(\frac{p_{n}}{p_{n}{ }^{2}-p^{2}}\right)\left(1-(-1)^{n} e^{(-2 i p \pi a / \hbar)}\right)
$$

The general form of Schrödinger equation in the momentum representation is

$$
\frac{p^{2}}{2 m} \Phi(p)+\int d p^{\prime} U\left(p-p^{\prime}\right) \Phi\left(p^{\prime}\right)=E \Phi(p)
$$

where $U(p)$ is the Fourier transfom of the potential energy in the position space.
For the particle in a box model, the solution of this equation directly in the momentum representation is not an easy problem, for in the evaluation of the kernel $U\left(p-p^{\prime}\right)$, we are faced with discontinuities and infinities. For a very large $(a \rightarrow \infty)$ box, the Schrödinger equation can be approximated by that of a free particle

$$
\frac{p^{2}}{2 m} \Phi(p)=E \Phi(p)
$$

and its mathematical solution is ${ }^{2}$

$$
\Phi(p)=A_{+} \delta\left(p-p_{0}\right)+A_{-} \delta\left(p+p_{0}\right)
$$

In this work, we dicuss the constraints that can be imposed to derive the corresponding energy values as obtained in the usual position representation.

Concirislon

Despite the difficulty of obtaining the solution in the momentum representation, these two approaches allow different perspectives of the model problem, thus providing a deeper understanding of the mathematical structure and foundations of quantum mechanics.

Acemombormenis

We acknowledge CNPq for the academic support and the Instituto de Química (IQ-USP) for the use of its facilities. FRO is also thankful to FAPESP.

[^106]
Análise Quantitativa entre Estrutura Química e Atividade Biológica de Agroquímicos: Aplicação do Método MIA-QSAR

Michelle Bitencourt (IC), Matheus P. Freitas* (PQ)
Departamento de Química, Universidade Federal de Lavras, C.P. 3037, 37200-000, Lavras, MG - Brasil. * matheus@ufla.br
Palavras Chave: MIA-QSAR, regressão PLS, herbicidas.

Thlitorurcalo
A grande necessidade de novos compostos capazes de eliminar pragas e ervas daninhas das plantações vem fazendo com que pesquisadores de modo geral intensifiquem suas pesquisas à procura destas novas espécies. Visando diminuir custos de pesquisa e possibilitar que o produto final obtido seja mais acessível aos produtores, têm-se utilizado metodologias computacionais baseadas em modelagem molecular e algoritmos capazes de manipular grande quantidade de informação (métodos in silico). Os métodos computacionais utilizados em QSAR podem ser baseados numa aproximação do receptor ou do ligante.
O método de análise multivariada de imagens (Multivariate Image Analysis - MIA) aplicado em QSAR, ${ }^{1}$ se baseia na utilização de imagens bidimensionais para a geração de descritores e posterior correlação dos mesmos com as variáveis dependentes, isto é, as atividades biológicas, através de algum método de regressão multivariada, como PLS. O método MIA-QSAR tem apresentado uma satisfatória habilidade de predição para outras classes de compostos, ${ }^{2}$ e resultados tão bons quanto os obtidos através de sofisticados métodos 3D.

Um conjunto de moléculas com atividade herbicida ${ }^{3}$ (uma série de sulfoniluréias) foi tomado e suas estruturas químicas foram desenhadas através do programa ChemDraw. ${ }^{4}$ Posteriormente, os desenhos foram salvos como bitmaps em dimensões fixas, e as imagens 2D foram sobrepostas e alinhadas por um ponto em comum entre as estruturas quimicas. Cada imagem foi desdobrada para um vetor linha (Figura 1) e agrupadas para formar uma matriz correspondente a um conjunto de calibração.

Figura 1. Formação do arranjo tridimensional G de dimensões I, J e K, e desdobramento do arranjo G em uma matriz G de dimensões I.J $\times \mathrm{K}$.
As moléculas foram divididas em dois grupos, denominados Grupo 1 e Grupo 2. O Grupo 1 foi
novamente dividido em dois e realizou-se uma calibração e uma validação cruzada leave-one-out com 53 das 68 moléculas e, posteriormente, uma validação externa para as 15 estruturas restantes. Com o Grupo 2, composto das 68 estruturas, realizou-se o mesmo procedimento, excetuando-se a validação externa. A regressão multivariada foi realizada utilizando-se o algoritmo PLS.
Os resultados foram avaliados analisando os valores de $R^{2}, Q^{2}{ }_{c v}$ e Q^{2} (Tabela 1), os coeficientes de regressão ao quadrado entre $\mathrm{p} K_{\mathrm{V}}^{\text {app }}$ experimental e ajustado/predito. RMSEC, RMSECV e RMSEP (erros médios de calibração, validação cruzada e predição, respectivamente) também foram usados como parâmetros estatísticos para se avaliar a capacidade de predição do modelo.
Tabela 1. Resultados finais obtidos comparados com os da literatura ${ }^{3}$ para o método COMFA.

Parâmetro	COMFA		MIA-QSAR	
	Grupo 1	Grupo 2	Grupo 1	Grupo 2
LV	7	8	8	8
R^{2}	0.966	0.974	0.908	0.915
Q^{2} cV	0.459	0.673	0.419	0.625
Q^{2}	0.687	-	0.770	-
RMSEC			0.463	0.450
RMSECV			1.091	0.889
RMSEP			0.883	

O modelo MIA-QSAR apresentado mostrou-se satisfatório para a classe de compostos estudada (herbicidas), por fornecer como resultados dados comparáveis com os encontrados na literatura, mostrando ser uma ferramenta potencial para 0° design de novas drogas e agroquímicos.

Agradecemos ao CNPq pela bolsa de IC (M.B.) e à FAPEMIG pelo suporte financeiro.

[^107]
O CONCEITO FERMO APLICADO PARA ÁLCOOIS E FENÓIS

Lucas R. Rosado (IC) ${ }^{1}$, Douglas Henrique (IC) Teodorico C. Ramalho (PQ) ${ }^{1 *}$, Rodrigo R. da Silva (PG) ${ }^{2,3}$ Joana M. Santos (PQ) ${ }^{3} \mathrm{e} \mathrm{J} .\mathrm{Daniel} \mathrm{Figueroa-Villar} \mathrm{(PQ)}{ }^{2}$.

${ }_{1}$ Depart. Quím., UFLA, Minas Gerais. 2Departamento de Química, Instituto Militar de Engenharia, Rio de Janeiro. 3Dept Quím., Inst. Quím., UERJ, Rio de Janeiro.

*teo@ufla.br

Palavras Chave: FERMO, HOMO-LUMO.

A hinodrecto
A interpretação HOMO-LUMO para a reatividade [1]obteve grande sucesso mas, existem limitações para a aplicação de tal argumento em alguns sistemas [2]. O conceito do FERMO [3,4] (Orbital Molecular de Fronteira Efetivo para a Reação) engloba o do HOMO-LUMO e suas exceções.

O objetivo deste trabalho é demonstrar a utilidade do conceito FERMO para um melhor entendimento da reatividade dos compostos, selecionando deste modo o melhor funcional para caracterizar os álcoois e os fenóis.

IGsulfagos e Hiscussab

As geometrias foram obtidas em nível MP2 e os cálculos de orbitais foram feitos em nível MP2 e DFT com os funcionais SPW91, SVWN, BLYP, B98 PBE1PBE e mPW1PW91 com a função de base 631 g . Os orbitiais Hartree-Fock foram comparados aos orbitais KS em termos de simetria e forma. Os orbitais de KS têm simetria e forma idênticas ao de HF e, por isso, podem ser usados de forma qualitativa para a interpretação de fenômenos químicos [5]. Todos os funcionais conduziram ao mesmo FERMO. Houve uma boa concordância entre os valores MP2 e DFT. As correlações entre as energias do HOMO para as bases conjugadas de fenóis e álcoois e os valores de pKa são excelentes quando os dois grupos são tratados de forma independente. As constantes de determinação chegam a 0,95 para fenóxidos e 0,98 para alcóxidos. No entanto, ao se considerar os dois como um mesmo grupo ácido base, têm-se resultados decepcionantes. Para o entendimento de tal resultado é preciso analisar os HOMOs para fenóxidos e alcóxidos. A Figura 1 mostra o HOMO desses ions.

Figura 1. Superficie do HOMO para os ânions fenóxido (A) e o iso-propóxido (B).

A superficie do HOMO para o fenóxido deixa claro que o sistema π é mais representativo do que o oxigênio. Nos alcóxidos, o oxigênio tem uma grande participação no HOMO, assim como no HOMO-1, um orbital quase degenerado com o HOMO. Nos fenóxidos a diferença de energia entre - HOMO e o HOMO-1 é muito maior. Isto por conta da influência do sistema π no HOMO dos fenóxidos [3]. Existe um orbital sem a influência π que reflete melhor a basicidade destes compostos e é semelhante ao HOMO-1 dos alcóxidos (Figura 2).

Figura 2. Superfície do FERMO para os ânions fenóxidos (A) e o iso-propóxido (B).

Segundo a composição e a localização, os orbitais da Figura 2 seriam os FERMOs para a reação de protonação de fenóxidos e alcóxidos. Usando a energia do FERMO na correlação com o $\mathrm{p} K$ a, pode-se unir fenóxidos e alcóxidos num mesmo grupo com coeficientes de determinação de até 0,98 [3]. As energias do FERMO foram determinadas pelo método DFT usando 3 diferentes tipos de familias (LDA, GGA, HDFT), sendo de cada família 2 funcionais foram utilizados. A família que apresentou melhor resultado foi a HDFT.

Concrusoes

O conceito do FERMO é um complemento ao argumento HOMO-LUMO, sendo, no entanto, mais abrangente ao tratar das exceções à teoria dos orbitais de fronteira.

AOMrodimemios

[^108]
COMPORTAMENTO CATALÍTICO DE GOETHITAS DOPADAS COM NIÓBIO (A-FE E_{1} ${ }_{x} \mathrm{NB}_{\mathrm{x}} \mathrm{OOH}$) EM REAÇÕES DE OXIDAÇÃO: UMA ABORDAGEM TEÓRICA E EXPERIMENTAL

Teodorico C. Ramalho ${ }^{1}(\mathbb{P Q})$, Luiz Carlos A. Oliveira ${ }^{1}(\mathbb{P Q})$, Eugenio \mathbb{F}. Souza ${ }^{1}$ (IC), Kele T. Carvalho(PG) ${ }^{1}$, Elaine F.F. da Cunha¹(PQ). teo@ufla.br
${ }^{1}$ Departamento de Química, Universidade Federal de Lavras, Caixa Postal 37, CEP 37200-000, Lavras, Minas Gerais, Brasil.
Palavras Chave: Óxidos de ferro, reação Fenton, química computacional, DFT.
sistemas radicalares do tipo Fenton foram

O entendimento teórico dos mecanismos de oxidação é muito relevante para o tratamento efetivo de contaminantes orgânicos em águas residuárias [1]. No presente trabalho, estudamos, em nivel teórico e experimental, a estabilidade das estruturas da reação Fenton com o composto orgânico azul-de-metileno (molécula modelo). Utilizamos como catalisadores goethitas sintetizadas (puras e dopadas com diferentes teores de nióbio: $3 \%, 10 \%$ e 30% em massa), obtendo materiais do tipo $\alpha-\mathrm{Fe}_{1-x} \mathrm{Nb}_{\mathrm{x}} \mathrm{OOH}$.

Trusulbios c Disclussab

Os materiais foram caracterizados por espectroscopia Mösbauer, DRX e MEV. Os intermediários (ainda não investigados na literatura), foram monitorados por ESI-MS. Cálculos teóricos em nível B3LYP/6-311+G** (Tabela 1) foram feitos com o intuito de analisar a estabilidade de tais intermediários, de acordo com o mecanismo proposto (Fig.1) para a reação utilizando goethitas com 30% de Nb. A caracterização dos materiais indica a presença apenas da fase goethita, materiais com menor tamanho de partícula, e ainda sugere o aumento de sítios vacantes de oxigênio [1].

Tabela 1.Energia livre de Gibbs dos intermediários da reação usando B3LYP/6-311+G*

Intermediário m / z	$\Delta \Delta \mathrm{G}$ $(\mathrm{Kcal} / \mathrm{mol})$	Intermediário m / z	$\Delta \Delta \mathrm{G}$ $(\mathrm{Kcal} / \mathrm{mol})$
284	0.00	185	+1.29
270	+24.59	186	+0.84
227	+83.25	187	+0.46
198	+58.67		

Em um trabalho recente do nosso grupo, sinais $\mathrm{m} / \mathrm{z}=300,316$ e 332, típicos de hidroxilação dos anéis aromáticos do corante, que ocorrem em
encontrados [2].

Fig.1- Parte do mecanismo de reação proposto.
A ausência destes sinais nos primeiros 60 minutos e o aumento do número de sítios de vacância são indícios de que o mecanismo de degradação não ocorre exclusivamente via processo radicalar com a formação de OH^{*}. A reação somente apresenta sinais m / z característicos do processo radicalar (105,129 e 351) após 180 min . Isto sugere um estado de competição entre os mecanismos por sítios de vacância e por formação de radicais hidroxila em materiais do tipo $\alpha-\mathrm{Fe}_{0.7} \mathrm{Nb}_{0.3} \mathrm{OOH}$. A tabela 1 mostra que os intermediários ($\Delta \mathrm{G}$) com sinais m / z de $284,270,227$ e 187 são estáveis termodinamicamente e corroboram os dados experimentais [2].

A presença de Nb na estrutura aumenta significativamente a atividade catalítica da goethita. Estudos teóricos sugerem que goethitas altamente substituídas (30% em massa), a ocorrência de mecanismos competitivos: sítios de vacância de oxigênio (preferencial), e via processo radicalar (Fenton clássico).

Taximeremmentos

DQI-UFLA e FAPEMIG.

[^109]
Estudos Computacionais entre a enzima acetolactato sintase do MYCOBACTERIUM TUBERCULOSIS E INIBIDORES SULFONILURÉIAS

Thais Cristina Silva de Souza(IC)*, Daniela Josa(IC), Melissa S. Caetano (PG), Teodorico de Castro Ramalho(PQ), Elaine Fontes Ferreira da Cunha(PQ). tica quimica@yahoo.com.br

Departamento de Química, Universidade Federal de Lavras, Bloco A, 37200-000 Lavras, MG.
Palavras Chave: modelagem por homologia, mycobacterium tuberculosis, acetolactato sintase.

No intuito de desenvolver novos alvos moleculares para o combate da tuberculose, este trabalho tem por objetivo predizer a estrutura tridimensional da enzima acetolactato sintase do Mycobacterium tuberculosis (mtALS) ${ }^{1}$ a partir da estrutura primária usando a modelagem molecular por homologia. Adicionalmente, analisar o espaço conformacional do sitio ativo da enzima e o modo de interação com os análogos sulfoniluréias através do ancoramento molecular.

Werocolosita

Na modelagem da mtALS utilizou-se o servidor SWISS-MODEL ${ }^{2}$ e o programa Swiss-PdbViewer ${ }^{2}$. Escolheram-se as estruturas-molde 1Z8N (Arab. thaliana) e 1JSC (Sac. cerevisiae) provenientes do $P D B^{3}$. Após a construção do dímero, o FAD, tiamina pirofosfato, Mg^{2+} e inibidores foram ancorados à enzima modelada por sobreposição entre a enzimaalvo e as enzimas-molde. Minimizações, utilizandose os algorítimos conjugate gradient e steepestdescent, e cálculos de dinâmica molecular foram executados para corrigir a estrutura alvo. Os ancoramentos dos ligantes pirazosulfuron etil (PSE), sulfometuron metil (SMM), nicosulfuron (NS) e thifensulfuron metil (TSM) na enzima mtALS foram realizados através do programa MVD $2007{ }^{4}$.

Figura 1. Compostos ancorados na enzima mtALS.

Os resultados mostraram que a ALS com maior grau de identidade com a mtAAHS é a da Arab. thaliana ($46,7 \%$), seguida pela Sac. cerevisiae (42,9\%). Então, o alinhamento múltiplo dos aminoácidos de todas as seqüências (Figura 2) foi usado para modelar a proteína alvo.

	10	20	30	40	50
	1	1	1	1	1
mt	MSAPTKPHSPTEKPEPHSAANEPKHPAARP-----KHVALQQLTGAQAVI				
12N8	-----------	FAPD		--R	ILV
1 JSC	-------AP	QPA	KKLR	SFV	IFN

Figura 2. Parte do alinhamento múltiplo entre mtALS, $1 Z 8 \mathrm{~N}$ e 1JSC. Os resíduos em vermelho são idênticos, em azul >75\% idênticos.
Para validar o modelo proposto (Figura 2), utilizou-se o programa PROCHECK. O gráfico de Ramachandran apresentou 92% dos resíduos de aminoácidos da proteína modelada em regiões favoráveis do gráfico. Os estudos de ancoramento
 molecular possibilitaram analisar e entender como os quatro ligantes interagem com a mtALS Os quatro inibidores foram ancorados no sítio de interação. Todos interagiram (lig. de Hid) de forma similar .

Figura 2. Possível estrutura 3D do monômero da enzima mtALS.
De acordo com os resultados de ancoramento (Tabela 1), obtivemos boa correlação entre os valores teóricos e experimentais.
Tabela 1. Valores de \% de inibição, energia de interação intermolecular (kcal.mol ${ }^{-1}$) inibidor/proteína e ligações hidrogênio observadas.

	$\%$	Energia	Lig. hidrogênio
PSE	92	$-84,2$	$-5,771$
SMM	89	$-83,2$	$-3,234$
NS	64	$-80,9$	$-7,057$
TSM	<10	$-71,5$	$-1,573$

Sonc|mboes
O modelo tridimensional obtido para a enzima $m t A L S$ foi satisfatório. O estudo das interações do sítio ativo com os inibidores nos leva a acreditar que as diferenças observadas são favoráveis para o planejamento de novos inibidores mtALS.

Prablecimenios

DQI-UFLA

[^110]XIV Simpósio Brasileiro de Química Teórica (SBQT)

ESTUDO TEÓRICO DO MECANISMO DE REAÇÃO DA EPSP SINTASE: PROJETO

RACIONAL DE NOVOS HERBICIDAS

Melissa Soares Caetano (PG)*, Teodorico de Castro Ramalho (PQ), Elaine F. F. da Cunha (PQ), Thais
Cristina Silva de Souza (IC), Daniela Josa (IC). melzinhaquimica@gmail.com
Departamento de Química, Universidade Federal de Lavras, Bloco A, 37200-000 Lavras, MG.
Palavras Chave: glifosato, EPSP sintase, mecanismo de reação.

Determinar os requisitos estruturais e energéticos que governam a ativação da EPSP sintase, alvo do herbiciḍa Round-up ${ }^{\circledR}$, é um dos primeiros passos na direção da proposta de herbicidas mais potentes e seletivos ${ }^{1}$.

Neste trabalho, pretende-se elucidar o primeiro passo do mecanismo da reação (Figura 1) entre o substrato natural (PEP) e a EPSP sintase através de cálculos quânticos no intuito de projetar novos inibidores que venham a ser herbicidas mais potentes.

Figura 1. Primeiro passo do mecanismo de reação.

Mar Miviodoloole

A EPSP sintase incluindo águas de cristalização, S3P e o glifosato, foram obtidos do $P D B^{2}$ (1G6S). A estrutura do PEP foi construída a partir da estrutura cristalográfica do glifosato. O sítio ativo da enzima foi recortado em forma de esfera com um raio de $5 \AA$ de distância do PEP e S3P, todos os resíduos nesta região foram incluídos nos cálculos de ET ${ }^{3}$.
Os cinco estados de transição propostos, de acordo com a literatura, para o mecanismo da primeira etapa da reação, obtidos dos cálculos semi-empíricos AM1, foram utilizados como ponto de partida para os cálculos ab initio. Em nível b3lyp/6-31g(d,p). Depois de cada otimização, um cálculo de constante de força foi realizado no intuito de verificar se as estruturas otimizadas eram mínimos locais ou estruturas de transição. Os valores de energia livre de Gibbs $\left(\Delta G^{\#}\right)$ são reportados na Tabela 1. Correções ZPE a 298.15 K foram realizadas. Os cálculos foram executados com os programas Spartan Pro e Gaussian98.

2. RGSul Riolose prgMEStO

Mizyed et al. sugeriu que o resíduo Glu-341 seria o doador do próton para a formação do intermediário proveniente de S3P e PEP e o resíduo Lys-22 serviria como aceptor do próton proveniente da hidroxila do S3P no primeiro passo da reação ${ }^{3}$. Os nossos dados corroboram a proposta do mecanismo de Mizyed ${ }^{3}$, provavelmente
o Glu-341 é o doador do próton no primeiro passo da reação. O resíduo de Lys-22 provavelmente servirá como aceptor do próton proveniente da hidroxila do S3P (Figura 1). A energia de ativação para as diferentes propostas do mecanismo da reação está descrita na Tabela 1.

Tabela 1. Diferença de energia ($\Delta G^{\#}$) entre os reagentes e os estados de transição para as propostas mecanísticas da primeira etapa da reação (formação do intermediário).

Propostas	Doador/Aceptor	$\Delta \mathrm{G}^{\#}\left(\mathrm{kcal}^{2} \mathrm{~mol}^{-1}\right)$
I	Asp313/Lys22	-628.69
II	Glu341/Lys22	-632.67
III	Glu341	-611.64
IV	Glu341/Lys83	-625.35

Wrar Mondigseos

De acordo com os dados apresentados aqui, o perfil energético para a primeira etapa da síntese do EPSP foi determinado. Desta forma, podem-se identificar os resíduos que mais contribuem para eficiência catalítica, o resíduo Glu-341 provavelmente atua como doador e o resíduo Lys22 atua como aceptor do próton na primeira etapa da reação na EPSP sintase.

DQI-UFLA; CENAPAD; FAPEMIG e CNPq.

[^111]XIV Simpósio Brasileiro de Química Teórica (SBQT)

EFEITOS ESTÁTICOS E DINÂMICOS SOBRE A CONSTANTE DE ACOPLAMENTO ${ }^{3} \mathrm{~J}(\mathrm{~N}, \mathrm{H})$ DE COMPOSTOS DE INTERESSE BIOLÓGICO

Gustavo H. P. Luz (IC), Eugenio F. Souza (IC), Bernardo Assis (IC), Daniel G. Lago (IC), Melissa S. Caetano (PG), Teodorico C. Ramalho* (PQ). teo@ufla.br
Departamento de Química, Universidade Federal de Lavras, Caixa Postal 37, CEP 37200-000, Lavras, Minas Gerais, Brasil.
Palavras Chave: heterociclos, estudo teórico e espectroscopia de RMN.

A espectroscopia de Ressonância Magnética Nuclear (RMN) é uma das mais poderosas técnicas para caracterização estrutural de compostos de interesse biológico em solução. Dentre os parâmetros da RMN, a constante de acoplamento ${ }^{3} \mathrm{~J}(\mathrm{~N}, \mathrm{H})$ e o deslocamento químico são duas das principais fontes de informação conformacional e estereoquímica ${ }^{1}$ para compostos orgânicos de interesse biológico. Os compostos tiazóis e oxazóis (Figura 1) são muito utilizados no tratamento de câncer, malária entre outras doenças. Neste trabalho, pretende-se avaliar os efeitos estáticos e dinâmicos sobre a constante de acoplamento ${ }^{3} \mathrm{~J}(\mathrm{~N}, \mathrm{H})$ no intuito de se compreender melhor os mecanismos de transmissão da informação.

Todos os cálculos foram realizados com o programa gaussian03 a nível B3LYP com a função de base $6-31 \mathrm{~g}(\mathrm{~d}, \mathrm{p})$. O efeito do solvente foi avaliado através dos métodos de solvatação explícito e implícito (CPCM). O efeito dinâmico foi calculo através esquema Car-Parrinello (CPMD) ${ }^{1}$. Os dados experimentais foram obtidos na literatura ${ }^{2}$.

Figura1: estruturas usadas para os cálculos de constante de acoplamento e deslocamento químico.

Os valores teóricos da constante de acoplamento ${ }^{3} \mathrm{~J}(\mathrm{~N}, \mathrm{H})$ com as estruturas estáticas e dinâmicas para os compostos estudados (Figura 1) se encontram na Tabela 1.

Tabela 1. Valores teóricos e experimentais da constante de acoplamento ${ }^{3} \mathrm{~J}(\mathrm{~N}, \mathrm{H})(\mathrm{Hz})$ para os compostos de 1-6 (figura 1).

	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$
A	8,53	8,52	7,71	9,63	10,15	13,64
B	7,96	7,63	7,31	10,00	9,68	12,14
C	8,66	8,03	7,67	10,06	9,67	12,41
D	8,39	8,06	7,56	8,89	9,19	11,44
E	9,72	8,02	7,69	11,22	11,10	11,74
F	8,72	7,48	7,25	9,96	9,73	11,31
G	9,65	8,00	7,75	11,41	11,26	11,51
H	8,44	7,55	7,31	11,34	10,02	11,35
I	13,4	10,5	10,5	14,7	14,4	14,5

Metodologia teórica. A: Dinâmica vácuo, B: Dinâmica com solvente explicito, C: Dinâmica com solvente implícito, D: Dinâmica com solvente implícito e explícito, E : Estáticos vácuo, F : Estáticos com solvente explícito, G: Estáticos com solvente implícito, H : Estáticos com solvente implicito e explícito, I: Acoplamento experimental.

A partir da análise da Tabela 1, foi observado para os heterociclos estudados, que o efeito da dinâmica molecular desviou mais os resultados teóricos dos valores experimentais, se comparado com os valores teóricos com as moléculas estáticas. Tal fato não era esperado, visto que a dinâmica molecular leva em consideração o movimento das moléculas. O modelo de solvatação que proporcionou melhor concordância com os dados experimentais foi o solvente hibrido H (implícito e explícito).

Gomprisors

Neste trabalho foi observado, para os heterociclos estudados, que os efeitos dinâmicos e de solvatação sobre ${ }^{3} \mathrm{~J}(\mathrm{~N}, \mathrm{H})$ são razoáveis. Este estudo vai prosseguir com o cálculo de deslocamento químico de $15 \mathrm{~N}^{3,4}$.

AUCrolsementios

CNPq, FAPEMIG e DQI-UFLA.

[^112]
XIV Simpósio Brasileiro de Química Teórica (SBQT)

Estudo teórico da toxidade de moléculas de dioxinas

Andréa D. Quintão ${ }^{1}(\mathrm{PQ})^{*}$, Renan M. Mazza ${ }^{1}$ (IC)
aquintao@fsa.br
Faculdade de Engenharia "Engenheiro Celso Daniel", Fundação Santo André, Santo André, SP.. Palavras Chave: Dioxinas, AM1, PM3, B3LYP, toxidade

PhiledMc:alo

Dioxinas são muito conhecidas por seus efeitos tóxicos, mutagênicos e cancerígenos aos seres vivos em geral $[1,2]$. Tanto dioxinas quanto furanos são moléculas extremamente tóxicas e-o que é preocupante - são geradas da combustão de madeira, plástico, PVC, pneus, carvão, produtos de petróleo em geral, entre outros, inclusive como subprodutos de reações químicas. Eles são produzidos devido à combustão incompleta de átomos de cloro.
Estamos interessados em particular em duas dioxinas: 1469TCDD e 2378TCDD, sendo esta a mais tóxica de todas.

R Refillurerge Discuscolo

Buscamos entender a relação entre toxidade e estrutura dessas moléculas. Para tanto, estudamos as interações com aminoácidos conhecidos através da medida das energias de ligação, distribuição de carga, mudanças geométricas, entre outros fatores. De fato, cerca de 8,4\% dos receptores de dioxinas são aminoácidos. As estruturas moleculares foram completamente otimizadas usando os métodos AM1, PM3 e B3LYP/6-31G(d) e o programa GAUSSIAN 98.

Na tabela 1 mostramos as energias de ligação para dois complexos dioxinas-aminoácidos. Essa energia de ligação é calculada como:
$\Delta E=E$ (complexo dioxina-aminoácido) $-E$ (dioxina) E (aminoácido) onde E é a energia total das moléculas em suas geometrias completamente otimizadas.Comparamos nossos resultados com resultados da literatura [3], onde foram usados métodos semi-empíricos sem a otimização completa da geometria.

O complexo 1469TCDD+Phe é o mais instável, com maiores mudanças no ângulo diedral. Em geral estruturas envolvendo a dioxina 1469TCDD são bifurcadas, indicando que a planaridade é característica de toxidade e atividade biológica. Verificamos também que os resultados AM1 falham em prever essa planaridade quando se trata de sistemas fracamente ligados.
Por outro lado, Gln é um receptor eletrônico mais eficiente, uma vez que os complexos formados pela mesma são os mais estáveis. Em particular, a estrutura 2378TCDD+Gln é a mais plana.

Tabela 1. Energias de ligação obtidas de diferentes métodos teóricos.

	AM1 - $\mathrm{AE}^{\text {(}} \mathrm{kcal} / \mathrm{mol}$)	
	2378 TCDD	1469 TCDD
Phe	-0,51	-0,18
Gln	-2,94	$-2,46$

c)		
	$\mathbf{B 3 L Y P} / 6-\mathbf{3 1 G}(\mathbf{d})$	$-\mathbf{\Delta E}(\mathbf{k c a l} / \mathrm{mol})$
	2378 TCDD	$\mathbf{1 4 6 9} \mathrm{TCDD}$
	$-0,94$	$-0,86$
Gln	$-6,92$	$-3,19$

O método PM3 não descreve razoavelmente bem esses sistemas. Por outro lado, os resultados AM1 descrevem bem os sistemas envolvendo a dioxina mais tóxica, 2378TCDD, reproduzindo as conclusões obtidas com os cálculos B3LYP, com a vantagem de um esforço computacional muito menor. Tal comportamento repete-se para os aminoácidos Gly e Trp.
É também mostrado que as interações envolvendo a dioxina 2378TCDD são mais intensas, o que é esperado pois trata-se da dioxina mais tóxica.

DHCLUSOME

Através deste trabalho procuramos por parâmetros que justifiquem a toxidade de dioxinas conhecidas. Verificamos a eficácia de métodos teóricos conhecidos para descrever esses sistemas. Alguns outros parâmetros continuam sendo investigados, da mesma forma a interação dessas dioxinas com bases de DNA, uma vez que é consensual a importância dessas moléculas para os seres vivos.

AgIrarecmanios

CENAPAD, SP

[^113]XIV Simpósio Brasileiro de Química Teórica (SBQT)

CONEORMATHONALEFFECTS ON ${ }^{17}$ O CMEMMCAL SHMETS. THE ROLE OF OXYGEN LONE PAIRS

José Walkimar de M. Carneiro, ${ }^{1}$ Peter R. Seidl, ${ }^{2}$ Jacques F. Dias, ${ }^{3}$ José Gluaco R. Tostes, ${ }^{4}$ Valentim E. U. Costa

${ }^{1}$ Universidade Federal Fluminense, Instituto de Química, Outeiro de São João Batista s / n^{0}, 24020-150, Niterói, RJ, Brazil (walk@vm.uff.br).
${ }^{2}$ Universidade Federal do Rio de Janeiro, Escola de Química, Centro de Tecnologia, Bloco E, 21949-900, Rio de Janeiro, RJ, Brazil (pseidl@eq.ufr.br).
${ }^{3}$ Universidade do Estado do Rio de Janeiro, Faculdade de Tecnologia, Estrada Resende Riachuelo s/n Morada da Colina, 27523-000, Resende, RJ, Brazil (jacques@fat.uerj.br).
${ }^{4}$ Universidade Estadual do Norte Fluminense, Av. Alberto Lamego, 2000, 28015-620, Campo dos Goytacazes, RJ, Brazil.
${ }^{5}$ Instituto de Química-UFRGS, Av. Bento Gonçalves, 9500, 91501-970, Porto Alegre, RS, Brazil.
Palavras Chave: chemical shift, shielding tensors, conformational effects, polycyclic alcohol

Abstract

 Rigid polycyclic systems with unique conformations have contributed to the understanding of several aspects of NMR spectroscopy in relation to geometry, electronic and steric parameters. Stereo-electronic effects provide an effciente probe for the investigation of factors that affect NMR chemical shifts. As an example, rotation about $\mathrm{C}-\mathrm{O}$ bond can lead to a set of conformers which show unique features such as significant variations in ${ }^{13} \mathrm{C}$ and ${ }^{17} \mathrm{O}$ chemical shifts. In the case of ${ }^{17} \mathrm{O}$, conformational effects (steric and/or electronic) may lead up to 20 ppm difference between conformers. In the present work we calculated a set of rigid polycyclic (bi to pentacyclic) alcohols looking for the effect of interactions involving the oxygen lone pairs into the ${ }^{13} \mathrm{C}$ and ${ }^{17} \mathrm{O}$ chemical shift of atoms in the neighborhood of the $\mathrm{C}-\mathrm{O}$ bond. Our interest is to identify the factors that contribute to shielding/deshielding in these systems.

The geometries of a set of polycyclic alcohols (see Fig. 1 for some examples) were fully optimized with the B3LYP/6-31g(d) combination of method and basis set. For each species, at least three conformers; obtained by rotation about the C-O single bond, were calculated. Following geometry otpimization the absolute chemical shift was calculated with the GIAO method, again using the B3LYP/6-31g(d) combination.
${ }^{17} \mathrm{O}$ absolute chemical shifts for alcohols a-d are given in table 1.
Table 1. Absolute ${ }^{17} \mathrm{O}$ isotropic shielding tensors (ppm).

	a	b	c	d
Conformer 1	252,87	254,20	271,78	263,24
Conformer 2	253,47	254,80	272,57	264,07
Conformer 3	265,68	269,95	280,52	-

a

Fig. 1 Examples of polycyclic alcohols studied in this work.
The results in Table 1 show that ${ }^{17} \mathrm{O}$ chemical shifts are strongly influenced by both stereochemistry and conformation. For example, the "inside" alcohols c and d show isotropic shielding tensors that in general are at least 10 ppm above (corresponding to lower chemical shifts) those of the "outside" alcohols a and b. On the other hand, conformations where the oxygen atoms occupy a less crowded position also show more shielded chemical shift than those in more crowded situation.

Contor IU Dolnc

Our results indicate that ${ }^{13} \mathrm{O}$ chemical shift may be strongly dictated by the stereo-electronic nature of the neighborhood arond the nuclei of interest, as has been observed before for ${ }^{13} \mathrm{C}$. In order to find the origin of these effects we discuss our results in terms of the individual orbital contribution to the chemical shift.

- Atch Homeromemis

CNPq, CAPES, FAPERJ

THEORETICAL STUDY ON ELASTIC ELECTRON COLLISIONS WITH NHX ($\mathrm{x} \equiv 1,2,3$) MOLECULES

Lee Mu-Tao ${ }^{* 1}$ (PQ), Luiz Marco Brescansin² (PQ), Luiz Eugênio Machado ${ }^{3}$ (PQ). dlmt@ufscar.br.
1 Departamento de Química, UFSCar, 13565-905 São Carlos, SP, Brasil
2 Instituto de Física "Gleb-Wataghin", UNICAMP, 13083-970, Campinas, SP, Brasil
3 Departamento de Fisica, UFSCar, 13565-905 São Carlos, SP, Brasil
Palavras Chave: Electron scattering, Elastic cross sections, Free radicals, $\mathrm{NH}, \mathrm{NH}_{2}, \mathrm{NH}_{3}$

Tintordicilol

The interest on interaction of electrons with highly reactive radicals has grown recently, in view of their importance in many plasma processes, including anisotropic etching, film deposition and surface modifications. Cross-sections for electron scattering from a variety of such molecules are demanded in different fields of pure and applied sciences [1-3]. In particular, $\mathrm{NHx}(\mathrm{x}=1,2)$ are some of these radicals. NH and NH_{2} can be produced from dissociation of ammonia either by collisional interaction and/or photodissociation. They play important role in many chemical processes, including combustion. NH and NH_{2} are also identified in plasma nitriding processes of materials using the $\mathrm{N} 2 / \mathrm{H} 2$ mixture or ammonia.
In view of the above applications, the knowledge of cross sections for $\mathrm{e}^{-}-\mathrm{NHx}$ collisions would certainly be of interest. Experimental determination of such quantities is difficult. Therefore, theoretical calculations are presently an important manner to fulfill the lack of such data.
In this work, we present calculated differential, integral and momentum-transfer cross-sections for elastic $e^{-}-\mathrm{NHx}$ collisions in the (1-30)-eV energy range. In our study, an optical potential composed by the static, exchange, and correlation-polarization contributions is used to represent the dynamics of the interaction. An iteractive version of Schwinger variational method is used to solve the scattering equations.

Fig. 1 shows our calculated integral (ICS) and momentum-transfer (MTCS) cross sections for elastic $\mathrm{e}^{-}-\mathrm{NHx}$ collisions.

[^114]

Figura 1. (a) ICS and (b) MTCS for elastic e- NHx scattering. Solid line, results for NH_{2}; short-dashed line, for NH ; dashed line, for NH_{3}; dotted line, calculated results of Ref. [4] for NH_{3}; long-dashed line, calculated results of Ref. [5] for NH_{3}; full circles, experimental results of Ref. [6] for NH_{3}.

PMerncilislons:

There is a remarkable similarity in the calculated results for the three targets at energies above 5 eV .
L. Acithomiedoriemis

This work is partially supported by FAPESP and CNPq.

[^115]
Validity of the Independent Atom Model (IAM) for Electron-Molecule Scattering in the intermidiate Energy Range

Ione Iga ${ }^{* 1}$ (PQ) Ivana Pereira Sanches ${ }^{1}(P Q)$, Renato Takeshi Sugohara ${ }^{2}$ (PG) and Lee Mu-Tao ${ }^{1}$ (PQ). diig@ufscar.br.
1 Departamento de Química, UFSCar, 13565-905 São Carlos, SP, Brasil
2 Departamento de Física, UFSCar, 13565-905 São Carlos, SP, Brasil
Palavras Chave: Electron scattering, Elastic cross sections , IAM

Fimodection

Electron scattering by polyatomic molecules composed of light atoms such as carbon, hydrogen and nitrogen has received increasing attention, both theoretically and experimentally, due to the role played by these compounds in various fields of interest. In particular, complex biosystems such as DNA, RNA and proteins are composed of small bases, which are organic, molecules made predominantly of these atoms. Recent studies have shown that the collision of low- and intermediateenergy electrons with DNA and its constituents can induce significant damages, including single- and double-strand breaks.

In order to understand the mechanisms of radiation damage of living cells, Monte Carlo type of simulations have been shown to be very useful. The input of such simulations would require cross sections (CS) for interactions of primary radiations and secondary electrons with water in liquid and gaseous phases, as well as CS for electron scattering by DNA and RNA and/or their building blocks. Unfortunately, experimental determination of cross sections for electron interaction with the DNA and RNA bases is difficult because most of DNA and RNA constituents are solids.

On the theoretical side, ab initio studies for elastic electron interaction with DNA and RNA bases, and other constituents are equally difficult because of the size of such molecules. Therefore, the very simple independent-atom model (IAM) has been used for the calculation of $C S^{1,2}$. It is generally known that the IAM can provide quite reliable CS for electron scattering by molecules in the keV energy range. Its validity at the hundreds-eV energies is still to be tested.

In this work, we carried out an experimental verification of the validity of IAM. Absolute differential cross sections (DCS) were measured in the (100-$1000)-\mathrm{eV}$ energy range for two organic molecules,
namely 1-propanol and isopropanol. We also aim to study the isomer effects for electron-molecule interactions.

Ressulis

In Fig. 1 we show our experimental DCS for electron scattering by 1-propanol at 400 eV , in comparison with those calculated using the IAM.

Figura 1. DCS for electron scattering by 1propanol at 400 eV . Solid line: calculated results using the IAM; solid circles: experimental results in absolute scale.

concmsions

It is seen that despite its simplicity, the IAM calculation can provide a qualitative description of the dynamics for elastic e-propanol interaction. However, the IAM significantly overestimates the magnitude of the DCS for this energy, particularly at large scattering angles.

We acknowledge the financial support from CNPq and FAPESP.

[^116]
CÁlculos dFT para Compostos Contendo Íons Mn^{2+} E CO^{2+} COM Radicais do Tipo Nitronil-Nitróxido.

Antonio da S. Florencio*(IC) ${ }^{1}$, Denise de A. Souza(PG) ${ }^{2}$, Maria das G. F. Vaz(PQ) ${ }^{1,2}$, José Walkimar de M. Carneiro(PQ) ${ }^{1,2}$

antonio.florencio@gmail.com
${ }^{1}$ Departamento de Química Inorgânica, Universidade Federal Fluminense - UFF
${ }^{2}$ Pós-Graduação em Química Orgânica, Universidade Federal Fluminense - UFF
Palavras Chave: DFT, Magnetismo Molecular, Metal-Radical

Um dos maiores campos de pesquisa na área de química inorgânica é a química dos compostos de coordenação. Dentre estes compostos chama atenção aqueles que apresentam propriedades magnéticas. Os compostos magnéticos moleculares possuem muitas vantagens em relação aos compostos magnéticos clássicos, como por exemplo solubilidade e condições de síntese mais amenas, se comparadas com a dos magnetos clássicos. Dentre as várias estratégias de síntese para produção dos compostos magnéticos moleculares está a estratégia metal-radical, que consiste em complexar íons de metal de transição com radicais do tipo nitronilnitróxido. Neste trabalho apresentamos os resultados obtidos por cálculos DFT para dois composto do tipo $\left[\mathrm{M}(\mathrm{PhTFacac})_{2}(\mathrm{p}-\mathrm{rad})_{2}\right]$, (onde PhTFacac=fenil-
trifluormetanoacetilacetonato, p rad= para-2-(4-piridil)-4,4,5,5-tetrametilimidazolina-1-oxil-3óxido, e $\mathrm{M}=\mathrm{Co}^{2+}$ ou Mn^{2+}). Nestes compostos o radical coordena-se ao metal através do nitrogênio do anel piridínico,
 e os grupos PhTFacac estão em uma posição trans em relação ao plano que contém o íon metálico e os radicais (fig.1). Ambos compostos cristalizam em um empacotamento triclínico e

Figura 1-
Fórmula estrutural
dos compostos apresentam interações do tipo antiferromagnéticas.

Os cálculos foram realizados com o pacote Gaussian 03W. As moléculas tiveram suas geometrias otimizadas, na simetria C_{i}, com os funcionais B3LYP, OPBE e PW91, utilizando a base D95V com o pseudopotencial LANL2DZ. Foram realizados cálculos em diferentes multiplicidades considerando os estados $S=1 / 2,3 / 2$ e $5 / 2$ para o composto de cobalto e $S=3 / 2,5 / 2$ e $7 / 2$ para o composto de manganês, representando diferentes tipos de interação entre os elétrons desemparelhados do metal e dos radicais. A seguir foi feito um cálculo single-point utilizando a base 6-

31G(d) para as mesmas multiplicidades. A tabela 1 mostra os valores de energia relativa, em $\mathrm{Kcal} / \mathrm{mol}$, para os dois compostos nos diferentes métodos em função da multiplicidade.

Tabela 1-Valores de energia relativa (Kcal/mol) para os sistemas em função da multiplicidade.

COMPOSTO		$\begin{gathered} {\left[\mathrm{Mn}(\mathrm{PhTFacac})_{2}(p-\right.} \\ \left.\mathrm{rad})_{2}\right] \end{gathered}$			$\begin{gathered} {\left[\mathrm{Co}(\mathrm{PhTFacac})_{2}(p-1\right.} \\ \left.\mathrm{rad})_{2}\right] \end{gathered}$		
ESTADO DE SPIN		3/2	5/2	712	1/2	3/2	5/2
B3LYP	LANL2DZ	0,0	-4,67	-28,14	0,0	11.12	-0,01
	6-31G(d)	0,0	-12.33	-27.26	0,0	-5,23	-16,66
OPBE	LANL2DZ	0,0	-	-	0,0	10,77	-0,21
	$6-31 \mathrm{G}(\mathrm{d})$	0,0	-	-	0,0	7,96	0,38
PW91	LANL2DZ	0,0	-	-	0,0	1,26	0,88
	6-31G(d)	0,0	-	-	0,0	-3,35	0,14

* - cálculos em andamento.

A tabela 2 mostra como os elétrons desemparelhados estão distribuídos nos sistemas Mn-Radical e Co-Radical de acordo com o método B3LYP/D95V/LANL2DZ.

Tabela 2-Valores de Densidade de Spin.

COMPOSTO	$\left[\mathrm{Mn}(\mathrm{PhTFacac})_{2}(\right.$ $\left.p-\mathrm{rad})_{2}\right]$	$\left[\mathrm{Co}(\mathrm{PhTFacac})_{2}(p-1\right.$ $\left.\mathrm{rad})_{2}\right]$				
ELETRONS DESEM- PARELHADOS	3	5	7	1	3	5
METAL	1,10	3,20	4,78	2,74	0,95	2,74
GRUPOS NITROXIDOS	2,08	2,06	2,08	$-1,83$	2,08	2,08

Esses valores mostram que em todos os casos cada grupo nitróxido contribui com um único spin para o total, enquanto os demais spins localizam-se sobre o metal.

Para o composto de cobalto o valor da energia do estado $S=5 / 2$ é comparável ao valor de $S=1 / 2$ em todas as metodologias (exceto B3LYP/6-31g(d)). No caso do composto de manganês com a metodologia B3LYP, em ambas as bases, o estado de maior multiplicidade apresenta-se mais estável.

CNPq, Capes e Faperj.

THE INFLUENCE OF IRON IMPURITIES ON THE CO ADSORPTION ENERGY OF COBALT CLUSTERS

Lilian Weitzel C. Paes(PQ)* and José Walkimar de Mi. Carneiro(PQ)
Departamento de Química Inorgânica, Instituto de Química, Universidade Federal Fluminense, Outeiro de São João Batista, s/n, 24020-150, Niterói. *weitzelcoelho@yahoo.com.br

Keywords: Carbon monoxide, adsorption energies, DFT, impurities, cobalt cluster

3 minor lughtorin

The study of molecular adsorption on metallic surfaces has great importance to understand the formation of active species on catalyst sites. The chemisorption of small molecules such as carbon monoxide has been studied in some detail [1], due to the increasing interest on understanding the reaction mechanisms that occur in the gas/metal interface. The activation of CO by transition metals is an important step in the Fischer-Tropsch synthesis [2]. The electronic, chemical, and catalytic properties of metal-alloy surfaces have been extensively studied in a recent past [3,4]. The reason is that metal alloys exhibit enhanced catalytic properties compared to those of their constituents, for instance a better activity and/or a better selectivity. In the present study, we investigate the influence of iron impurities on the geometric properties and adsorption energies of cobalt (0001) surfaces using density functional calculations. We first focused our attention on the $\mathrm{Co}_{9} \mathrm{Fe}$ system. The cobalt cluster used in this study has ten cobalt atoms arranged into two layers (7 and 3 Co atoms). The Co-Co distances in the cluster are $2.51 \AA$. Impurity was introduced by replacing one iron atom for one cobalt atom (central or in the border). The BPW91 functional with the LANL2DZ pseudopotential was used.

- Result and en discusston

The figure 1 shows adsorption forms of CO on the $\mathrm{Co}_{9} \mathrm{Fe}$ clusters. Table 1 shows the adsorption energies and geometrical parameters.

Figura 1: Adsorption forms of CO on $\mathrm{Co}_{9} \mathrm{Fe}$ clusters

Tabela1. Adsorption energies and geometrical parameters

Adsorption forms	(1)	(2)	(3)	(4)	(5)
$\mathrm{E}_{\text {ads }}(\mathrm{eV})$	-1.59	-2.38	-1.80	-1.84	-1.65
$\mathrm{M}-\mathrm{C}(\AA)$	1.735	1.754	1.783	1.828	$2.601 / 2.650$
$\mathrm{C}-\mathrm{O}(\AA)$	1.206	1.205	1.208	1.226	1.235

The lowest energy adsorption form was found for arrangement 2, with the CO molecule adsorbed atop on a cobalt atom. Adsorption on the central atom (1) is not favored. The C-O and Co-C bond distances are in good agreement with experimental data (C-O bond length is $1.17 \pm 0.06 \AA$ and the Co-C distance is $1.78 \pm 0.06 \AA$ [5]. The adsorption energy on Co_{10} is -3.28 eV [6], which is considerably more negative than that found in the present work. It is not surprising the fact that the adsorption energy of molecules is smaller on alloys than on pure metals [7]. Detailed analyses of the orbital interactions on these structures and vibrational analysis are in progress.

GOMCICSIOM

We have performed DFT calculation using BPW91/LANL2DZ method. The main conclusions of this study clearly show that the adsorption energy is reduced as a result of the iron impurity. In addition, the $d \mathrm{C}-\mathrm{O}$ and $d \mathrm{M}-\mathrm{C}$ values increase with the coordination because of the larger occupation of electrons in the $2 \pi^{*}$ orbital [8].

F Menlowerolimems

CAPES, CNPq, FAPERJ.

[^117]
General trends on the adsorption energies of Co on Cog m $M=M N, F E$, Ru, CO AND $\mathbb{N i}$) CLUSTERS
 Lilian Weitzel C. Paes(PQ)* and José Walkimar de M. Carneiro(PQ)
 Departamento de Química Inorgânica, Instituto de Química, Universidade Federal Fluminense, Outeiro de São João
 Batista, s/n, 24020-150, Niterói. *weitzelcoelho@yahoo.com.br

Keywords: Carbon monoxide, adsorption energies, DFT, impurities, cobalt cluster
Tabela1. Adsorption energies and geometrical parameters

Activation of CO by transition metals is an important step in many industrial processes such as FischerTropsch synthesis [1]. These reactions take place over a number of transition metals. The modification of the chemical reactivity of a metal by surface alloying with a second element, with the aim of improving the catalytic properties of the material is a challenging field of research. Alloy surface exhibit chemical and catalytic properties that are different from those of surfaces of the individual pure metals [2]. In this work we investigated the metal substitution effects on adsorption energies using density functional theory. We simulate the cobalt (0001) hcp, just as (111) surface of fce structure. The cobalt cluster used in this study has ten cobalt atoms arranged into two layers (7 and 3 Co atoms) and then we substitute one cobalt atom by replacing one M ($\mathrm{Mn}, \mathrm{Fe}, \mathrm{Ru}, \mathrm{Co}$ and Ni) atom in the center of the cluster. DFT calculations were done on these structures using the Gaussian 03w program with the BPW91 functional. The basis set employed in all the calculation was the LANL2DZ effective core potential. Several spin states of the metals were considered in the calculations

Rresulremin

The figure 1 and table 1 shows the $\mathrm{CO}-\mathrm{Co}_{10}$ and $\mathrm{CO}-\mathrm{Cog}_{9} \mathrm{M}$ structures, the adsorption energies and geometrical parameters, respectively.

Figura 1. Adsorption forms of CO on $\mathrm{CO}_{9} \mathrm{M}$ clusters

Alloys	$E_{\text {ads }}(\mathrm{eV})$	M-C (A)	C-O (A)
$\mathrm{CO}_{9} \mathrm{Ru}$	-2.81	1.765	1.204
$\mathrm{Co}_{9} \mathrm{Fe}$	-2.38	1.754	1.205
$\mathrm{Co}_{9} \mathrm{Ni}$	-1.76	1.755	1.205
$\mathrm{Cog}_{9} \mathrm{Mn}$	-1.49	1.738	1.204
Cluster			
CO_{10} [3]	-3.28	1.751	1.204

The figure 2 shows the HOMO's energies for $\mathrm{Co}_{9} \mathrm{M}$, Co_{10} and CO LUMO energy.

Figure 2. HOMO's $\mathrm{CO}_{9} \mathrm{M}$ energies and LUMO CO energy
The lowest adsorption energy was found for $\mathrm{Co}_{9} \mathrm{Ru}$ cluster. The adsorption on $\mathrm{Co}_{9} \mathrm{Mn}$ is not favored. We also note that both the $\mathrm{C}-\mathrm{O}$ and $\mathrm{M}-\mathrm{C}$ bond lengths are essentially the same and consequently the charge-transfer or chemical contributions (donations) do not show large differences between alloy system and pure Co (figure2). The main observation in table 1 is a decrease in the adsorption energies when Co cluster is alloyed with $\mathrm{Mn}, \mathrm{Ni}, \mathrm{Fe}$ and Ru.

These results are in good agreement with a general experimental fact that the adsorption energy of molecules is smaller on alloys than on pure metals $[2,4]$. The reduction in the adsorption energy can be straightforwardly explained by the influence of the metal atoms on the surface Co d-band orbitals.

Prand homeromentes

CAPES, CNPq, FAPERJ.

[^118]
G3-CEP: UMA ALTERNATIVA AO MÉTODO GAUSSIAN-3

Alex Freitas Ramos(PG)*, Rogério Custodio(PQ). *lex@iqm.unicamp.br
Instituto de Química, Universidade Estadual de Campinas, Barão Geraldo, 13083-970, Campinas-SP. Palavras Chave: Gaussian-3, pseudopotencial, método composto.

Os métodos compostos são formados por um conjunto de cálculos sequenciais cujo resultado final é uma tentativa de aproximação de um cálculo mais sofisticado e dispendioso ${ }^{1}$.

Dentre os métodos compostos, os mais populares são os chamados Gaussian-n ou Gn. A versão mais recente dos métodos Gn é a Gaussian-3 ${ }^{2}$.

Mesmo com o ganho computacional do método G3, ele ainda pode ser impraticável para sistemas que contêm muitos elétrons. Com o objetivo de diminuir o custo computacional do método Gaussian-3 e manter sua precisão, alterou-se o G3, introduzindo o pseudopotencial CEP, de forma a reduzir ainda mais os custos computacionais.

O método G3-CEP foi testado através de cálculos de propriedades como afinidade eletrônica, afinidade protônica e potencial de ionização, de átomos e moléculas, e calor de formação de moléculas, totalizando 210 energias.
Para comparar os métodos G3 e G3-CEP, foram calculados os desvios médios absolutos ${ }^{1}$ dos erros obtidos com ambos os métodos e suas médias quadráticas, como mostrado na tabela 1.
Tabela 1. Desvios médios absolutos (MAD) e média quadrática (MQ) dos erros obtidos com os métodos G3-CEP e G3, em kcal/mol.

Conjunto	G3-CEP		G3	
	MAD	MQ	MAD	MQ
Calor de Formação	8,87	6,36	0,92	0,84
Potencial de lonização	1,35	1,23	1,13	1,21
Afinidade Eletrônica	1,13	0,80	0,94	0,90
Afinidade por Próton	1,26	0,65	1,33	0,54
Total*		1,26	1,06	1,07

Além dos desvios também foram comparados o tempo de CPU e o espaço em disco utilizado por cada um dos métodos, como mostrado na tabela 2.

Tabela 2. Comparação do tempo de CPU e espaço em disco utilizados pelos métodos G3 e G3-CEP no cálculo do $\mathrm{Si}_{2} \mathrm{H}_{6}$.

Método	Tempo de CPU (s)	Espaço em disco (Mb)
G3	255,9	762
G3-CEP	167,5	110

Os dados na tabela 1; obtidos a partir de hidrocarbonetos, hidrocarbonetos substituídos, hidretos inorgânicos, radicais e moléculas não hidrogenóides; mostram que o método G3-CEP apresenta resultados médios com desvios menores que $2 \mathrm{kcal} / \mathrm{mol}$ para os conjuntos formados com os cálculos de potenciais de ionização, afinidade eletrônica e afinidade por próton.
Pela tabela 1 também observa-se que o método G3-CEP produz energias que não são próprias para o cálculo de entalpias de formação, quando comparado ao método G3.
A razão para isso é que, para o potencial de ionização, a afinidade eletrônica e a afinidade por próton, devido à semelhança entre os sistemas em estudo, os erros devido à falta dos elétrons internos são cancelados na subtração das energias, o que não acontece com o calor de formação já que a subtração de energias envolve sistemas bastante diferentes e a inclusão dos elétrons internos dos sistemas parece ser bastante importante.
A tabela 2 mostra que o método G3-CEP é muito mais barato computacionalmente que o método G3.

Energias obtidas com o G3-CEP podem ser utilizadas para obtenção de afinidade por próton, afinidade eletrônica e potencial de ionização com erro menor que $2 \mathrm{kcal} / \mathrm{mol}$.

São necessárias mais adaptações ao método G3-CEP para obtenção de calores de formação com desvios comparáveis ao método G3.

O método G3-CEP é muito mais econômico computacionalmente que o método G3.

CAPES, CNPq e FAPESP.

[^119]
Estudo da estrutura de solvatação das cadeias laterais da proteína VIRAL GAG P6 POR DINÂMICA MOLECULAR

Mirian Pedrosa ${ }^{1,{ }^{*}}$ (IC), Fernanda Marur Mazzé ${ }^{1}$ (PG), Léo Degrève ${ }^{1}(\mathrm{PQ})$
*mirianp@aluno.ffclrp.usp.br
${ }^{1}$ Grupo de Simulação Molecular, Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo 14040-901, Ribeirão Preto (SP), Brasil.
Palavras Chave: proteína viral Gag p6, dinâmica molecular, estrutura de solvatação, ligação de hidrogênio. vez que possuem dois pares de elétrons livres, além de serem negativamente carregados. Na glutamina, apenas o oxigênio (OE1) e os dois hidrogênios (HE21 e HE22) são capazes de atrair os dipolos positivo e negativo, respectivamente, das águas do sistema. No glutamato, da mesma forma que no aspartato, os átomos de oxigênio (OE1 e OE2) apresentam melhor estrutura de solvatação por apresentarem pares de elétrons livre e carga negativa: Na lisina, a estrutura de solvatação melhor definida ocorre para os átomos de hidrogênio (HZ1, HZ2 e HZ3), fato explicado porque além dos hidrogênios serem carente de elétrons, eles ainda possuem uma carga positiva na lisina. Os resíduos de serina, treonina e tirosina apresentam estrutura de solvatação apenas ao redor do oxigênio e do hidrogênio constituintes de suas cadeias laterais, fato explicado porque o grupo hidroxila, bastante polar, atrai fortemente as moléculas de água, fazendo ligação de hidrogênio entre o hidrogênio da cadeia lateral e o oxigênio das águas. Não foram observadas diferenças nas estruturas de solvatação considerando-se um mesmo aminoácido localizado em diferentes posições da proteína Gag p6, o que pode ser explicado pelo pequeno tamanho da proteína (52 resíduos) que não apresenta um centro hidrofóbico definido capaz de esconder algumas cadeias laterais do acesso ao solvente.

Os resíduos que possuem estrutura de solvatação definida são os de cadeia lateral carregada ou polar. Esta ordenação das moléculas de água ao redor destes átomos promove a manutenção da estrutura protéica e, portanto, o conhecimento dessas interações é de grande relevância para o entendimento do mecanismo de atuação da proteína Gag p6 na etapa de brotamento do HIV.
\square Thalreagmentos
CNPq, FAPESP, Capes

[^120]XIV Simpósio Brasileiro de Química Teórica (SBQT)
Modelagem molecular dos tautômeros de 4-ARILAMINo-1,2-NAFTOQUINONA
Thaís P. Fragoso ${ }^{2}$ (IC) , José Walkimar de M. Carneiro ${ }^{1}$ (PQ), Maria D. Vargas ${ }^{1}$ (PQ)
tainafragoso@yahoo.com.br
${ }^{1}$ Departamento de Química Inorgânica, Universidade Federal Fluminense - UFF
${ }^{2}$ Graduação em Farmácia Industrial, Universidade Federal Fluminense - UFF
Palavras Chave: Modelagem molecular, arilaminos derivados de naftoquinonas, tautomerismo, energia de orbital, grau de coplanaridade, deslocalização eletrônica.

Thricer licalo

Compostos contendo o núcleo quinônico têm sido alvo de vários estudos devido a seu potencial anticâncer ${ }^{1}$. Entretanto, estudos sobre o tautomerismo ceto-enólico das arilamino-naftoquinonas são raros. Tal fato motiva a realização de estudos sistemáticos envolvendo o efeito de substituintes e de solventes nas estabilidades relativas dos tautômeros e de seus ânions.

No presente trabalho, foram selecionados alguns substituintes de modo a incluir grupos doadores ($\mathrm{R}=\mathrm{OH}, \mathrm{NH}_{2}, \mathrm{OCH}_{3}, \mathrm{CH}_{3}, \mathrm{t}-\mathrm{C}_{4} \mathrm{H}_{9}$) e atratores de elétrons ($\mathrm{R}=\mathrm{F}, \mathrm{NO}_{2}, \mathrm{Cl}, \mathrm{CN}, \mathrm{COCH}_{3}, \mathrm{Ph}$, Fc=ferrocenil) para avaliar seus efeitos nas estabilidades relativas dos tautômeros (figura 1). Para derivados com estes substituintes foi feita análise conformacional completa com os métodos AM1 e PM3. As conformações mais estáveis foram então reotimizadas com o método B3LYP/6$31 \mathrm{G}(\mathrm{d})^{2,3}$, o qual mostrou que o método AM1 produz resultados mais razoáveis do que o método PM3, quando comparado com o B3LYP. O tautômero B1 é o mais estável em fase gás, enquanto o tautômero A1 tem maior estabilidade em fase aquosa. Os substituintes parecem não interferir no ângulo entre os anéis, visto que estes se mostraram muito próximos para todos os substituintes. Entretanto, a estrutura do ânion tende a ficar mais plana com conseqüente maior deslocalização eletrônica entre o anel naftoquinônico e o grupo R. As energias dos orbitais HOMO e LUMO são também muito similares para os diferentes substituintes, exceto para o NO_{2}, o qual apresenta energias de HOMO e de LUMO menores do que os demais substituintes.

Figura1. Diferentes conformações de 4-arilamino-1,2-naftoquinona.

Figura 2. Estrutura do tautômero $\mathrm{B} 1 \mathrm{R}=\mathrm{H}$ contendo os números dos átomos de carbono, oxigênio e nitrogênio.

A análise de densidade de carga mostra que os grupos doadores de densidade eletrônica aumentam a densidade de carga nos oxigênios O_{10} e O_{11} e os grupos retiradores diminuem a densidade de carga nestes átomos. Através do uso de equações isodésmicas foi possível identificar os grupos que são doadores ou retiradores de densidade eletrônica.

Complusbes

A rotação em torno da ligação $\mathrm{C}-\mathrm{N}$ pode gerar quatro conformações (A1, A2, B1, e B2). Em todos os casos a conformação mais estável é aquela na qual o grupo $\mathrm{C}_{6} \mathrm{H}_{4} R$, independentemente de R , está deslocado para a direção dos átomos de oxigênio. Em fase gás o tautômero B1 é mais estável, entretanto, em água o tautômero A1 é o mais estável. Os substituintes não interferem na estabilidade relativa dos tautômeros.

[^121]
PROPRIEDADES DA ESTRUTURA DE BANDA DO SEMICONDUTOR GAN: FASES WURTZITA E ZINCO-BLENDA

Melânia Cristina Mazini ${ }^{1}$ (IC)*, Naiara Letícia Marana ${ }^{1}$ (IC), Luis Antonio S. Vasconcellos ${ }^{1}$ (PQ) e Júlio Ricardo Sambrano ${ }^{1}$ (PQ). melmazini@itelefonica.com.br
${ }^{1}$ Grupo de Modelagem e Simulação Molecular, UNESP, Bauru, SP, CEP 17033-360, Brasil.

Palavras Chave: GaN, lasers, wurtizita, zinco-blenda.

O GaN cristaliza-se preferencialmente na estrutura hexagonal do tipo wurtzita ($\mathrm{P}_{3} \mathrm{mc}$), mas sob certas condições de temperatura e pressão pode ser encontrado na estrưtura zinco-blenda (F 43 m). O GaN é um semicondutor aplicado na criação de dispositivos óptico-eletrônicos, detectores e lasers, os quais apresentam uma vida útil superior aos lasers atuais, que são confeccionados com outros tipos de materiais semicondutores.

Realizou-se uma simulação utilizando o programa CRYSTAL03 aplicando-se a Teoria do Funcional de Densidade (DFT) e funcionais B3LYP e B3PW com a finalidade de verificar a dependência das propriedades das bandas dos parâmetros de rede e coeficientes da base.

Realizou-se uma otimização dos coeficientes da base para os átomos de Ga e N para as estruturas do zinco-blenda (ZB) e wurtzita (W). Na segunda etapa minimizamos a energia da célula unitária em função dos parâmetros de rede. Os parâmetros calculados e experimentais ${ }^{4}$ são descritos na Tabela 1.

Calculou-se o gap de energia, para ambos funcionais obtendo-se para o funcional B3LYP os valores $3,86 \mathrm{eV}(\mathbb{W})$ e $3,67 \mathrm{eV}(\mathbb{Z B})$ e para o funcional B3PW, os valores $3,4 \mathrm{eV}(W)$ e $3,67 \mathrm{eV}(\mathbb{Z B})^{1}$.Os valores experimentais são $3,4 \mathrm{eV}(\mathbb{W})$ e $3,29 \mathrm{eV}(\mathbb{Z B}))$ ${ }^{2,3}$. (Figura 1)

Verificou-se que, para ambos os funcionais, os átomos de gálio, por meio dos orbitais $2 p_{x}, 2 p_{y}$ e $2 p_{z}$ são os que mais contribuem para a $B C(\mathbb{Z B})$ e no caso (W) é o orbital $2 p_{z}$. No caso do nitrogênio, os orbitais $2 p_{x}, 2 p_{y}$ e $2 p_{z}$ são os que apresentam maior contribuição na BV (ZB) e o orbital $2 p_{z}(\mathbb{W})$.

Tabela 1: Parâmetros de rede (\AA) e coordenada interna u.

	Wurtzita	Zinco-Blenda		
Parâmetros	a	C	u	a
B3LYP	3,18	5,225	0,377	4,5
B3PW	3,22	5,226	0,377	4,5
Experim.	3,189	5,173	0,377	4,49

M Monichiocs
As principais conclusões são descritas a seguir:

1. A geometria do equilíbrio e band gap estão em boa concordância com os dados experimentais.
2. Os orbitais $2 p_{x}, 2 p_{y}$ e $2 p_{z}$ do átomo de N para a estrutura do ($\mathbb{Z B}$) são os que mais contribuem para a BV, assim como na estrutura da (W), o orbital $2 p_{z}$.
3. Para os átomos de Ga , o orbital $2 \mathrm{p}_{\mathrm{z}}$ é o que mais contribui na $B C(\mathbb{W})$, os orbitais $2 p_{x}, 2 p_{y} e$ $2 p_{z}$ na (ZB), são os que mais contribuem.
4. A simulação demonstra que os funcionais B3LYP e B3PW, podem ser aplicados nos estudos das propriedades estruturais e eletrônicas do GaN apresentaram bons resultados quando comparados com dados experimentais.

Aofreceminelilos

Este trabalho foi financiado pela FAPESP e CNPq. Todos os cálculos foram realizados no Laboratório de Simulação Molecular da Unesp de Bauru.

[^122]Figura 1: Estrutura de bandas da Wurtzita (a) e Zinco-Blenda (b).

THE INFLUENCE OF γ-AL O_{3} ON THE FORMALDEHYDE ADSORPTION OVER PALLADIUM SMALL CLUSTERS.
 Mauricio Tavares de M. Cruz ${ }^{2^{*}}$ (PG) and José Walkimar de M. Carneiro ${ }^{1}$ (PQ)

${ }^{1}$ Departamento de Química Inorgânica, Universidade Federal Fluminense - UFF
${ }^{2}$ Pós-Graduação em Química Orgânica, Universidade Federal Fluminense - UFF, tavaresdemacedo@ig.com.br
Palavras Chave: γ-alumina, aldehyde, DFT, Pd cluster.

Evidence is emerging to substantiate the idea that a socalled "inert" support, like alumina, upon which metals are often carried to make heterogeneous catalyst, is not really inert. Although early studies indicate that supported palladium catalysts do not show a strong metal-support interaction, many experiments have since shown results that can be attributed to the interactions between Pd and alumina." Therefore we decided to study the influence of the γ-alumina support on the adsorption of compounds containing carbonyl group over Pd surfaces investigating the formaldehyde adsorption properties in both Pd_{4} isolated and $\mathrm{Pd}_{4} / \mathrm{V}$ $\mathrm{Al}_{2} \mathrm{O}_{3}$ ensembles. Two coordination modes for adsorption of aldehydes have been reported from experimental characterization techniques. In the first one, $\left(\eta_{1}\right)$, the formaldehyde molecule stays up over the surface binding through the oxygen lone pair, while in the second mode (η_{2}) the binding involves both the carbon and the oxygen atoms, through the π-electrons $\left[\eta^{2} \pi\right]$, or on bridge, trough two σ-bond $\left[\eta^{2}\right.$ di- σ]. The preferred adsorption mode of aldehyde on Group VIIII metal surfaces ${ }^{\text {iil }}$ is the T^{2} configuration, with some T^{1} species present at low temperature.

Resulle cilisaussion

The B3LYP/LANL2DZ/6-31G(d) method was employed to calculate different adsorption forms of formaldehyde on Pd_{4} (111) and on Pd_{4} supported on y-alumina. As a first step, a cluster of four palladium atoms was fully optimized on the 110C face (figure 1a) of Υ-alumina with geometry fixed (fig 1b) in the bulk experimental values. Over the $\mathrm{Al}_{10} \mathrm{O}_{15}$ cluster, the formaldehyde was adsorbed in several arrangements. For all arrangements several spin states were calculated. On both isolated Pd_{4} arrangements, the triplet state has the lowest energy. Our results point to the $\eta^{2} \pi$ adsorption mode (J mode; table 1 and fig ure 2 b) when the

(a)

(b)

Figure2: formaldehyde preferential adsorption modes: a) $\eta^{2} \pi / \mathrm{Pd}_{4}$ (tetrahedral) and b) $\eta^{2} \mathrm{di}-\sigma / \mathrm{Pd}_{4}$ (plane)
formaldehyde adsorbs in a tetrahedral arrangement ($12.94 \mathrm{kcal}^{2} . \mathrm{mol}^{-1}$). This is only $1.1 \mathrm{kcal} . \mathrm{mol}^{-1}$ higher than the experimental heat of chemisorption in gas phase (-

	Pd_{4} geom.	Ads. mode	Spin state	$\mathrm{E}_{\text {ABS }}$	$\begin{gathered} E_{\text {ADS }} \\ \left(\mathrm{kcal} \cdot \mathrm{~mol}^{-1}\right) \end{gathered}$	$\begin{aligned} & \mathrm{Q}_{\mathrm{tot}} \\ & (\mathrm{Pd}) \end{aligned}$
A	${ }^{\text {i }}$	$\eta^{2} \mathrm{di}-\sigma$	$S=1$	-621.5000	-22.61	+0.131
C	'P	$\eta^{2} \mathrm{di}-\sigma$	$\mathrm{S}=1$	-621.4979	-21.29	+0.128
1	'T	$\eta^{1}(\mathrm{O})$	$\mathrm{S}=1$	-621.5192	-11.25	-0.169
J	'T	$\eta^{2} \pi$	$S=1$	-621.5219	-12.94	+0.043
M	${ }^{n}$	$\eta^{2} \pi$	$\mathrm{S}=2$	-4175.0423	-12.36	-0.007
M^{*}	${ }^{n r}$	$\eta^{2} \pi$	$\mathrm{S}=2$	-4175.0447	-14.47	+0.005

Table 1: Geometric and energetic parameters for H 2 CO adsorbed on both Pd isolated and Pd / γ-alumina clusters. P : plane; T : tetrahedral; I: between plane and tetrahedral; i : isolated; n : alumina present and nr: Pd relaxation during the H 2 CO optimization.
$\left.11.8 \mathrm{kcal}_{\mathrm{kc}}^{\mathrm{mol}}{ }^{-1}\right)^{\mathrm{iv}}$. The η^{2} di- σ mode (\mathbb{A} mode, -22.61 kcal. mol^{-1}; table 1 and figure 2a) is preferential for adsorption on a Pd_{4} isolated cluster with plane arrangement. This was also found by Neurock, using first-principle density functional for low coverage adsorption on Pd_{19} cluster. The presence of alumina reduces the adsorption energy and alter the preferential spin state. The restricted as well as unrestricted calculations indicate that metal-support electron transfer occurs more intensively from the palladium cluster to the $\Upsilon-\mathrm{Al}_{2} \mathrm{O}_{3}$.

Conclustom

The η^{2} mode is preferential for formaldehyde adsorption on Pd_{4} clusters. The carbonyl orbitals involved in the formaldehyde palladium interactions depend on the metal arrangement (di- $\sigma \rightarrow$ plane and $\pi \rightarrow$ tetrahedral). For supported Pd_{4}, the adsorption occurs in a π-type η^{2} mode, with the quintet as most stable spin state. The HOMO energy of the Pd_{4} cluster decrease by 0.9 eV when Pd_{4} is supported. This decrease may be the reason why the metal cluster has its electronic density increased when formaldehyde adsorbs via π electrons over Pd_{4} supported.

Achoveromemens

CAPES, CNPq, FAPERJ.

[^123]
INFLUÊNCIA DAS LIGAÇÕES DE HIDROGÊNIO SOBRE O GCE NOS NITROGÊNIOS DO IMIDAZOL CRISTALINO

Marcos Brown Gonçalves ${ }^{1}(\mathbb{P G})^{*}$, \mathbb{R}. Di Felice ${ }^{2}(\mathbb{P Q})$, Marília J. Caldas ${ }^{1}(\mathbb{P Q})$, Helena M. Petrilli ${ }^{1}$ (PQ) e= mail: browngon@if.usp.br

1) Instituto de Física, DFMT-IFUSP, Universidade de São Paulo, 2) Universitá di Modena e Reggio Emilia, Modena, Italy

Palavras Chave: imidazol, GCE, ligação de hidrogênio

Neste trabalho estudamos as propriedades estruturais e hiperfinas para diferentes empacotamentos do imidazol desde a fase molecular até a cristalina. Técnicas espectroscópicas são usualmente utilizadas para caracterizar as propriedades eletrônicas sendo que a complicada análise em ambiente biológico, é muitas vezes realizada utilizando resultados obtidos em fase cristalina. Importantes técnicas tais como EPR, NMR e NQR, nos fornecem informações sobre a distribuição eletrônica local (e de spin) através de Interações Hiperfinas. Em particular, a interação de quadrupolo nuclear fornece informação sobre o Gradiente de Campo Elétrico no núcleo (GCE).

RGGMhaiose oliscissab

Estudamos, através de um exemplo bastante claro, o efeito das ligações de hidrogênio que aparecem no estado sólido com o auxilio do cálculo do GCE nos sítios de nitrogênio comparado a valores experimentais. Nossos valores, de freqüência de acoplamento quadrupolar v e parâmetro de assimetria η nos sítios de N tanto para a fase gasosa quanto para a fase cristalina estão em ótima concordância com os resultados experimentais da literatura e são os primeiros resultados obtidos por métodos ab initio no espaço recíproco. Para interpretar os resultados experimentais do GCE nos sítios de N na molécula e no cristal, realizamos um estudo sistemático do GCE. Estudamos o efeito das ligações de hidrogênio desde o monômero até uma cadeia infinita. Mostramos também que a interação entre elementos de cadeias distintas não altera substancialmente o GCE nos sítios de N . Chegamos ao interessante resultado de que a utilização de uma cadeia infinita é suficiente para reproduzir o GCE no imidazol cristalino.
Tabela 1. Valores calculados para o GCE nos núcleos de nitrogênio amino e imino. Resultados experimentais em negrito.

	Amino		Imino	
	Q(MBz)		e(MHz)	
Molécula $^{\mathbf{1}}$	$\mathbf{2 , 5 3 7}$	$\mathbf{0 , 1 7 8}$	$\mathbf{4 , 0 3 2}$	$\mathbf{0 , 1 2 0}$
Molécula	2,802	0,155	4,205	0,047
Dímero	1,811	0,547	3,701	0,060
Trímero	1,704	0,655	3,682	0,069
Cadeia Infinita	1,533	0,911	3,513	0,111
Cristal	1,528	0,911	3,452	0,119
Cristal ${ }^{2}$	$\mathbf{1 , 3 9 0}$	$\mathbf{0 , 9 3 0}$	$\mathbf{3 , 2 2 0}$	$\mathbf{0 , 1 1 9}$

Podemos concluir que o valor do GCE no imidazol cristalino é fortemente influenciado pelas LHs estudado através da cadeia infinita sendo esta a interação principal responsável por aproximadamente 98% do η e 90% do v. Esta afirmação só pôde ser concluída, como fazemos aqui, através dos resultados dos cálculos para um sistema infinito, ou seja, para a cadeia infinita e o cristal infinito, refutando a idéia de que a não concordância dos resultados obtidos por cálculos quânticos, anteriormente, vinha de interações entre segundos vizinhos e Van der Waals.

AO Ger egluth Hos

Este trabalho foi desenvolvido dentro do projeto IMMP e dentro do acordo bilateral CNPq/CNR 690131/02-0. Utilizou as facilidades computacionais disponíveis no LCCA da USP e recursos disponibilizados pela FAPESP dentro do grupo Nanomol.

[^124]
APLICAÇÃo DO MODELO CCFDF/QTAIM PARA INTERPRETAR AS INTENSIDADES NO ESPECTRO INFRAVERMELHO DAS MOLÉCULAS $X_{2} C Y$ ($\left.X=H, F, C L ; Y=O, S\right)$

Sérgio H. D. M. Faria ${ }^{1}(\mathrm{PG})^{*}$, João Viçozo S. Júnior ${ }^{1}(\mathrm{PG})$, Roberto L. A. Haiduke ${ }^{2}(\mathrm{PQ})$, Roy E. Bruns ${ }^{1}(\mathrm{PQ})$ *secormetal@yahoo.com
${ }^{1}$ Instituto de Química, Universidade Estadual de Campinas, CP 6154, CEP: 13083-970, Campinas-SP, Brasil. ${ }^{2}$ Departamento de Química, Universidade Federal do Paraná, CP 19081, CEP: 81531-990, Curitiba-PR, Brasil.
Palavras Chave: CCFDF, QTAIM, intensidades vibracionais.

InJiocelvera

Estudos recentes ${ }^{1,2}$ têm mostrado que o modelo Carga - Fluxo de Carga - Fluxo de Dipolo (CCFDF) é uma alternativa interessante para se reproduzir as intensidades no espectro infravermelho de moléculas e principalmente para se interpretar as alterações das estruturas eletrônicas durante vibrações moleculares. Este modelo utiliza cargas e dipolos atômicos calculados através da Teoria Quântica Átomos em Moléculas (QTAIM) ${ }^{3}$ para decompor as derivadas do momento dipolar molecular em três contribuições que possuem interpretações físicas simples.
Neste trabalho, o modelo CCFDF/QTAIM foi utilizado para estudar as moléculas $\mathrm{H}_{2} \mathrm{CO}, \mathrm{HFCO}, \mathrm{F}_{2} \mathrm{CO}, \mathrm{Cl}_{2} \mathrm{CO}$, $\mathrm{F}_{2} \mathrm{CS}$ e $\mathrm{Cl}_{2} \mathrm{CS}$.
Os cálculos foram realizados utilizando o programa GAUSSIAN98 no nível MP2/6-311++G(3d,3p).

Figura 1. Comparação entre intensidades CCFDF/QTAIM/MP2/6-311++G(3d,3p) com as obtidas diretamente da função de onda MP2/6-311++G(3d,3p) e com as experimentais.
A Figura 1 mostra um gráfico com as intensidades CCFDF/QTAIM/MP2/6-311++G(3d,3p) plotadas contra aquelas obtidas diretamente da função de onda MP2/6$311++G(3 d, 3 p)$ e também contra as intensidades experimentais. Os valores estimados através do modelo CCFDF apresentam excelente concordância (erro rms de $1,4 \mathrm{~km} / \mathrm{mol}$) com as obtidas diretamente da função de onda. Embora para bandas pouco intensas seja observado uma boa concordância entre os valores teóricos e experimentais, este comportamento não ocorre para bandas com intensidade acima de 200 $\mathrm{Km} / \mathrm{mol}$. O erro rms entre valores teóricos e calculados é de $51,2 \mathrm{~km} / \mathrm{mol}$.

Contribuição de fluxo de carga plotada contra a contribuição de fluxo de dipolo.
Uma elevada correlação negativa ($r=-0,83$), a qual pode ser observada na Figura 2, foi detectada entre as contribuições de fluxo de carga e de fluxo de dipolo.

Comcrusocs

O modelo CCFDF utilizando cargas e dipolos atômicos QTAIM no nível MP2/6-311++G(3d,3p) reproduz de maneira adequada as intensidades obtidas diretamente desta função de onda. Porém apresenta uma certa discrepância em relação aos dados experimentais, principalmente para bandas intensas.
A correlação negativa entre as contribuições de fluxo de carga e de fluxo de dipolo mostra que a transferência de carga para uma dada região da molécula durante o movimento vibracional é compensada por uma polarização da nuvem eletrônica no sentido oposto.

Wundelechinediog

À FAPESP (06/53260-6 e 06/51572-0) e ao CNPq.
${ }^{1}$ Viçozo, J. S. Jr.; Haiduke, R. L. A.; Bruns, R. E. J. Phys. Chem. A 2006, 110, 4839.
${ }^{2}$ Viçozo, J. S. Jr.; Haiduke, R. L. A.; Bruns, R. E. J. Phys. Chem. A 2007, 111, 515.
${ }^{3}$ Bader, R. F. W. "Atoms in Molecules: A Quantum Theory", Clarendon Press: Oxford, UK, 1990

AGLOMERADOS REPRESENTATIVOS DO CATALISADOR MOS 2 : INVESTIGAÇÃO DE PROPRIEDADES ELETRÔNICAS

Alexander Martins da Silva* (PQ), Itamar Borges Jr. (PQ)
Departamento de Química, Instituto Militar de Engenharia.
Palavras-Chave: DFTIB3LYP, modelo do catalisador MoS_{2}, expansão multipolar

Hidrodessulforização (HDS) é um processo catalítico importante na indústria do petróleo, sendo empregado na remoção de enxofre de frações pesadas. Catalisadores de sulfeto de molibdênio são usados extensivamente neste processo. Na literatura tem sido discutido qual seria o tamanho mínimo do aglomerado adequado para estudar reações envolvidas em processos de HDS [1]. Neste trabalho, usamos a técnica da expansão multipolar para decompor a densidade eletrônica em momentos de multipolo (cargas, dipolos, quadrupolos) localizados em cada sítio atômico. Com esta abordagem, é possível ter uma descrição detalhada da densidade eletrônica em cada sítio atômico do aglomerado-modelo do catalisador MoS_{2}.

No Simpósio serão apresentados resultados detalhados de aglomerados-modelo de variados tamanhos. Em particular, já otimizamos a geometria, calculamos freqüências e obtivemos os momentos de multipolo do catalisadores $\mathrm{Mo}_{10} \mathrm{~S}_{18}$ e $\mathrm{Mo}_{16} \mathrm{~S}_{32}$. em nivel DFT/B3LYP//LANCVP** (figura). Nestes dois aglomerados, verificamos, além de consideráveis distorções de geometria (e.g. átomo de Mo na primeira camada do aglomerado menor), valores de

momentos de multipolo dos átomos de Mo e S da primeira camada que podem diferir mais do que 80\% entre si. Estas diferenças levam a diferentes distorções da planaridade do tiofeno adsorvido, logo a diferentes níveis de quebra da aromaticidade da molécula, o que afeta as próximas etapas do processo de HDS.
[1] - H. Orita, K. Uchida, N. Itoh, J. Mol. Cat. A (Chemical) 193, 197 (2003)

FAPERJ, CAPES,CNPq,FINEP,PETROBRÁS

DIAZOCICLOPROPANOS COMO POTENCIAIS MATERIAIS ENERGÉTICOS

Itamar Borges Jr. (PQ)
Departamento de Química, Instituto Militar de Engenharia.
Palavras-Chave: DFT/B3LY, materiais energéticos, expansão multipolar

Materiais energéticos são explosivos ou propelentes constituídos de moléculas com alta densidade energética. Estes materiais têm sido intensamente investigados com o propósito de conceber, caracterizar e avaliar novos compostos energéticos. O grande objetivo destes estudos é desenvolver materiais que combinem desempenho melhorado com vulnerabilidade, ou sensibilidade, diminuída. Alguns estudos de química teórica têm sido realizados, com variados graus de sucesso, com o intuito de correlacionar a propriedades físico-químicas da molécula componente com o comportamento macroscópico do explosivo ou propelente.

Como parte da pesquisa que visa obter correlações entre propriedades moleculares e propriedades macroscópicas, se investigou a
proposta de Kapur e Ball [1], que sugeriram diazociclopropanos como potenciais materiais energéticos. Otimização de geometrias e obtenção de freqüências vibracionais DFT/B3LYP//6-31G(d,p) foram levados a cabo e apresentaram diferenças significativas quando comparados com os cálculos anteriores em nível HF//D95 [1]. As geometrias otimizadas estão mostradas na figura. Momentos de multipolos (carga, dipolo, quadrupolo) foram calculados em cada sítio atômico de cada molécula com o intuito de caracterizar cada molécula e associar tais propriedades com o esperado aumento das entalpias de combustão que acompanham o aumento do conteúdo de grupos diazo em cada molécula.

[1] -N. Kapur e D. W. Ball, J. Molec. Struc (THEOCHEM) 715, 151 (2005)

FAPERJ, CAPES,CNPq,

INTERAÇÃO PEPTÍDEO-MEMBRANA: CONDIÇÕES DE INSERÇÃO DE UM mutante de um híbrido de cecropina e magainina.

Carlos. A. Fuzo (PG), Gláucia M. da Silva (PQ), Fábio Filocomo (IC), Léo Degrève* (PQ)
leo@ffclrp.usp.br
Grupo de Simulação Molecular, Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo
AV. Bandeirantes, 3900
14040-901 Ribeirão Preto (S.P.)
Palavras Chave: proteínas, peptídeos antimicrobianos, interação peptídeo-membrana, simulação molecular

Himaturgo

Os peptídeos antimicrobianos são as moléculas com a atividade mais importante nos sistemas de autodefesa dos organismos multicelulares. Entre estes peptídeos, os de mecanismos de ação melhor conhecidos são as cecropinas e as magaininas que atuam sobre a membrana citoplasmática dos microorganismos provocando a desestabilização segundo uma ação do tipo detergente ou pela formação de poros. Peptídeos híbridos de cecropina e de magainina apresentam também atividades antitumoral e antimicrobial sem apresentar toxicidade para os eritrócitos humanos. Com o objetivo de investigar o processo de danificação das membranas pelos peptídeos híbridos de cecropina e de magainina, a interação do mutante KWKLFKKIKFLHSAKKF $\left(\mathrm{NH}_{2}\right)$ (nomenclatura pdb 1fOf) com membranas de DPPC (dipamitoilfosfatidilcolina) foi estudada por dinâmica molecular. Este peptídeo apresenta uma hélice α entre os resíduos 4 e 11. Duas moléculas de 1 fOf a partir de agora denominadas P1 e P2, foram inseridas em meio aquoso perto de ambas as faces da membrana de modo que os peptídeos apresentem faces opostas à membrana. O tempo de simulação foi de 50 ns , temperatura de 323 K e pressão de 1 atm .

A figura 1 mostra o número médio de átomos da membrana encontrados numa distância inferior a $0,5 \mathrm{~nm}$ dos átomos de P1 e P2 com resultados favoráveis a P2. A figura 2 mostra as áreas acessíveis ao solvente no final da simulação: os resíduos $4,5,9,12,13,14$ e 15 de P2 estão muito mais inseridos na membrana do que os mesmos resíduos de P1. O oposto é observado para os resíduos 3,7 e 16. Os valores médios (inserção na figura 1) indicam também uma maior inserção de P2. Examinando, na estrutura tridimensional do sistema, a configuração dos sete resíduos de lisina (K), observa-se que, em P1, 3 deles estão inseridos na membrana e 4 no solvente. Em P2, tem-se 5 e 2, respectivamente. A inserção dos resíduos de lisina se faz pela
atração eletrostática entre suas cargas positivas e a região negativa dos grupos PO_{4} dos DPPC. As hélices α são pouco alteradas pela inserção na membrana.

Figura 1. Número médio de átomos da membrana
vizinhos dos átomos de P1 (1-221) e P2 (222442) distância $<0,5 \mathrm{~nm}$. Entre parênteses: média por átomo de P1/P2

Figura 2. Áreas médias dos resíduos acessiveis ao solvente nos últimos 100ps.

A inserção dos peptídeos na membrana é favorecida pela maior atração eletrostática entre as cargas da membrana e as cargas dos resíduos do 1 fof. A maior exposição de resíduos carregados à interação mais direta com a membrana é portanto a condição de melhor inserção.

Fapesp, CNPq

STUDY OF NUCLEAR MAGNETIC SHIELDING CONSTANTS CALCULATED WITH A HIERARCHICAL SEQUENCE OF XZP BASIS SETS

Paulo J. P. de Oliveira ${ }^{*}$ (PG), Francisco E. Jorge(PQ)
paulojoseo@gmail.com
Departamento de Física, Universidade Federal do Espírito Santo, 29060-900 Vitória, ES
Key words: absolute shielding constant, shielding anisotropy, XZP basis sets, HF and MP2 calculations

hinocturilon

Ab initio methods has routinely and successfully been used to calculate electric, magnetic, and optical properties associated with the responses of a molecular electronic system perturbation such as externally applied electromagnetic fields and nuclear magnetic and electric moments.
In this work, we present the results of Hartree-Fock
 theory (MP2) calculations using at the first time the Jorge's hierarchical sequence of basis sets ${ }^{1,2}$ to compute molecular magnetic properties of sixteen molecules. The convergence of NMR isotropic shielding constants (σ) and shielding anisotropies $(\Delta \sigma)$ with respect to basis set using the gaugeincluding atomic orbital (GIAO) method is examined. For each magnetic property, the effects of basis set enlargements and correlation corrections were examined in this work. Comparison with theoretical and experimental values reported in the literature is done.

RHSMIS anc onscussorio

All calculations were carried out with the Gaussian 03 code and with the experimental geometries.
GIAO-HF and -MP2 absolute shielding constants calculated with the double, triple and quadruple zeta valence quality plus polarization functions (XZP, $X=D, T, Q$, respectively) basis sets ${ }^{1,2}$ for two molecules studied in this work are shown in Table I, along with the experimental data ${ }^{3}$ and some selected values from other calculations ${ }^{4}$.
A comparison of the GIAO-HF isotropic shieldings calculated with the various basis sets shows that at least a TZP is required for a reliable theoretical determination of this property. An interesting observation is that all our results converge monotonically with increasing basis set quality, and we believe that our largest basis set (QZP) approach
the HF limit for the most of the molecules studied. The observed large errors for CO and N_{2} are not surprising, because the importance of electron
correlation for a correct description of both molecules and in particular CO is well known. Inclusion of electron correlation via GIAO-MP2 improves in all cases the agreement between theory and experiment. This indicates that the errors found with the HF/QZP model are mainly due to electron correlation. Although calculations with the TZP set yields overall quantitative correct results for σ and shows the significance of electron correlation, for some cases (CO and N_{2}) reliable results are only obtained with basis sets of at least QZP quality.
Anisotropies will not be discussed in detail here since the trends are similar to those observed for σ. However, the calculated values provide a set of 'benchmark' values for calibrating other basis sets for computing shielding constants.
Except for molecules where correlation effects are very high, such as CO and N_{2}, the MP2/QZP shielding constants are in good agreement with the experiment data.

Concmions

In this work, we have presented a detailed investigation of basis sets effects in the calculations of NMR shielding constants using GIAO-HF and -MP2 methods. Comparison with available experimental NMR data demonstrates that GIAOMP2/QZP model is an efficient tool for the accurate determination of σ and $\Delta \sigma$ in cases with no large correlation correction. For these molecule species, we believe to be achieved results close to the HF limit. For molecules like CO and N_{2}, it is necessary to use higher level of theory [e.g., $\operatorname{CCSD}(\mathrm{T})$] to obtain results closer to experimental data.

CNPq, CAPES

[^125]Table I. Calculated and experimental isotropic shielding constants (in ppm).

Molecu	Nucleus	HF/DZP	HF/TZP	HF/QZP	MP2/DZ	MP2/TZP	MP2/QZP	CCSD(T)	Expt. ${ }^{3}$
CH_{4}	${ }^{13} \mathrm{C}$	203.5	195.5	195.3	208.8	201.9	201.3	198.9	198.4 ± 0.9
	${ }^{1} \mathrm{H}$	31.6	31.8	31.6	31.5	31.6	31.3	31.6	30.61 ± 0.024
$\mathrm{~N}_{2}$	${ }^{15} \mathrm{~N}$	-94.8	-108.1	-112.9	-8.3	-35.6	-42.4	-58.1	-59.6 ± 1.5

ESTUDO DAS REAÇÕES DE HIDRAZINA NA PRESENÇA DE HIDROGENIO. $\mathbb{N}_{2} \mathrm{H}_{4}+$ $H \rightarrow \mathbb{N}_{2} \mathrm{H}_{3}+\mathrm{H}_{2} E \mathbb{N}_{2} \mathrm{H}_{4}+\mathrm{H} \rightarrow \mathrm{NH}_{3}+\mathbb{N H}_{2}$.

Marina Pelegrini ${ }^{1}(\mathrm{PQ})^{*}$ (marina.pelegrini@ufjf.edu.br), Orlando Roberto-Neto ${ }^{2}$ (PQ), Francisco B. C. Machado ${ }^{3}$ (PQ)
${ }^{1}$ Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Juiz de Fora - Juiz de Fora - MG.
${ }^{2}$ Divisão de Aerotermodinâmica e Hipersônica, Instituto de Estudos Avançados - São José dos Campos - SP.
${ }^{3}$ Departamento de Química, Instituto Tecnológico de Aeronáutica - São José dos Campos - SP.

Palavras Chave: constante de velocidade, IRC, ab initio

Thinoomralo

Compostos de nitrogênio têm um papel crucial na química de combustão. Hidrazina e seus derivados formam um importante grupo de moléculas com aplicações em uma ampla variedade de processos químicos. Têm despertado interesse nas últimas décadas por seu alto poder energético, e têm sido utilizados como combustíveis de propulsores em thrusters em foguete e satélites ${ }^{1}$.
A decomposição da hidrazina é prevista para ocorrer por dois caminhos de reação ${ }^{2}$, através de dissociações sucessivas das ligações N-H, ou através da quebra da ligação $N-N$.
Estudos experimentais recentes reconhecem a necessidade de se conhecer com mais propriedade os caminhos e mecanismos de reação percorridos na sua decomposição.
O objetivo deste trabalho é o estudo termodinâmico e cinético das duas reações de iniciação de decomposição, e se faz necessário para que reações elementares subseqüentes sejam propostas e e verificadas experimentalmente.

$$
\begin{align*}
& \mathrm{N}_{2} \mathrm{H}_{4}+\mathrm{H} \rightarrow \mathrm{~N}_{2} \mathrm{H}_{3}+\mathrm{H}_{2} \tag{1}\\
& \mathrm{~N}_{2} \mathrm{H}_{4}+\mathrm{H} \rightarrow \mathrm{NH}_{3}+\mathrm{NH}_{2} \tag{2}
\end{align*}
$$

As reações (1) e (2) foram caracterizadas com relação aos pontos estacionários correspondentes aos reagentes, produtos e estados de transição.

As geometrias de todas as espécies envolvidas foram otimizadas utilizando-se o método MP2 e o conjunto de funções base cc-pVTZ. As energias totais e as propriedades foram extrapoladas com o método $\operatorname{CCSD}(T)$ e a extrapolação do conjunto de funções base segundo a expressão:
$E(C B S)=\frac{\left(E(n) \times n^{3}\right)-\left(E(n-1) \times(n-1)^{3}\right)}{n^{3}-(n-1)^{3}}$,
Utilizando-se os conjuntos de funções base ccpVTZ e cc-pVQZ, onde $n=4$.
Cálculos IRC foram realizados no nível MP2 a fim de correlacionar os estados de transição aos reagentes e produtos.
Propriedades cinéticas também foram estudadas, as constantes de velocidade foram calculadas empregando-se a Teoria do Estado

Transição, como implementado no código POLYRATE 9.3.

Estudos experimentais comprovam que quando se faz uso de deutério ao invés de hidrogênio, cerca de 95% da amồnia obtida como produto é amônia "leve". Esta constatação revela que a reação (1), onde ocorre a cisão da ligação N-H, deve ser de maior importância que a reação (2), onde ocorre a cisão da ligação $N-N$.

Algumas propriedades para as reações (1) e (2) são resumidas na Tabela 1.
Tabela 1: Propriedades termoquímicas e cinéticas das reações (1) e (2). Energias em kcallmol, $k(T)$ é dado em molécula.cm $\mathrm{cm}^{-1} \cdot \mathrm{~s}^{-1}$.

	ΔE_{0}	$\Delta V_{0}^{\#}$	ΔG_{298}	$k(298)$
$(1) \mathrm{N}_{2} \mathrm{H}_{4}+\mathrm{H} \rightarrow \mathrm{N}_{2} \mathrm{H}_{3}+\mathrm{H}_{2}$				
A^{*}	$-15,9$	11,8	$-23,6$	
$B^{* *}$	$-21,8$	6,4	$-29,6$	$6,4 \times 10^{-14}$
$(2) \mathrm{N}_{2} \mathrm{H}_{4}+\mathrm{H} \rightarrow \mathrm{NH}_{3}+\mathrm{NH}_{2}$				
A	$-37,3$	17,7	$-47,0$	
B	$-42,4$	11,7	$-52,0$	$8,88 \times 10^{-18}$

*A - Método MP2/cc-pVTZ
** B - Extrapolação $\operatorname{CCSD}(\mathrm{T}) / \mathrm{CBS}$

Tonglusoxas

Ambas as reações estudadas ocorrem na presença de hidrogênio radical e produzem espécies radicalares, o que deve possibilitar maior sustentabilidade ao processo de decomposição global da molécula hidrazina, pois radicais são espécies reativas e facilitam a ocorrência dos passos subseqüentes.
Do ponto de vista cinético, a reação (1) tem maior probabilidade de ocorrer, visto que a barreira de ativação, $\Delta V_{0}^{\#}$, desta reação é menor. Por outro lado, a reação (2) é energeticamente favorecida, já que as propriedades relacionadas com a energética desta reação revelam que esta é mais exotérmica.

CNPq, FAPESP, CENAPAD-SP.

[^126]
Ligand site preference in $\left[\mathrm{Fe}(\mathrm{CO})_{4} \mathrm{~L}\right]\left(\mathrm{L}=\mathrm{CO}, \mathrm{CS}, \mathrm{N}_{2}, \mathrm{NCCH}_{3}, \mathrm{NH}_{3}, \mathrm{NF}_{3}, \eta^{2}{ }^{-}\right.$ $\left.\mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{PH}_{3}, \mathrm{P}\left(\mathrm{CH}_{3}\right)_{3}, \mathrm{P}\left(\mathrm{OCH}_{3}\right)_{3}, \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}, \mathrm{PF}_{3}\right)$.

Eluzir P. Chacon (PG), José Walkimar de M. Carneiro ${ }^{*}$ (PQ), Maria D. Vargas (PQ)

Programa de Pós-graduação em Química Orgânica. Instituto de Química, UFF.
Departamento de Química Inorgânica. Instituto de Química, UFF.
Outeiro de São João Batista, s/n, 24020-150, Niterói.

walk@uff.vm.br

Keywords: DFT, bonding interactions. EDA, CDA, iron carbonyls

The Dewar-Chatt-Duncanson model is generally accepted to describe metal-ligand bond. According to this model, the bonding has contributions from two distinct interactions: σ donation from the ligand to the metal and π backdonation from the metal to the ligand. The equilibrium geometries, bonding dissociation energies and relative energies of axial and equatorial iron carbonyl complexes, $\left[\mathrm{Fe}(\mathrm{CO})_{4} \mathrm{~L}\right](\mathrm{L}$ $=\mathrm{CO}, \mathrm{CS}, \mathrm{N}_{2}, \mathrm{NCCH}_{3}, \mathrm{NH}_{3}, \mathrm{NF}_{3}, \eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{PH}_{3}$, $\left.\mathrm{P}\left(\mathrm{CH}_{3}\right)_{3}, \mathrm{P}\left(\mathrm{OCH}_{3}\right)_{3}, \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}, \mathrm{PF}_{3}\right)$, Figure 1, were calculated with B3LYP/6-31+G(d) in order to investigate whether the ligand site preference correlates with σ-donor/ π-acceptor capabilities of these ligands. The bonding interactions were analysed with two methods: Charge Decomposition Analysis (CDA) and Energy Decomposition Analysis (EDA).

Figure 1: Substituition of a carbonyl ligand in the axial (a) or equatorial (b) positions.

Ewiesulfs anderiscussions

Table 1 shows the bonding dissociation energies (BDE) and relative energies ($\triangle E=E_{a x}$ $\mathrm{E}_{\text {eq }}$) of axial and equatorial iron carbonyl complexes, $\left[\mathrm{Fe}(\mathrm{CO})_{4} \mathrm{~L}\right]$. Our calculations reveal that for all complexes the first bond dissociation energy in the axial isomer is larger than in the equatorial one.

All ligands but $\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}, \mathrm{P}\left(\mathrm{OCH}_{3}\right)_{3}$ and PF_{3} prefer the axial position. The relative energies are shown in Table 1.

Both the EDA and the CDA decomposition analyse indicate that the metal-ligand interactions are strongly dependent on the distance. As a general trend donation is stronger when the ligands are in the axial position, while backdonation is stronger for ligands in the equatorial position. This trend is rationalized in terms of the HOMO and LUMO orbital energies of the $\mathrm{Fe}(\mathrm{CO})_{4}$ fragment (Figure 2).

Figure 2: LUMO's and HOMO's energies of the $\mathrm{Fe}(\mathrm{CO})_{4}$ fragment (axial and equatorial positions).

The following order for the $\mathrm{Fe}(\mathrm{CO})_{4}-\mathrm{L}$ interactions was found:
Axial position: $\mathrm{CS}>\mathrm{PMe}_{3}>\mathrm{CO}>\mathrm{P}(\mathrm{OMe})_{3}>$ $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}>\mathrm{PF}_{3}>\mathrm{PH}_{3}>\mathrm{NH}_{3}>\mathrm{NCCH}_{3}>\mathrm{N}_{2}>\mathrm{NF}_{3}$. Equatorial position: $\mathrm{CS}>\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}>\mathrm{CO}>\mathrm{PMe}_{3}>$ $\mathrm{P}(\mathrm{OMe})_{3}>\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}>\mathrm{PF}_{3}>\mathrm{PH}_{3}>\mathrm{NH}_{3}>\mathrm{NCCH}_{3}>$ $\mathrm{N}_{2}>\mathrm{NF}_{3}$.

Table 1: Absolute Energies (Hartrees), Relative Energies (kcal.mol ${ }^{-1}$) and Bond Dissociation Energies ($\mathrm{kcal} . \mathrm{mol}^{-1}$) for the axial and equatorial isomers of [$\left.\mathrm{Fe}(\mathrm{CO})_{4} \mathrm{~L}\right]$.

	Absolute Energy		$\Delta \mathbf{E}^{*}$	BDE**	
	axial	equat		axial	equat
CO	-1830,37221	-1830,37221	0,00	40,29	36,51
CS	-2153,29763	-2153,29717	0,29	57,88	53,73
N_{2}	-1826,55061	-1826,54918	0,90	19,41	14,80
NCCH_{3}	-1849,79795	-1849,79171	3,92	29,56	21,99
$\eta^{2}-\mathrm{C}_{2} \mathrm{H}_{4}$	-	-1795,62994	-	-	37,40
NH_{3}	-1773,59907	-1773,58827	6,78	31,13	21,02
NF_{3}	-2071,11323	-2071,10938	2,42	13,81	8,09
PH_{3}	-2060,18419	-2060,18131	1,81	31,68	26,36
PMe_{3}	-2178,16598	-2178,15745	5,35	44,73	35,66
$\mathrm{P}(\mathrm{OMe})_{3}$	-2403,84406	-2403,84764	-2,25	36,46	34,74
$\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}$	-2753,37685	-2753,36968	4,50	38,91	30,67
PF_{3}	-2358,02853	-2358,03079	-1,42	31,98	29,56

PROPP-UFF, CNPq, FAPERJ.

THE ISOTOPIC ASYMMETRY EFFECTS ON THE $\left(\mathrm{H}_{2}\right)_{2}$ DIMER

*Leonardo G. Diniz ${ }^{1}$ (PG), José Rachid Mohallem ${ }^{1}$ (PQ)
${ }^{1}$ Laboratório de Átomos e Moléculas Especiais, Departamento de Fisica, ICEx, Universidade Federal de Minas
* leodiniz@fisica.ufmg.br, rachid@fisica.ufmg.br

Palavras Chave: hydrogen dimer, adiabatic

Arrangement	Dimerization energy (a. u)
(a) H-D ... H-D	$-3.2793 \mathrm{e}-5$
(b) H-D ... D-H	$-3.3809 \mathrm{e}-5$
(c) D-H ... H-D	$-3.1801 \mathrm{e}-5$

ITHOCliohen

The quantum mechanical study of the van der Waals (vdW) interaction between neutral molecules is always made within the Born-Oppenheimer approximation (BOA): When we go beyond the BOA, but still in an adiabatic approximation, some small new effects come out. For example, an isotopic dipole moment appears in HD molecule ($D=$ deuterium). At low temperatures, the energies and geometries of $\left(\mathrm{H}_{2}\right)_{2}$ become relevant, so that it is important to study theoretically these effects. In this work we investigate the isotopic effects on the equilibrium configurations of the (HD) $)_{2}$ dimers and on their intermolecular interactions.

Desulls and Discussion

We use previously reported adiabatic methodology and computational program [1], selecting the aug-ccpVQZ basis set at the MP2 level. Isotopic substitution does not change the dimer equilibrium geometries. The presence of a D in the center region is energetically favorably. The most stable isotopic configuration, between all possible, is the T one for $\mathrm{H}_{2} \mathrm{HD}$. Other configurations will be displayed in the poster.

Figure 1. $\mathrm{H}_{2} \mathrm{HD}-\mathrm{T}$ configuration.

The isotopic effects are stressed in the linear configuration of (HD) $)_{2}$. We have two arrangements with anti parallel isotopic dipoles, (b) and (c), and one with parallel dipoles, (a).
Table 1. Dimerization energy.

The potential energy curves show three levels, with (b) being the intermediate level. There is no dipole alignment, so that this feature can not be explained in terms of classical dipole-dipole interaction. We propose that the isotopic asymmetry appears as a perturbation ζ to the molecular polarizability. If for (a) we have a polarizability α, we attribute a polarizability $\alpha+\zeta$ for (c) and $\alpha-\zeta$ for (b). Neglecting terms of order ζ^{2}

$$
\begin{aligned}
& E_{b}(R)-E_{a}(R)=\frac{A\left(-2 r \alpha^{2}+4 r \alpha \zeta\right)}{R^{7}}+\frac{A(2 \alpha \zeta)}{R^{6}} \\
& E_{c}(R)-E_{a}(R)=\frac{A\left(+2 r \alpha^{2}+4 r \alpha \zeta\right)}{R^{7}}-\frac{A(2 \alpha \zeta)}{R^{6}}
\end{aligned}
$$

where R is the separation between the monomer geometric centers and A an constant. We adjust the energy differences curves with $y=a x^{-7}+b x^{-6}$. Our model then predicts $a_{1}=-a_{2}$ and $b_{1}=-b_{2}$, in agreement with the parameters of the adjustment (see figures below).

Figure 2. $\left(E_{b}-E_{a}\right)$ versus R and $\left(E_{c}-E_{a}\right)$ versus R.

We show that isotopic symmetry breaking, besides creating electric dipole moments, can change the polarizability of the molecules. Despite being small, this effect is three orders of magnitude larger that the dipole-dipole interaction, and can affect the properties of isotopically reach hydrogen mixtures.

InWomed romens
Supported by Fapemig and CNPq.

[^127]
A limportância Atmosférica da reação entre - SH E $\mathrm{N}_{2} \mathrm{O}$

Stella Maris Resende (PQ)

stella@ufsj.edu.br

Departamento de Ciências Naturais, Universidade Federal de São João del Rei, 36301-160, São João del Rei, MG, Brasil.
Palavras Chave: ab initio, cinêtica, mecanismo, química atmosférica, compostos de enxofre.

Tabela 1. Valores de energia eletrônica e de energia de Gibbs (em kcal mol^{-1}) para os dois caminhos de reação estudados.

Nível de Callculo	PMP2/ $\mathrm{Cc}-\mathrm{pV}(\mathrm{T}+\mathrm{d}) \mathrm{Z}$	PMP2/ CBS	CCSD(T)/ CBS	$\Delta \mathrm{G}$
Canal 1				
Ativação	42,20	39,82	32,17	40,46
Reação	$-48,86$	$-51,41$	$-57,12$	$-58,96$
Canal 2				
Ativação	27,85	25,01	20,38	30,00
Reação	61,85	58,84	47,65	43,34

Dos valores calculados para $\Delta \mathrm{G}$, podemos observar que o canal 1, que leva aos produtos HSO e N_{2}, é muito favorável termodinamicamente. Entretanto, ele tem uma energia de ativação muito alta, levando a uma constante de velocidade de $5,6 \times 10^{-37} \mathrm{~cm}^{3}$ molécula $^{-1} \mathrm{~s}^{-1}$. Já o canal 2 tem uma energia de ativação um pouco menor, mas este canal é desfavorável termodinamicamente, e a formação dos produtos HSN e •NO não será verificada.

TS2
Figura 1. Estados de transição obtidos para os dois caminhos de reação investigados.

evhiciusces

Nossos resultados mostram que os dois caminhos de reação investigados serão lentos, o que está em acordo com o trabalho de Herndon et. al. Desta forma, consideramos que esta reação não ocorrerá em quantidade significativa na atmosfera.

```
AOMracmentos.\
```


À FAPEMIG.

[^128]
A Theoretical study on Electron Collision with CHx Radicals

Abstract

Gabriel L. C. de Souza ${ }^{1^{*}}$ (PG), Elisangela A. y Castro 2 (PG) and Lee Mu-Tao ${ }^{1}$ (PQ). gabrielquim02@yahoo.com.br.

1 Departamento de Química, UFSCar, 13565-905 São Carlos, SP, Brasil 2 Departamento de Física, UFSCar, 13565-905 São Carlos, SP, Brasil Palavras Chave: Electron scattering, absorption potential.

101 $1 / 00$ UCTHOR

Electron-molecule collisions play an important role in a number of physical and chemical processes. In particular, interest on electron collisions with small free radicals hydrocarbon molecules such as CH_{x}, $\{x=1,2,3\}$ has been a subject of increasing interest, both theoretically and experimentally in the past few years. These radicals can be produced via dissociation of methane either by photon- or electronimpact. The methane is used in the diamond production by chemical vapor deposition. Also, the methane is one of the main pollutant gases of the earth atmosphere, contributing to the greenhouse effect. The experimental measure of cross sections of electron collisions with these highly reactive radicals is very difficult and, therefore, the theoretical study becomes an important way to obtain this physical parameter.

In this work, we present a theoretical study on electron scattering by $\mathrm{CH}_{\mathrm{x}},\{\mathrm{x}=1,2,3,4\}$, molecule in a wide energy range $(15-1000)-\mathrm{eV}$. The present study made use of a complex optical potential composed of static-exchange, correlation-polarization, and absorption contributions to represent the interaction dynamics. The iterative Schwinger variational method $(\text { SVIM })^{1}$ combined with the distorted-wave approximation (DWA) ${ }^{2}$ was used to solve the scattering equations. The static-exchange part of the interaction potential was derived exactly from the target wavefunction. A parameter-free model suggested by Padial and Norcross ${ }^{3}$ was used to generate the correlation-polarization potential, whereas an improved version of the quasi-free scattering model (IQFSM) proposed by our group ${ }^{4}$, was used to account for the absorption contributions.

$12 \sqrt{2}+1 \prod^{3}$

Figs. 1(a) and (b) show our calculated TACS and TCS, respectively, using both the QFSM in the (15-1000)-eV energy range, along with the experimental results available in the literature. The calculated TACS using the original model absorption potential (QFSM3) ${ }^{5}$ as well as the theoretical results for TICS, calculated using the binary-encounter Bethe (BEB) model ${ }^{6}$, are also shown for comparison.

Figura 1. (a) TACS and (b) TCS for elastic e--CH4 scattering. Solid line, present results using the IQFSM; short-dashed line, present results using the QFSM3; dashed line, theoretical TICS 6; full circles, experimental ${ }^{7}$; open triangles, experimental TICS^{8}; open circles, experimental TCS; open squares, experimental TCS 10; asterisks ${ }_{12}$ experimental TCS 11; full triangles, experimental TCS ${ }^{12}$.

The TACS calculated using the QFSM3 are too small, particularly at high incident energies. On the other hand, our results obtained using the IQFSM agree better with experimental data.

Hhancors suphort

We acknowledge the financial support from CNPq, CAPES and FAPESP.

[^129]
A ligação química de 3-CENTROS-2-ElÉTRONS EM ÍONS CARBÔNIO.

André G. H. Barbosa* ${ }^{* 1}(P Q)$, Felipe P. Fleming ${ }^{2}(P Q)$, Pierre M. Esteves ${ }^{2}(P Q)$ andré@vm.uff.br
${ }^{1}$ Instituto de Química, Universidade Federal Fluminense, Niterói-RJ. ${ }^{2}$ Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ

Palavras Chave: cátion metônio, íons carbônio, cátions alila, cátion norbornila, Spin-Coupled.

Carbocátions são intermediários reativos nos quais considera-se que o carbono esteja carregado positivamente. Carbocátions podem ser classificados em "íons carbênio" ou "ions carbônio". Nos íons carbênio o carbono positivamente carregado está cercado por três substituintes e seis elétrons de valência. Nos íons carbônio o carbono positivamente carregado está cercado por cinco substituintes e oito elétrons de valência. De modo a representar a estrutura química de íons carbônio, foi sugerida a idéia de que estes íons possuem uma ligação química não convencional de 3-centros-2-elétrons ${ }^{1}$.
O nosso objetivo é construir modelos quantomecânicos para representar a estrutura química de vários carbocátions que apresentariam ligações de 3-centros-2-elétrons. Estes modelos são derivados da funções de onda Spin-Coupled mono- e multiconfiguracionais ${ }^{2}$. Dentre as propriedades relevantes desta função de onda podemos destacar:

- é proporcional a função de onda exata
- é expressa através de orbitais unívocos, distintos e monocupados
- é variacional, extensiva em tamanho e consistente em tamanho
Neste trabalho apresentamos modelos para ligação química nos seguintes íons carbônio: metônio, 2norbornila, 2-norborneno-7-ila, 2,5-norbornadieno-7ila. Também apresentamos modelos para os seguintes carbênios: alila, 3-buteno-2-ila, 2-metil-2-buteno-2-ila, 3-penteno-2-ila.

ROSMILOOS G DHCHESGO

O cátion metônio, CH_{5}^{+}é uma molécula fluxional, para qual não se pode atribuir uma estrutura molecular definida. Para cada ponto estacionário na sua superfície de potencial existem 10 outros arranjos degenerados separados por barreiras menores que as energias de ponto zero associadas. A partir da função de onda Spin-Coupled para os 8 elétrons de valência desta molécula construímos modelos para a ligação química em todos os pontos estacionários da superfície de potencial do cátion metônio. Fomos capazes de correlacionar diretamente os modelos obtidos não só com as rotas possíveis de interconversão entre os pontos estacionários como também com o comportamento
químico da espécie ${ }^{3}$. A ligação química no cátion metônio é descrita como uma interação covalente entre o radical metila e o cátion H_{2}^{+}. Na dissociação do CH_{5}^{+}esta ligação é transferida para o hidrogênio molecular, em acordo com dados experimentais da literatura.

Para os carbênios alílicos (alila, 3-buteno-2-ila, 2-metil-2-buteno-2-ila, 3-penteno-2-ila) cálculos SpinCoupled foram realizados para os elétrons "pi". Para os cátions que apresentam plano de simetria bissectando o sistema "pi" (alila e 3-penteno-2-ila) foi necessário o uso de uma função Spin-Coupled Multiconfiguracional definida pela superposição de dois estados. As funções de onda obtidas puderam ser diretamente associadas à reatividade de sistemas alílicos ${ }^{4}$.
Para todos os carbônios cíclicos aqui abordados (2norbornila, 2-norborneno-7-ila, 2,5-norbornadieno-7ila) foi necessário o uso de uma função SpinCoupled Multiconfiguracional definida pela superposição de dois estados ${ }^{5}$.

Goh en 4 sog

Foi possível construir modelos quanto-mecãnicos para ligação de 3-centros-2-elétrons para todos os sistemas considerados. A função de onda SpinCoupled Multiconfiguracional só foi necessária para sistemas que possuíam plano de simetria bissectando a ligação de 3-centros-2-elétrons.

Aoracermichios

CNPq, FAPERJ

[^130]
SOLVATAÇÃO DE 5-FLUOROURACIL EM CO_{2} SUPERCRÍtico POR DINÂMICA Molecular

Ana Carolina Furlan* ${ }^{1}$ (PG), Frank Wilson Fávero ${ }^{1}$ (PG), Munir Salomão Skaf ${ }^{1}$ (PQ)
Instituto de Química - Departamento de Físico-Química - Universidade Estadual de Campinas
Palavras Chave: CO_{2} Supercrítico, Dinâmica Molecular

Os fluidos supercríticos são uma alternativa para o uso de solventes orgânicos convencionais em diversos processos de separação e purificação na indústria, principalmente na farmacêutica e alimentícia. O fluido supercrítico mais utilizado é o CO_{2}, pois apresenta inúmeras características atrativas como baixo custo, ponto crítico facilmente acessível ($\mathrm{t}_{\mathrm{c}}=31,1^{\circ} \mathrm{C}$ e $\mathrm{P}_{\mathrm{c}}=73,8 \mathrm{bar}$), não inflamável etc.
A 5-fluorouracil é um componente de regimes quimioterápicos para muitos tumores sólidos e é utilizada principalmente para tratamento de câncer de reto cujo processo atual de produção envolve várias etapas de purificação que ainda utilizam solventes orgânicos.
Neste trabalho apresentamos algumas características do processo de solvatação da 5 fluorouracil em CO_{2} supercrítico puro e na presença de etanol como co-solvente. O estudo foi realizado a temperatura de 308 K e densidade de $0.25 \rho_{\mathrm{c}}$ ($\rho_{\mathrm{c}}=$ $0,468 \mathrm{~g} / \mathrm{cm}^{3}$) o sistema era composto por 5% etanol/ $95 \% \mathrm{CO}_{2}$.

Uma limitação no uso de CO_{2} supercrítico como solvente é não polaridade da molécula que diminui o rendimento do processo quando o composto de interesse é uma substância polar. Para aumentar a polaridade do meio e melhorar a separação destes compostos podemos adicionar um co-solvente (etanol).
As propriedades de estruturais foram analisadas através da função de distribuição de pares $\left(g_{s s}\right)$ e de mapas de densidade relativas os quais
comprovaram a formação de "clustering" no arranjo estrutural das moléculas de solvente ao redor do soluto. E mostraram que o efeito "clustering" é intensificado na presença de etanol devido às interações mais atrativas entre as moléculas de etanol e de 5 -fluorouracil. Os mapas de densidade relativa mostraram que as moléculas de etanol substituem as moléculas de CO_{2} em regiões mais próximas ao soluto.
Cálculos de tempos de relaxação foram feitos através da função de correlação reorientacional e o coeficiente de difusão foi determinado pelo desvio médio quadrático.
Os resultados de tempo de relaxação e de coeficiente de difusão demonstraram que a dinâmica do processo de solvatação é mais lenta na presença de etanol. Isso ocorre devido as interações de hidrogênio estabelecidas entre o 5fluorouracil e o etanol. Essas interações dificultam o movimento da molécula de 5fluorouracil no meio.

Neste estudo foi possível observar alterações significativas tanto nas propriedades estruturais como dinâmicas do processo de solvatação de 5fluorouracil em CO_{2} supercrítico causado pela adição de etanol como co-solvente.

M A Mradegliollos
CNPq e FAPESP

Pastel, N.: Biswas, R.; Maroncelli, M. J.Phy. Chem. 2002, 106, 7096.

Suleiman, D. ; Esteves, L. A..; Garcia, J. E. e Mojica, C. J. Chem. Eng.Data.2005, 50, 1234.

O QUE É HIPERCONJUGAÇÃO? O CASO DE HIDROGARBONETOS.

André G. H. Barbosa*1(PQ), Felipe P. Fleming ${ }^{2}(P Q)$, Marco A. C. Nascimento ${ }^{2}$ (PQ) andré@vm.uff.br
${ }^{1}$ Instituto de Química, Universidade Federal Fluminense, Niterói-RJ. ${ }^{2}$ Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ
Palavras Chave: hiperconjugação, orbitais naturais, deslocalização eletrônica

Abstract

Throdvicato O conceito de hiperconjugação é utilizado por vários químicos com o propósito de racionalizar propriedades químicas e estruturais de diversas moléculas. Como não é possível uma medida experimental direta deste efeito, a sua presença é inferida a partir de uma interpretação particular (dentre várias possíveis) de dados existentes. Com o objetivo de verificar se hiperconjugação é causa dos efeitos geométricos que lhe são atribuídos é necessária a utilização de um procedimento direto e não ambíguo de avaliação teórica. Em uma pesquisa histórica abrangente podem-se encontrar as duas definições originais para hiperconjugação. Em termos de Teoria da Ligação pela Valência (VB Clássico) a hiperconjugação na molécula de etano seria calculada como a diferença entre a energia associada a estrutura covalente e a energia associada a superposição da estrutura covalente com as estruturas de ressonância iônicas e radicalares.

Sob o ponto de vista da Teoria de Orbitais Moleculares (MO) o efeito de hiperconjugação seria calculado comparando-se a energia de duas funções de onda. A função de onda de referência seria expressa com orbitais localizados entre pares de átomos próximos de modo a emular a estrutura de Lewis para a molécula. Os orbitais localizados em uma dada região do espaço associada a uma dada ligação química devem conter 2 e somente 2 elétrons. Na função de onda hiperconjugada permite-se a transferência de pares de elétrons entre orbitais associados a ligações químicas distintas.

Note que em termos de Teoria MO a hiperconjugação se efetiva a partir da doação de um par de elétrons de um orbital "ligante" para um "antiligante" associado à outra ligação. Neste trabalho construímos hamiltonianos aproximados baseados diretamente na definição original de hiperconjugação em termos de Teoria MO que permitem avaliar diretamente este efeito em moléculas neutras representativas.

Traduzindo-se literalmente a definição MO de hiperconjugação definimos uma função de onda multiconfiguracional de referência onde a cada ligação química é associado um par de orbitais ortogonais, um "ligante" e outro "antiligante" otimizados. A ocupação destes orbitais é decidida variacionalmente. O par de elétrons que ocupa o par de orbitais apresenta acoplamento de spin arbitrário (singlete ou triplete), com a função de onda total sendo autofunção do operador S^{2}. A função de onda "hiperconjugada" é aquela onde se permite que o par de orbitais associado a cada ligação possua ocupação arbitrária. Em outras palavras, é permitida a doação e recepção de pares de elétrons entre quaisquer ligações distintas. A diferença de energia e propriedades moleculares entre essas duas funções é relacionada a influência de efeitos de hiperconjugação.
Foram avaliados as geometrias moleculares, momentos de dipolo e energias relativas das moléculas de etano, propeno, metilacetileno e tolueno utilizando-se as funções descritas acima. Verificou-se que efeitos de hiperconjugação mostraram-se irrelevantes para determinação de parâmetros geométricos, energéticos e eletrônicos das moléculas consideradas.

Gopholusoes

O conceito de hiperconjugação é desnecessário para o entendimento de qualquer propriedade química ou estrutural de hidrocarbonetos neutros de camada fechada.

Abrielectmerios

CNPq, FAPERJ

[^131]
SEPARAÇÃO DE NANOTUBOS DE CARBONO PELA INTERAÇÃO COM SURFACTANTES: UM ESTUDO POR DINÂMICA MOLECULAR CLÁSSICA

Elton J. F. Carvalho*1 (IC), Maria Cristina dos Santos ${ }^{1}$ (PQ)
e-mail: eltonfc@gmail.com
${ }^{1}$ Instituto de Fiisica - Universidade de São Paulo
Palavras Chave: nanotubos de carbono, separação por diâmetro, surfactante, dinâmica molecular clássica.

Nanotubos de carbono são materiais que apresentam propriedades incomuns, entre as quais a estrutura eletrônica dependente da geometria. Usualmente os nanotubos são classificados por dois índices (n, m) que definem a sua geometria (quiralidade e diâmetro). Esses índices identificam também o comportamento elétrico dos nanotubos: eles são semicondutores a menos que a diferença ($n-m$) seja zero ou um múltiplo de 3 , quando apresentam a estutura eletrônica de um metal. A separação de nanotubos de carbono de parede simples (SWNT) por geometria é um tópico de grande relevância para a efetiva aplicação desses materiais em tecnologia.

Hersam e colaboradores ${ }^{1}$ demonstraram um eficiente método de separação de SWNTs através de surfactação e ultracentrifugação, capaz de separar nanotubos pelo diâmetro. Aplicado em cascata, esse método permite obter amostras altamente purificadas de uma dada geometria (n, m). Entretanto, como foi observado por Rinzler ${ }^{2}$, são encontrados SWNT em regiões de densidades incompatíveis com a que seria esperada com base na relação entre a massa e o diâmetro de um nanotubo.

Neste trabalho, investigamos as interações entre SWNTs de diferentes geometrias e o colato de sódio (SC), um dos surfactantes utilizados por Hersam. Utilizamos o campo de força clássico CVFF 950^{3} combinado com o método de dinâmica molecular no emsemble canônico (NVT), conforme implementado no pacote computacional Cerius 2^{4}. A simulação utilizou condições periódicas de contorno e temperatura de 300 K . Moléculas de água foram acrescentadas na caixa de simulação em número suficiente para reproduzir valores experimentais de densidades das dispersões de nanotubos em solução de SC.

Inicialmente, calculamos as energias de ligação entre SWNTs de diversas quiralidades e SC em duas situações: uma externa, que resultou em geometria do SC paralela ao eixo do tubo e outra com uma molécula do surfactante no interior do tubo. Os resultados mostraram que nanotubos com diâmetros menores que $10 \AA$ apresentaram a configuração interna menos estável, mas nos tubos
maiores, a configuração interna é bastante favorecida, como ilustram os dados da Tabela 1.

Tabela 1. Energias de ligação de nanotubos (n, m) com o colato de sódio nas configurações externa e interna.

Nanotubo	Diâmetro((\AA)	Energia de ligação (kcal/mol)	
		Externa	Interna
$(7,7)$	9.49	-16.87	236.00
$(8,7)$	10.17	-36.78	-90.18
$(9,9)$	12.20	-39.28	-113.88
$(14,0)$	10.96	-31.88	-149.98

Motivados por esse resultado, realizamos simulações de dinâmica molecular com o sistema nanotubo-surfactante imerso em água, procurando reproduzir as densidades experimentais de nanotubos, água e surfactante. Esses resultados mostram que as moléculas de surfactante podem ser "sugadas" para o interior de nanotubos de diâmetro apropriado, o que aumenta sua densidade e permite que nanotubos maiores sejam encontrados em regiões de densidade maior.

omicllisoes

Estudamos a interação de SWNTs e o SC através de mecânica molecular e dinâmica molecular. Os resultados mostraram que moléculas de SC têm maior afinidade por nanotubos de diâmetro superior a cerca de $10 \AA$ se estiverem em seu interior em vez de aderidas à superfície e, em soluções aquosas podem ser "sugadas" para seu interior. A entrada de surfactante no tubo é uma razão plausível para se obter nanotubos maiores em regiões de densidade maior.

Os autores agradecem as agências CNPq e FAPESP pelo apoio financeiro.

[^132]
Solvation of F- in Benzene: A Combined QM/MD/PCM Calculation Using the Amoeba polarizable Force-Field for Generating Trajectories.

Josefredo R. Pliego Jr.(PQ)* josef@netuno.qui.ufmg.br
Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.

Palavras Chave: molecular dynamics, ab initio.

minoorcton

lonic chemical processes in apolar solvents play a very important role in industrial chemistry through the phasetransfer catalysis technology. In order to modeling these processes, it is very important to have available methods for calculating solvation free energy of ions. In past few years, it has become evident that liquid simulation using unpolarizable force-fields are unreliable for describing solvation of ions in apolar media. On the other hand, dielectric continuum solvation based methods are not parameterized for these solvents due to unavailability of experimental data. Therefore, it is of outmost importance to establish a solvation free energy scale of single ions in apolar media. The aim of this study is to provide a first step on this direction. The chosen system is the interaction of the fluoride ion with 32 benzene molecules in a cubic box. We have combined molecular dynamics calculation for generating classical trajectories with quantum mechanical calculations of selected structures in order to determine reliable interaction energies.

Ficsult ono miscuission

In the first step, we have studied a cluster of the fluoride ion with 4 benzene molecules in order to determine the reliability of OPLS-AA unpolarizable and the AMOEBA polarizable force-field for geometry and energy. In addition, we have also tested different levels of quantum mechanical calculations. Figure 1 present the structure optimized at $\mathrm{HF} / 6-31(+) \mathrm{G}(\mathrm{d})$ level. The AMOEBA forcefield predicts a good geometry, while the OPLS-AA predicts a very poor geometry. Table 1 presents the interaction energy of the fluoride ion with the cluster. We can notice that no force-field is reliable while all the quantum mechanical methods predict close energies. More important, the inexpensive semi-empirical PM3 method also seems very reliable (HF obtained geometry). Based on these results, we have decided to use the AMOEBA force-field for generating the trajectories and the PM3 method for calculating the interaction energy in a cubic box of fluoride with 32 benzene molecules. The trajectory calculations were done with the Tinker program, while the quantum calculations were done with the PC-Gamess program. Following the equilibration step, we have run 200 ps simulation and taken the configurations each 10 ps for quantum calculations. The NPT ensemble was used, with the conditions of 1 atm and 300 K .

Figure1. HF/6-31(+)G(d) optimized geometry of $\mathrm{F}^{-}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)_{4}$ cluster.

Table I. Interaction energy of fluoride ion with the $\left(\mathrm{C}_{6} \mathrm{H}_{6}\right)_{4}$ cluster.

OPLSAA	AMOEB A	PM3	X3LYP	MP2
-13.6	-50.4	-36.3	-36.0	-35.0

* X3LYP and MP2 calculations using the 6-31(+)G(d) basis set

It was utilized two point thermodynamics integration approximation in order to calculate the solvation free energy from the average PM3 interaction energies, and including a long-range correction through PCM method. Our calculations have predicted that $\Delta \mathrm{G}_{\text {solv }} \sim-43 \mathrm{kcal} / \mathrm{mol}$. This value is smaller than that obtained with the default PCM calculation in Gaussian03, $-52.3 \mathrm{kcal} / \mathrm{mol}$, indicating that computations of $\Delta \mathrm{G}_{\text {solv }}$ in apolar media using the present parameterizations of continuum solvation models are unreliable.

Comemson

Combined quantum mechanical and classical molecular dynamics with the AMOEBA polarizable force-field calculations has provided the first reliable evaluation of the absolute solvation free energy of fluoride ion in benzene.

Achomeormor

The author thanks the CNPq for the support

Potential of mean force surface for F- Reaction with $P=$ CHLOROBENZONITRILE IN DMSO: THE ROLE OF ION PAIRING AND HYDRATION

Josefredo R. Pliego Jr.(PQ)*, Dorila Piló-Veloso (PQ), josef@netuno.qui.ufmg.br
Departamento de Química, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.

Palavras Chave: ab initio, chemical reaction,solvation

Hicole Tratol

Reliable modeling of chemical reactions in liquid phase is one of the most important goals of computational chemistry. In the past years, ionic process in organic solvents like DMSO has been successful studied through the continuum solvation model PCM with an adequate and validated parameterization ${ }^{1}$. In these studies, the ion is a free species in solution. However, some ionic systems can present the ion pairing phenomena, and water molecules present in the organic phase can form clusters with these ions. Therefore, these usually neglected events must be considered in order to provide a real picture of the system. One example where ion pairing and hydration is very important involves the fluoride ion in DMSO. In this work, we have investigated the $S_{N} A r$ reaction of the fluoride ion with p-chlorobenzonitrile in DMSO solution, including ion pairing and hydration. The tetramethylammonium and tetrabuthylammonium cations were considered the counter ions.

Figure 1. Studied reaction.

The reaction described in Figure 1 was investigated at ab initio and density functional theory levels. Because we have noticed that the solvent has a very important effect on the transition state geometry, we have investigated the potential of mean force surface for locating the transition state. The optimizations were done at PCM/HF/6-31(+)G(d) and PCM/B3LYP/6-31(+)G(d) levels, followed by single point calculations at MP2/6-311+G(2df,2p) and MP4/6-31(+)G(d) levels. The calculations were done with Gamess and PC Gamess programs and the overall free energy profile is in Figure 2. For the free ion reaction, the calculated $\Delta G^{\ddagger}=20.3 \mathrm{kcal} / \mathrm{mol}$. The association with the large $\mathrm{NBu}_{4}{ }^{+}$ion is small and increases the barrier by only $0.6 \mathrm{kcal} / \mathrm{mol}$. When the smaller $\mathrm{NMe}_{4}{ }^{+}$cation is the counter ion, the
association is very strong and this species can be active in the transition state (see Figure 2). The corresponding barrier becomes $26.1 \mathrm{kcal} / \mathrm{mol}$, indicating a very important reaction retarding effect of the counter ion.

Figure 2. Free energy profile for $\mathrm{NR}_{4}{ }^{+} \mathrm{F}^{-}\left(\mathrm{H}_{2} \mathrm{O}\right)_{n}+p-$ chlorobenzonitrile reaction in DMSO.

Considering only one water molecule, there is a strong association with the fluoride ion, although in this case the reaction will proceed through dissociation followed by free fluoride ion reaction (see figure). However, because the important role of fluoride ion stabilization due to hydration, the barrier becomes $25.8 \mathrm{kcal} / \mathrm{mol}$. Again, a strong retarding effect is predicted.

omilusion

Ion pairing and hydration play a very important role in fluoride ion reaction in DMSO solution.

The authors thank the CNPq for the support

[^133]
ESTUDO DA ESTRUTURA DE SOLVATAÇÃO DAS CADEIAS LATERAIS DA PROTEÍNA VIRAL GAG P6 POR DINÂMICA MOLECULAR

Mirian Pedrosa ${ }^{1, *}$ (IC), Fernanda Marur Mazzé ${ }^{1}$ (PG), Léo Degrève ${ }^{1}(P Q)$
*mirianp@aluno.ffclrp.usp.br
${ }^{1}$ Grupo de Simulação Molecular, Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo 14040-901, Ribeirão Preto (SP), Brasil.

Palavras Chave: proteína viral Gag p6, dinâmica molecular, estrutura de solvatação, ligação de hidrogênio.

Abstract

Iniourcoo A etapa de brotamento é crucial para o ciclo de vida do vírus HIV^{1}. A única proteína viral envolvida nesta etapa é a Gag p6, constituída por 52 resíduos. Esta proteína possui uma região bem conservada denominada Ldomínio, constituída pelos resíduos PTAPP, que é essencial para o brotamento e a liberação das novas partículas virais da membrana plasmática. Uma vez que estrutura e função estão intimamente relacionadas nas proteínas, o objetivo deste trabalho é estudar, por simulação molecular, a estrutura de solvatação das cadeias laterais da proteina Gag p6 a fim de contribuir para um melhor entendimento da manutenção da estrutura da proteína Gag p6.

Resmirag chllscusealo

A simulação molecular ${ }^{2}$ da proteína Gag p6 foi realizada com o pacote de simulação GROMACS 3.0 com o campo de força GROMOS 96 no ensemble NpT. A estrutura inicial de Gag p6 foi obtida no banco de dados PDB^{3} (código 2C55). O intervalo de tempo de integração utilizado foi de 2,0fs e o tempo total de simulação de $6,5 \mathrm{~ns}$. A estrutura de solvatação das cadeias laterais de Gag p6 foi estudada a partir das funções de distribuição radial proteína-solvente $\mathrm{g}_{\mathrm{A}, \mathrm{H}}(\mathrm{r})$ e $g_{A, o}(r)$, sendo A os átomos da cadeia lateral dos resíduos de Gag $\mathrm{p} 6, \mathrm{H}$ e O os átomos de hidrogênio e oxigênio das moléculas de água, respectivamente. Os resultados foram analisados agrupando-se os átomos iguais de um mesmo aminoácido localizados em diferentes regiões de Gag p6. As análises mostraram que os resíduos de arginina, aspartato, glutamina, glutamato, lisina, serina, treonina e tirosina foram os que apresentaram estrutura de solvatação bem definida ao redor dos átomos de suas cadeias laterais. Para a arginina, os átomos de hidrogênio (código GROMOS96: HE, HH11, HH12, HH21 e HH22) são os que apresentam uma estruturação das moléculas de água que os rodeiam mais bem definida pelo fato deste aminoácido ser carregado positivamente. O aspartato apresenta estrutura de solvatação melhor definida para os átomos de oxigênio (OD1 e OD2), o que já era esperado uma vez que possuem dois pares de elétrons
livres, além de serem negativamente carregados. Na glutamina, apenas o oxigênio (OE1) e os dois hidrogênios (HE21 e HE22) são capazes de atrair os dipolos positivo e negativo, respectivamente, das águas do sistema. No glutamato, da mesma forma que no aspartato, os átomos de oxigênio (OE1 e OE2) apresentam melhor estrutura de solvatação por apresentarem pares de elétrons livre e carga negativa. Na lisina, a estrutura de solvatação melhor definida ocorre para os átomos de hidrogênio (HZ1, HZ2 e HZ3), fato explicado porque além dos hidrogênios serem carente de elétrons, eles ainda possuem uma carga positiva na lisina. Os resíduos de serina, treonina e tirosina apresentam estrutura de solvatação apenas ao redor do oxigênio e do hidrogênio constituintes de suas cadeias laterais, fato explicado porque o grupo hidroxila, bastante polar, atrai fortemente as moléculas de água, fazendo ligação de hidrogênio entre o hidrogênio da cadeia lateral e o oxigênio das águas. Não foram observadas diferenças nas estruturas de solvatação considerando-se um mesmo aminoácido localizado em diferentes posições da proteína Gag p 6 , o que pode ser explicado pelo pequeno tamanho da proteína (52 resíduos) que não apresenta um centro hidrofóbico definido capaz de esconder algumas cadeias laterais do acesso ao solvente.

coonclusbes

Os resíduos que possuem estrutura de solvatação definida são os de cadeia lateral carregada ou polar. Esta ordenação das moléculas de água ao redor destes átomos promove a manutenção da estrutura protéica e, portanto, o conhecimento dessas interações é de grande relevância para o entendimento do mecanismo de atuação da proteína Gag p6 na etapa de brotamento do HIV.

Horracomenves

CNPq, FAPESP, Capes

[^134]http://www.rcsb.org/pdb

ESTUDO DAS ESTRUTURAS DE SOLVATAÇÃO DAS REGIÕES DE INTERAÇÃO entre as proteínas Tsg101-ubiquitina e Tsg101-GAg p6.

Fernanda M. Mazzé* (PG), Léo Degrève (PQ)
*femazze@usp.br
Grupo de Simulação Molecular, Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo 14040-901, Ribeirão Preto (SP), Brasil.

Palavras Chave: estrutura de interação de proteínas, proteína Tsg101, proteína ubiquitina, proteína Gag p6, dinâmica molecular, estrutura de solvatação.

A etapa final do ciclo de vida do HIV^{1}, etapa de brotamento, tem sido reconhecida por envolver não somente uma proteína viral (proteína Gag p6), mas também duas outras proteínas celulares (proteína Tsg101 e ubiquitina). Na ausência dessas proteínas celulares, as novas partículas virais ficam penduradas à membrana plasmática e o ciclo de vida do HIV não é, portanto, concluído. Deste modo, o conhecimento e o entendimento das estruturas de interação Tsg101-ubiquitina e Tsg101-Gag p6 são de grande importância na elucidação dos mecanismos envolvidos na etapa de brotamento do HIV.

Resmirionse

Os sistemas Tsg101, ubiquitina, Gag p6, Tsg101ubiquitina e Tsg101-Gag p6 foram simulados durante 10 ns com o pacote de simulação GROMACS ${ }^{2}$, no ensemble NpT. O campo de força utilizado foi o Gromos96. Uma das análises realizadas foi o estudo das estruturas de solvatação das proteínas nos diferentes sistemas de estudo a fim de detectar as diferentes hidratações encontradas nas proteínas isoladas e nas proteínas complexadas com outras proteínas. Os resultados obtidos foram analisados através de funções de distribuição radial proteínasolvente ${ }^{3}$.
Os resultados mostram que, considerando os sistemas contendo duas proteínas, as regiões de contato entre essas proteínas apresentam uma menor estruturação das moléculas de água ao redor dos átomos de hidrogênio e de oxigênio do esqueleto peptídico destas proteínas quando comparadas às estruturas de solvatação das proteínas isoladas. Este resultado mostra que, de maneira geral, os átomos do esqueleto peptídico das regiões de interação entre proteínas participam das ligações de hidrogênio intermolecular proteína-proteína, ou "escondem,-se" do solvente de modo a organizar um centro hidrofóbico evitando que as moléculas de água rompam as interações entre as proteínas. Considerando-se as estruturas de solvatação das cadeias laterais de uma mesma proteína nos
diferentes sistemas de estudo, observa-se que os resíduos carregados (arginina, aspartato, glutamato e lisina) não apresentam mudanças nas suas estruturas de solvatação, fato explicado porque esses aminoácidos são carregados. Já os resíduos que contém um grupamento hidroxila na constituição de suas cadeias laterais (serina, treonina e tirosina), apresentam as maiores diferenças em relação as suas estruturas de solvatação. Os átomos dos resíduos 41Ser-HG, 93Ser-OG, 93Ser-HG, 79ThrHG1, 92Thr-HG1 e 42Tyr-OH da proteína Tsg101 no sistema Tsg101-ubiquitina, os resíduos $67 \mathrm{Thr}-\mathrm{HG} 1$, 68Tyr-HH, 82Tyr-Oh 2 82Tyr-HH da proteína Tsg101 no sistema Tsg101-Gag p6, o resíduo 66Thr-HG1 da proteína ubiquitina no sistema Tsg101-ubiuqitina e o resíduo 8 Thr-HG1 da proteína Gag p6 no sistema Tsg101-Gag p6 apresentam estruturas de solvatação mais bem definidas nestes sistemas quando comparados aos sistemas das proteínas isoladas. Estes resíduos fazem novas ligações de hidrogênio com as moléculas de água, o que contribui para a estabilização da estrutura do solvente ao redor do complexo protéico, e promove a manutenção da nova estrutura protéica quando a proteína encontra-se complexada.

Tomclusores

As interações entre proteínas são estabilizadas, principalmente, via ligações de hidrogênio intramolecular proteína-proteína. Entretanto, a ordenação do solvente ao redor do complexo protéico favorece a manutenção desta nova estrutura protéica. O conhecimento das novas ligações de hidrogênio proteína-solvente são de grande relevância no entendimento da estabilização das estruturas de interação entre proteínas.

Agharerchichlos

CNPq, FAPESP, Capes

[^135]
Correlação no método monte carlo quântico

Wagner Fernando Delfino Angelotti ${ }^{1}(\mathrm{PG})^{*}$, ${\text { Rogério } \text { Custodio }^{1}(P Q) ~}_{(P Q}$ *angelotti@iqm.unicamp.br

1 - Departamento de Físico-Química, Instituto de Química, Universidade Estadual de Campinas, 13083-970, Campinas, SP, Brasil.

Palavras Chave: Monte Carlo Quântico Variacional, Boys-Handy, Jastrow, Separação de Spins, Matriz Densidade.

Tabela 1. Energia total (u.a.) com MCV para FOF e MD com funções de correlação de Boys-Handy e Padde-Jastrów.

Parâmetros	He		$\mathrm{He}_{2}{ }^{++}$	
	FOF	MD	FOF	MD
4 e	$-2,8887$	$-2,8876$	$-3,5581$	$-3,5566$
$4 \mathrm{e}-4 \mathrm{n}$	$-2,8787$	$-2,8838$	$-3,5400$	$-3,5525$
BH-7	$-2,8998$	$-2,9021$	$-3,5791$	$-3,5769$
BH-9	$-2,8985$	$-2,9002$	$-3,5744$	$-3,5636$
HF	$-2,861680$			
"Exata"	$-2,903724$	$-3,681454$		

A Tabela 1 mostra que os resultados obtidos, tanto com FOF quanto com MD, recobrem uma razoável porção da correlação eletrônica para He e He_{2}^{++}e que as diferenças entre as duas metodologias são pequenas. Além disso, a inclusão de parâmetros nucleares no termo de Padde-Jastrow piora o resultado final da energia para FOF e MD, a mesma coisa acontecendo para o termo de Boys-Handy com 9 parâmetros quando comparado ao termo de 7 parâmetros. Esta piora dos resultados pode indicar que os termos nucleares quando adicionados a função de correlação de Jastrow e que a inclusão de dois parâmetros, que são responsáveis pela correlação elétron-elétron-núcleo, a mais na função de Boys-Handy são ineficazes e, talvez, desnecessários.

concusoes

O teste com diferentes funções de correlação indica que existe dificuldade na otimização dos parâmetros para estas funções e que a adição de parâmetros produzem uma tendência à obtenção de resultados característicos de mínimos locais.

Fapesp e CNPq.

A Teoria da matriz densidade e o Monte carlo Quântico de difusão

Wagner Fernando Delfino Angelottil ${ }^{1}(\mathbb{P G})^{*}$, Rogério Custodio ${ }^{1}(\mathbb{P Q})$
*angelotti@iqm.unicamp.br
1 - Departamento de Físico-Química, Instituto de Química, Universidade Estadual de Campinas, 13083-970, Campinas, SP, Brasil.
Palavras Chave: Monte Carlo Quântico Difusão, Separação de Spins, Matriz Densidade.

Whathrovelderox
Os métodos de Monte Carlo Quântico (MCQ) são baseados no uso da técnica de integração de Monte Carlo associados ao algoritmo de Metropolis e têm produzido excelentes no cálculo de propriedades eletrônicas de átomos, moléculas e sólidos.
Apesar dos excelentes resultados, a função de onda aproximada (função teste) freqüentemente usada no MCQ apresenta deficiências formais tais como a indistinguibilidade eletrônica e a exigência de anti-simetria. Esta função de onda teste é composta pela multiplicação de um ou mais determinantes de Slater com spin alfa e outro determinante de Slater com spin beta, multiplicados ainda por uma função de correlação $\Psi_{\text {cor }}$, isto é, $\psi_{\alpha} \Psi_{\beta} \psi_{\text {cor }}$. Esta função é denominada separação de spins.
Com o intuito de minimizar estas deficiências apresenta-se neste trabalho uma maneira alternativa para função de onda teste: a matriz densidade representada pelo determinante de Slater completo. Esta alternativa é aplicada a um dos métodos MCQ mais usados: o MCQ de Difusão (MCQD). Alguns resultados são apresentados para demonstrar a equivalência ou não entre a função de onda usual da literatura e esta nova metodologia.

As principais equações que descrevem o MCQD são exatamente iguais àquelas descritas pela separação de spins, a não ser pela representação da função de onda.
A matriz densidade de ordem n é representada através da seguinte equação:
$\Gamma^{(n)}\left(r_{1}^{\prime}, \ldots, r_{n}^{\prime} ; r_{1}, \ldots, r_{n}\right)=\psi^{*}\left(r_{1}^{\prime}, \ldots, r_{n}^{\prime}\right) \psi\left(r_{1}, \ldots, r_{n}\right)$.
Como o MCQ necessita de funções que não contenham dependência explícita dos spins para que seja possível a obtenção de dados reais, a matriz densidade é integrada nas coordenadas de spin, fazendo com que as propriedades de interesse sejam dependentes apenas das coordenadas espaciais. Como observação, quando funções Hartree-Fock são usadas, a matriz densidade de ordem \dot{n} e as propriedades de interesse podem ser obtidas através da matriz densidade de Dirac-Fock de primeira ordem: -
$\rho\left(r_{i}, r_{j}\right)=\rho_{\alpha}\left(r_{i}, r_{j}\right)+\rho_{\beta}\left(r_{i}, r_{j}\right)$.

Os cálculos foram realizados para o estado fundamental e dois estados excitados do H_{2} (geometria de equilibrio de 1.4 u.a.) com 500 configurações, previamente extraídas de um cálculo Monte Carlo Variacional, 1×10^{6} passos de Monte Carlo de Difusão e taxa de aceitação em torno de 95%. Nenhuma função de correlação foi usada. Abaixo segue a tabela 1 com os resultados MCQD para o sistema estudado.

Tabela 1. Energia total (u.a.) para o estado fundamental e certos estados excitados do H_{2}.

Configuração	Estado	MCQD	d-MCQD*	" Exato"
$1 \mathrm{~s}^{2}$	Fund.	$-1,17389$	$-1,17399$	$-1,17447$
$1 \mathrm{~s}^{1} 2 \mathrm{~s}^{1}$	${ }^{3} \mathrm{~S}$	$-0,78363$	$-0,78349$	$-0,78300$
$1 \mathrm{~s}^{1} 2 \mathrm{~s}^{1}$	${ }^{1} \mathrm{~S}$	$-0,74116$	$-0,72822$	$-0,75670$

Os resultados obtidos para os estados fundamental e tripleto com ambas as metodologias estão em boa concordância com aqueles considerados exatos, indicado equivalência entre as duas metodologias. Porém, o estado singleto tem pequenas diferenças, mas significativas, entre os métodos e entre os métodos e o resultado considerado exato. A diferença entre os métodos e o exato se dá, certamente, através da geometria incorreta para este estado (2.43 u.a.) e a diferença entre MCQD e d-MCQD porque, em geral, a separação de spins não representa o estado correto de spin.

Concminedes

Os resultados obtidos para os estados fundamental e tripleto excitado deste sistema indicam que a matriz densidade foi implementada com sucesso no MCQD, recobrando a indistinguibilidade eletrônica e a antisimetria de Pauli. Existe alguma diferença entre as duas metodologias para o estado singleto, indicando que a descrição correta do estado de spin precisa ser melhor caracterizada.

Aviromilnentios

Fapesp e CNPq.

Seções de Choque Para o Espalhamento Elástico de ElÉtrons por Moléculas de C 3

Thiago Corrêa de Freitas* (PG), Márcio Henrique Franco Bettega (PQ)
Universidade Federal do Paraná
Departamento de Física
tcf03@fisica.ufpr.br

Palavras Chave: espalhamento elástico, método multicanal de Schwinger, pseudopotenciais de norma conservada.

Thicducab

Recentemente houve um aumento considerável no interesse de processos de colisões de elétrons com moléculas. Isto deve-se principalmente ao fato de processos que envolvem essa interação passam cada vez mais a contribuir no entendimento e modelagem de muitos fenômenos envolvidos nas mais avançadas tecnologias atuais como: usos na indústria eletrônica principalmente em processos que envolvem plasmas na fabricação de circuitos eletrônicos, no tratamento de superfícies além de aplicações na agricultura e na medicina. Em particular a molécula de C_{3} possui um papel importante na química de combustões, pois quando se aquece grafite até cerca de 3000 K aproximadamente 70% do carbono está na forma desta molécula.

Além do aspecto prático, os estudos de espalhamento de elétrons apresentam grande interesse teórico devido à complexidade inerente à descrição do alvo e à realização dos cálculos de espalhamento.

Estando o C_{3} envolvido nos processos citados, torna-se indispensável a compreensão da dinâmica destes, o conhecimento das seções de choque para o espalhamento de elétrons. A literatura sobre esta molécula é escassa, existindo apenas o trabalho teórico de Munjal et al., onde é apresentada a seção de choque para o intervalo de $1.0-10.0 \mathrm{eV}$. O problema do espalhamento é por nós tratado dentro da aproximação estático-troca (SE) e estático-troca mais polarização (SEP) utilizando o Método Multicanal de Schwinger ${ }^{2,3}$ (SMC) implementado com pseudopotenciais (SMCPP) de norma conservada de Bachelet ${ }^{5}$ et al.. Vamos apresentar seções de choque para o espalhamento elástico de elétrons por moléculas de C_{3}.

Apresentamos seções de choque elásticas integral, diferencial e de transferência de momento para os intervalos de energia 0-40 eV na aproximação SE e 0-10 eV na aproximação SEP. Em nossos cálculos com efeitos de polarização são usados os MVO's (Modified Virtual Orbitals) ${ }^{6}$ para
descrever os orbitais de partícula e de espalhamento. Observamos a formação de uma ressonância de forma a qual aparece em torno de 7.5 eV na aproximação SE. Cálculos preliminares na aproximação SEP movem essa ressonância para $\sim 5.5 \mathrm{eV}$. Nossos resultados indicam também a existência de um mínimo de Ramsauer-Townsend em torno de 0.3 eV . Não existem dados experimentais para fins de comparação. O nosso cálculo na aproximação SE concorda qualitativa e quantitativamente com o de Munjal et al. no intervalo de 1.0-10.0 eV. A molécula pertence ao grupo de ponto $D_{\infty h}$, mas nossos cálculos foram realizados no grupo $D_{2 h}$. A decomposição por simetria da seção e choque integral elástica mostra que a ressonância pertence as simetrias $B_{2 u} \quad e \quad B_{3 u} \quad$ (que correspondem as duas componentes da simetria Π_{u} do grupo $D_{\infty h}$.)

Conclusoes

Calculamos seções de choque elásticas integral, diferencial e de transferência de momento para as aproximações SE e SEP e comparamos nossos resultados para a seção de choque integral elástica na aproximação SE com o cálculo de Munjal et al. obtendo acordo qualitativo e quantitativo.

Fighaderthicntos

Os autores agradecem ao professor Carlos M. de Carvalho pelo suporte computacional do departamento de Física da UFPR. Agradecem também ao apoio financeiro das seguintes agências: CAPES, CNPQ, Fundação Araucária e FINEP (projeto CT-Infra1).

[^136]
Efeitos de Temperatura na Mobilidade de Pólarons em polímeros CONJUGADOS.

Wiliam Ferreira da Cunha (PG)*, Pedro Henrique de Oliveira Neto (PG), Geraldo Magela e Silval (PQ)
wiliam@fis.unb.br
Instituo de Física - Universidade de Brasilia (UnB), 70.917-970

Palavras Chave: Pólarons, Bipólarons, Excitações não-lineares.

Trieoclicalo

Polímeros conjugados são aqueles que apresentam alternância de ligações simples e duplas em sua cadeia principal. Sobre certas condições esses matérias apresentam condutividade que pode ser facilmente variada em uma grande excursão. Tal fato implica grande interesse tecnológico, daí a importância do estudo. O modelamento teórico foi iniciado em 1980 por Su, Schrieffer, Heeger [1] (SSH) e vem sendo modificado para tratar aspectos não contemplados no modelo original [2].
Diferentemente dos metais, os portadores de carga dos polímeros conjugados são defeitos estruturais da rede. Esses defeitos são excitações não lineares como sólitons, pólarons e Bipólarons. Sólitons são quase partículas que podem ser neutras com spin $\pm 1 / 2$, ou carregadas, com carga $\pm e$, sem spin. Esses são caracterizados pela mudança de fase no padrão de alternância das ligações simples e duplas. Pólarons podem ter carga $\pm e$ com spin $\pm 1 / 2$ e diferem dos sólitons por distorcerem a rede sem apresentar mudança de fase no padrão das ligações. Bipólaron pode ser considerado uma ligação de um par de sólitons carregados. Assim, esta estrutura terá carga $\pm 2 \mathrm{e}$ e spin nulo.

Avaliamos os efeitos da temperatura na mobilidade de excitações não lineares em cadeias de polímeros conjugados. Para tanto utilizamos uma extensão do modelo SSH dentro da Aproximação Hartree-Fock Irrestrita. Nessa extensão, incluímos a influência de um campo elétrico externo a partir do potencial vetor e a interação coulombiana a partir do modelo de Hubbard. A influência da temperatura foi considerada tanto na parte eletrônica quanto na nuclear. A dinâmica da rede foi descrita classicamente pela equação de Euler Lagrange.

Nesse trabalho, os parâmetros do modelo foram ajustados de forma a tratar o poliacetileno em sua configuração trans. Em todas as simulações foi utilizado um sistema com 100 sítios e condições de contorno periódicas. Dessa forma a proposta é simular uma cadeia infinita o que é uma boa aproximação para macromoléculas reais. No primeiro caso um pólaron se move na cadeia sobre a ação de um campo elétrico externo e eventualmente esse se choca com uma
impureza. No segundo caso o pólaron se encontra "preso" por duas impurezas. O campo elétrico é utilizado para move-lo pela cadeia. Em todos os casos foram avaliados aspectos de estabilidade para distintos valores de interação coulombiana e temperatura.

Figura 1. Evolução temporal do parâmetro de ordem.

Noaluser

Avaliou-se os efeitos da temperatura na mobilidade das excitações não lineares em uma cadeia de poliacetileno. Efeitos térmicos são importantes no estudo da estabilidade dessas estruturas.

MAbliomermintios
Este trabalho foi financiado pelo CNPq e auxiliado pelo Instituto de Física da UnB.

[^137]
USO DAS PROPRIEDADES CINÉTICA E DINAMICA PARA TESTAR NOVAS SUPERFÍCIES DE ENERGIA POTENCIAL

Adoniel Welder Saraiva Antunes (PG)* Wiliam Ferreira da Cunha (PG),Ricardo Gargano (PQ)
adoniel@fis.unb.br
Instituo de Física - Universidade de Brasilia (UnB), 70.917-970

Brasilia, DF-Brasil
Palavras Chave: Cálculo das trajetórias, superfície de energia potencial, Algoritmo genético, taxa de reação.

20 Thiocmioalo

Algoritmos Genéticos (AG) são métodos de otimização bioinspirados com vasta gama de aplicação dada sua robustez. Tratam-se de métodos adaptativos normalmente usados para resolver problemas de busca e otimização inspirados no processo genético e evolutivo dos seres vivos.
Recentemente [1], um AG foi utilizado para a construção da SEP para o sistema $\mathrm{Na}+\mathrm{HF} \rightarrow>\mathrm{NaF}$ +H .
Tal reação foi escolhida principalmente por se tratar de um sistema vastamente estudado na literatura (dada sua importância tecnológica), se tratando, portanto, de um excelente teste para a avaliação do algoritmo genético como ferramenta para obtenção de SEPs.
Para fins da supracitada avaliação, um teste completo da mecânica do sistema, incluindo cálculos de cinética e dinâmica foram realizados.
Todas as propriedades obtidas pela SEP do AG (SEP GAOT) são comparadas com as equivalentes obtidas por outra SEP reconhecida como "benchmark" da literatura.
Nesse trabalho, as propriedades dinâmicas do sistema foram calculadas via o Método Quase Clássico de Trajetórias, enquanto propriedades cinéticas como constante de equilibrio e taxa de reação foram calculadas no contexto da Teoria das Estruturas de Transição.

Resuluacos e liccuscaro

Ambas as propriedades dinâmicas e cinéticas obtidas por meio da SEP gerada pelo algoritmo genético geraram resultados tão bons quanto os melhores encontrados na literatura. Nesse sentido pode-se concluir que os AG's são ferramentas eficientes para a geração de SEPs.
A figura 1 é uma pseudo-representação da SEP GAOT. A topologia dessa superfície se mostrou idêntica à da melhor encontrada na literatura.

Figura 1. SEP GAOT
A grande quantidade de dados tanto da cinética quanto da dinâmica desse sistema obtida pela SEP GAOT acima representada, e a sistemática proximidade de todos esses resultados com os obtidos via a SEP mais reconhecida da literatura não deixam dúvida da eficiência do método.

Conculyses

Nesse trabalho fizemos uma investigação completa, do ponto de vista da dinâmica e cinética reacional, da SEP GAOT com vistas à avaliação da eficiência do método para o ajuste de SEPs.

A coincidência sistemática dos resultados da nova SEP, com os melhores da literatura, consolida o método AG como mais uma ferramenta de otimização para construir SEPs tanto de sistemas moleculares ligados como não ligados.

Este trabalho foi financiado pelo CNPq Agradecemos ao Instituto de Física da UnB pelo apoio.

[^138]
CÁlculo das Propriedades Dinâmicas do íon Molecular $H_{2}{ }^{*}$ NOS Estados Eletrônicos 1š, 5FП, 5Gח, 6II, 6IФ E 7 II

Alessandra Sofia Kiametis (PG)*, Ricardo Gargano (PQ), Joaquim J. S. Neto (PQ) kiametis@pop.com.br

Instituto de Física, Universidade de Brasilia, CP 04455, Brasilia - DF, CEP 70.919-970, Brasil.
Palavras-Chave: Equação de Schrödinger nuclear, curva de energia potencial, estados eletrônicos excitados, constantes espectroscópicas rovibracionais.

Inhoctreale

Neste trabalho, foram calculadas as constantes espectroscópicas rovibracionais para o estado fundamental e os estados excitados $5 \mathrm{fm}, 5 \mathrm{gm}, 6 \mathrm{im}, 6 \mathrm{i} \varphi$ e $7 \mathrm{i} \sigma$ do íon molecular $\mathrm{H}_{2}{ }^{+}$. As energias eletrônicas $a b$ initio foram obtidas via solução da equação de Hamilton-Jacobi[1]. A dinâmica molecular pode ser tratada como um rotor que apresenta movimento vibracional. Consequentemente, é possível expressar a energia rovibracional de certo nível como uma expansão em torno dos pontos $(v+1 / 2)$ e $J(J+1)$, cujos coeficientes são constantes espectroscópicas, em que v e J são números quânticos relacionados aos movimentos de vibração e rotação da molécula, respectivamente. Resolvendo-se a equação de Schrödinger nuclear e combinando as energias obtidas com tal expansão, é possível montar um conjunto de equảções cuja solução fornece relações para as constantes espectroscópicas em função das transições entre os níveis rovibracionais excitados e o fundamental. Neste trabalho, estas energias rovibracionais foram calculadas utilizando-se o método DVR[2]. As formas analíticas implementadas para a construção das CEP's foram as funções rydberg generalizad (RG) [3] e polinômios em coordenadas bond order (BO)[4]. Também empregou-se o método de Dunham [5] no cálculo das constantes espectroscópicas rovibracionais com o objetivo de testar melhor a qualidade das CEP's construídas.

Os resultados obtidos para o estado fundamental foram satisfatórios. A diferença entre o valor da freqüência vibracional ω_{e} encontrado no trabalho através da forma analítica BO6 e aquele obtido na referência experimental [6] foi de $3.69 \mathrm{~cm}^{-1}$.

A tabela 1 mostra os parâmetros obtidos através da forma analítica BO6 para o estado excitado 5 gm . O desvio quadrático médio neste ajuste foi de 9.7E-07 hartree, bem abaixo do erro químico aceitável de 0.0015 hartree. A soma dos coeficientes c_{i} 's da tabela corresponde à energia de dissociação da molécula[4]. Comparando o valor resultante desta soma com a energia de dissociação advinda dos cálculos ab initio, vê-se que a diferença é da ordem de 10^{-4} hartree, indicando que a profundidade do poço de potencial foi determinada com boa precisão.

Parâmetros (hartree)		$5 \mathrm{gm}(\mathrm{BO})$
	C_{1}	$-0.421583339304 \mathrm{E}-$
02	C_{2}	$0.811285540624 \mathrm{E}-$
02	C_{3}	$-0.156611015209 \mathrm{E}-$
01	C_{4}	$0.106452022707 \mathrm{E}-$
01	C_{5}	$-0.188389372041 \mathrm{E}-$
02	C_{6}	$0.291672280844 \mathrm{E}-$
03		

Tabela 1. Parâmetros obtidos através da forma analítica BO6 para o estado eletrônico excitado 5 gm .
Os valores das constantes espectroscópicas rovibracionais ω_{e}, $\omega_{\text {exe }}$ e α_{e}, obtidos via solução do conjunto de equações mencionado anteriormente, são respectivamente $35.17 \mathrm{~cm}^{-1}, 0.72 \mathrm{~cm}^{-1}$ e $2.62 \mathrm{E}-03 \mathrm{~cm}^{-}$ ${ }^{1}$. Estes valores foram muito próximos aos encontrados pelo método de Dunham.

Conchirses

Tanto a forma analítica BO como a de RG reproduziram com boa precisão os potenciais do estado fundamental e os estados excitados $5 \mathrm{f} \pi, 5 \mathrm{~g} \pi$, $6 \mathrm{i} \pi$, $6 \mathrm{i} \varphi$ e $7 \mathrm{i} \sigma$ do ion molecular. Os resultados obtidos para as constantes espectroscópicas rovibracionais do estado fundamental estão em acordo com os resultados experimentais encontrados na literatura. Para os estados excitados não dispomos de dados para comparação. No entanto, os resultados obtidos por meio de duas metodologias diferentes concordam entre si.

Aolrobamente

Ao CNPq, CAPES e FINATEC.

[^139]
SIMULAÇõES DE DINÂMICA MOLECULAR E CONSTRUÇÃO DE MODELOS QSAR DE UMA CLASSE EXPERIMENTAL DE ANTIBACTERIANOS - DIAZOBORINAS

Kerly F. M. Pasqualoto (PQ), Márcia M. C. Ferreira (PQ) - "kerlyfmp@iqm.unicamp.br
Laboratório de Quimiometria Teórica e Aplicada - LQTA, Departamento de Físico-Química, Instituto de Química, Universidade Estadual de Campinas - UNICAMP, Campinas, SP, Brasil.

Palavras Chave: diazoborinas, enoil-acp redutase, Fabl, modelagem molecular, QSAR, CADD, tuberculose.

As diazoborinas (DBs) são agentes antibacterianos experimentais, cuja característica estrutural importante é um anel heterocíclico 1,2-diazina, que apresenta boro como terceiro heteroátomo. O grupo areno pode ser benzeno, naftaleno, tiofeno, furano e pirrol. A atividade antibacteriana está restrita às bactérias Gram-negativas. De acordo com Grassberger e colaboradores, ${ }^{1}$ as tiofenodiazoborinas são inibidores mais potentes, seguidas pelas benzodiazoborinas e furanodiazoborinas, enquanto que as pirroldiazoborinas são totalmente inativas. Recentemente, a enzima enoil-acp redutase (ENR) foi identificada como o alvo molecular das DBs. A ENR catalisa a última etapa do processo cíclico de alongamento de ácidos graxos bacterianos e é considerada a enzima principal do sistema FAS II (fatty acid synthase). A presença do cofator nicotinamida adenina dinucleotídeo (NAD) parece ser fundamental à inibição e à interação das DBs com a ENR. A análise de complexos ENR-NADDBs, obtidos por cristalografia de raios- X, revelou a formação de ligação covalente entre o grupo 2'hidroxila da ribose da nicotinamida do NAD com o átomo de boro das DBs, resultando em um análogo bi-substrato no sítio ativo da enzima. ${ }^{2}$
No presente estudo, simulações de dinâmica molecular (DM) de um conjunto de DBs ligadas ao cofator NAD (ligantes) foram realizadas para gerar descritores termodinâmicos, posteriormente utilizados na construção de modelos QSAR, a fim de obter informações adicionais ao planejamento de novos agentes antibacterianos/antimicobacterianos.

Um conjunto de 51 DBs foi selecionado da referência [1]. A atividade biológica foi avaliada como a concentração inibitória mínima (CIM) contra cepas de E.coli $\Delta 120$ a $310 \mathrm{~K}^{1}$ e expressa em pCIM $(-\log \mathrm{CIM})$. As estruturas tridimensionais de cada ligante foram construídas na forma neutra (HyperChem 6.03). As coordenadas de uma tiofenodiazoborina e de uma benzodiazoborina ligadas ao cofator NAD, no sítio ativo da ENR da E. coli (Fabl), depositadas no PDB (Brookhaven Protein Databank) com os códigos de entrada 1DFH e 1DFG, ${ }^{2}$ respectivamente, e resolução de

2,2 e $2,5 \AA$ foram utilizadas como referência ao desenho dos ligantes e fazem parte do conjunto de DBs investigado. Os ligantes foram otimizados utilizando campo de força $\mathrm{MM}+$, sem quaisquer restrições (HyperChem 6.03). O programa MOLSIM 3.0^{3} também foi empregado à otimização dos ligantes. Cargas atômicas parciais foram calculadas com o método semi-empírico AM1 (HyperChem 6.03). Simulações de DM de 1.000 .000 passos, cada passo de $0,001 \mathrm{ps}$, a 310 K , foram desenvolvidas para cada ligante (DB-NAD). A energia de solvatação do confôrmero de menor energia mínima, selecionado em cada simulação de DM, foi calculada com o modelo de camada de hidratação descrito por Hopfinger (1993).
Estudo preliminar com 34 dos 51 ligantes foi desenvolvido para construir modelos QSAR, utilizando regressão por quadrados mínimos parciais (PLS, Partial Least Squares) e algoritmo genético (GFA, Genetic Function Approximation) (programa WOLF). ${ }^{4}$ Além dos descritores termodinâmicos, outras variáveis independentes foram calculadas considerando a geometria dos confôrmeros de menor energia mínima.
O modelo obtido apresentou as seguintes medidas estatísticas: $r^{2}=0,71 ; q^{2}=0,56 ;$ LOF $=0,16 ;$ LSE $=$ 0,11 . Os descritores mais relevantes à atividade antibacteriana foram as contribuições de energia de estiramento ($E_{\text {stretch }}$), de Lennard-Jones ($E_{1,4}$) e de van der Waals ($E_{v d W}$), além do volume molecular e do ClogP.

Derspectivas

Construção de modelos QSAR com os 51 ligantes para incrementar as informações referentes aos descritores mais relevantes à atividade biológica.

Mopromelthentos

Os autores são gratos à FAPESP, pelo apoio financeiro, e ao Chem21Group, Inc., pela licença colaborativa dos programas MOLSIM e WOLF.

[^140]
ANÁLISE DE CANDIDATOS A INIBIDORES DA AChE.

Alexandre A. A. de Paula ${ }^{1}(\mathbb{P G})^{*}$; Ricardo $\operatorname{Gargano}^{1}(\mathbb{P Q})$; João B. L. Martins ${ }^{2}(\mathbb{P Q})$; Maria L. Santos ${ }^{2}(\mathbb{P Q})$.
${ }^{1}$ Instituto de Física - IF, Universidade de Brasilia, CP 04455, Brasilia, DF, CEP 70.719-970, Brasil.
${ }^{2}$ Laboratório de Isolamento e Transformação de Moléculas Orgânicas - LITMO, Instituto de Química - IQ, Universidade de Brasília - UnB, CP 4478, Brasília, DF, CEP 70.904-970, Brasil. anevesfisica@yahoo.com.br

Palavras Chave: AChE, inibidores e PCA.

THTH(0) TG © 6

A doença de Alzheimer (DA) é uma desordem neurodegenerativa e é a principal causa de demência em idosos com idade acima de sessenta anos (forma esporádica) e até mesmo em pessoas mais jovens, por volta de quarenta anos (forma precoce). Foi verificado que a concentração do neurotransmissor acetilcolina (ACh) é baixa, comparada com indivíduos normais, nos portadores de DA ${ }^{1}$. Esta observação sugere que uma possível forma de tratamento, para está patologia, possa ser realizada através da reposição da concentração da ACh no cerebro do portador de DA. Esta reposição é feita por meio da inibição reversível da enzima acetilcolinesterase (AChE), responsável pela hidrólise da ACh à colina. Os primeiros resultados teóricos, via cáculos de estrutura eletrônica, de candidatos a inibidores da enzima acetilcolinesterase (AchEI), planejados a partir dos lipídeos fenólicos não isoprenóides do cajueiro (Anacardium occidentale), são apresentados neste trabalho.

Resumbios elolsculesto

Foram otimizadas as geometrias, via métodos PM3 e AM1 e pacote computacional CAChe ${ }^{2}$, das séries obtidas variando o padrão de proteção da hidroxila fenólica do cardanol (radical " R " na Figura 1) com grupos metila (a), acetila (b) e N, N-dimetilcarbonila (c), bem como as variações contendo aminas secundárias como substituintes no carbono benzílico da cadeia lateral (radical "W" na Figura 1) N,N-dimetilamina (1), N,N-dietilamina (2), piperidina (3), pirrolidina (4) e N-benzilamina (5). O grupo aromático presente nesta última variação poderá desempenhar importante papel no reconhecimento molecular pelo resíduo Trp84 ou Phe330 da enzima. Em seguida, foram determinadas as propriedades eletrônicas, via pacote computacional Gassian 98^{3}, energias do HOMO-1, HOMO, LUMO, LUMO+1, (LUMO+1 -HOMO-1), e GAP destas séries usando o nível de cálculo Hartree-Fock-Restrito e as bases 6-31G, 6$31 G(d), 6-31+G(d)$ e $6-311 G(d, p)$. Os resultados obtidos para todas estas propriedades eletrônicas, para a base mais estendida $6-311 \mathrm{G}(\mathrm{d}, \mathrm{p})$, foram comparados com os cálculos realizados com o
padrão rivastigmina, um inibidor potencialmente ativo. Através desta comparação foi possível identificar que grupos substituintes são candidatos importantes para tornar o cardanol um inibidor potencialmente ativo. De acordo com as análises binária e de componentes principais (PCA^{4}), realizadas para todas as propriedades eletrônicas calculadas (Figura 2), as estruturas 6 (CA_b_1), 8 (CA_b_3), 11 (CA_c_1) e 13 (CA_c_3) são as que mais se aproximam com a 16 (rivastigmina), o que nos indica uma possível atividade destas estruturas.
Refinando mais os nossos resultados, calculamos as propriedades geométricas e energéticas, utilizando o nível de cálculo B3LYP e as bases já citadas.

Figura 1. Representação esquemática dos possíveis candidatos a inibidores da enzima AchE (CA_R_W).

Figura 2. Análise das Pcs. As porcentagens das varianças das PCs foi de $78,34 \%$ para a PC1 e $16,23 \%$ para a PC2. As PCs foram constituidas pelas propriedades HOMO-1, LUMO+1, GAP e HOMO - HOMO-1 que foram as mais relevantes para o problema.

Análise PCA para os primeiros resultados nos mostrou uma aproximação entre as AChEls estudadas, indicando as estruturas $6,8,11$ e 13 como as que mais se aproximam com a rivastigmina.

Aglacerethinemios

IF/UnB; IQ/UnB, Finatec, CNPq, CAPES.

[^141]
ESTUDO AB-INITIO E DFT DAS \mathbb{N}-ALQUIL E C-ARIL NITROSAMINAS (R2N-NO E $\left.\mathbb{R}_{2} \mathbf{N}-A R-N O\right): A$ INFLUÊNCIA DOS SUBSTITUINTES NAS PROPRIEDADES ESTEREOELETRÔNICAS

Arquimedes M. Pereira* ${ }^{* 1}$ (PG), Jucélio P. de Lacerda ${ }^{1}$ (IC), Armstrong M. Vilar ${ }^{1}$ (IC), Elizete Ventura ${ }^{1}$ (PQ), Silmar A. do Monte ${ }^{1}$ (PQ) e Regiane C. M.U. Araújo ${ }^{1}$ (PQ)
\section*{arquimedesmariano@gmail.com}
${ }^{1}$ Departamento de Química, Universidade Federal da Paraiba, 58036-300 - João Pessoa - PB Palavras
Chave: nitrosaminas, metodos ab-initio e DFT
\section*{}

THTOC Y C 20

As N -alquil nitrosaminas ($\mathrm{R}_{2} \mathrm{~N}-\mathrm{N}=\mathrm{O}$) pertencem à família dos compostos N-nitroso, e geralmente são carcinogênicos [1]
A planaridade entre os átomos $\mathrm{C}_{2} \mathrm{~N}_{2} \mathrm{O}$ sugere que a dietil-nitrosamina complexada é mais bem representada por um híbrido de ressonância que possui uma contribuição significativa de uma estrutura de ressonância dipolar, como mostrado abaixo (figura 1). Vale ressaltar que, embora a estrutura da dietilnitrosamina livre ainda não tenha sido publicada, é de se esperar uma grande contribuição do híbrido de ressonância mesmo para a molécula não-complexada. Tal hipótese baseia-se na análise da estrutura de raiosX da dimetil-nitrosamina livre, na qual também se observa uma planaridade entre os átomos de $\mathrm{C}, \mathrm{Ne} \mathrm{O}$:

Figura 1: Estruturas de ressonâncias das N -alquil nitrosaminas

Sabe- se que o nitroso-bezeno (Ph-NO) e alguns dos seus análogos substituídos se ligam à hemoglobina [2]. A substituição no anel benzênico pelo grupo amino na posição para leva a uma nova estrutura com contribuição significativa de uma estrutura de ressonância dipolar:

Figura 2: Estruturas de ressonâncias das \mathbf{C}-aril nitrosaminas

Este trabalho amplia a compreensão acerca do efeito dos substituintes (H , metil ou etil) no caráter dipolar (figuras 1 e 2) dos ligantes em questão. Para tal identificamos e caracterizamos todos os isômeros conformacionais possíveis, analisando os parâmetros geométricos das estruturas obtidas, bem como a dependência do número destas com o método/base.

As geometrias foram otimizadas utilizando-se os métodos RHF, DFT (B3LYP) e MP2. Os resultados indicam a ocorrência de isômeros com contribuições bastante distintas do híbrido de ressonância dipolar (ver figuras 1 e 2), evidenciados pelos parâmetros geométricos relevantes (distâncias NN e NO ou CN e NO) e pelos valores dos momentos de dipolo (figura 3). Cálculos preliminares indicam um n^{0} diferente de isômeros no caso das N -alquil nitrosaminas, para os métodos RHF e B3LYP, ao contrário do que ocorre para as C -aril nitrosaminas.

Figura 3: Valores do momento de dipolo (D) para os isômeros da série $\mathrm{R}_{2} \mathrm{~N}-\mathrm{C}_{6} \mathrm{H}_{4}$ - NO ($4=\mathrm{H}, 5=$ metil e $6=$ etil), obtidos com a base $6-31 \mathrm{G}^{*}$.

As estruturas com menores momentos de dipolo, no caso da série $\mathrm{R}_{2} \mathrm{~N}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{NO}$, são aquelas nas quais o par solitário do N do grupo $\mathrm{R}_{2} \mathrm{~N}$ está geometricamente indisponível para a ressonância com o anel benzênico. No caso da série $\mathrm{R}_{2} \mathrm{~N}-\mathrm{NO}$ parece haver uma menor variação da contribuição do híbrido dipolar, segundo os momentos de dipolo obtidos.

7 firuectinemios

Os autores agradecem a CAPES e ao CNPQ pelo auxilio financeiro.

[^142]
CÁlculo de Propriedades Dinâmicas Quânticas na validação de Novos Métodos de Ajuste de Superfícies de energia potencial

Lucas R. Salviano (PG)*, Ricardo Gargano (PQ)
lucas@fis.unb.br
Instituto de Física, Universidade de Brasilia, CP 04455, Brasilia - DF, CEP 70.919-970, Brasil.
Palavras-Chave: algoritmo genético, superfície de energia potencial, propriedades dinâmicas quânticas, sistema reativo $\mathrm{Na}+\mathrm{HF}$.

lifiloglucse

Recentemente foi construída uma nova superfície de energia potencial (SEP) para a reação $\mathrm{Na}+$ HF. Para tanto foi utilizada uma técnica de otimi-zação baseada na idéia de algoritmos genéticos (GAOT) [1]. Neste trabalho são apresentados cálcu-los de propriedades dinâmicas quânticas para o sis-tema colisional reativo $\mathrm{Na}+\mathrm{HF}$, com momento an-gular total nulo $(\mathrm{J}=0)$. Nesses cálculos foram utili-zadas duas SEPs: uma obtida por García e Laganà (BO5) [2] e outra construída utilizando o método GAOT [1]. Foram utilizados polinômios em coorde-nadas Bond Order no ajuste de ambas as SEPs e os pontos ab initio utilizados foram obtidos por García e Laganà [2]. Os resultados obtidos para as duas SEPs são comparados a fim de validar o mé-todo GAOT como um novo método de ajuste de SEPs. Os cálculos das propriedades dinâmicas quânticas do sistema colisional reativo $\mathrm{Na}+\mathrm{HF}$ fo-ram realizados utilizando coordenadas hiperesfé-ricas APH (Adiabatically adjusting Principal axis of inertia Hyperspherical) [3]. O método ABM (Analytic Basis Method) [4] foi utilizado no cálculo das fun-ções de superfície e das autoenergias para diferen-tes valores do hiperraio, necessários para a descri-ção do sistema.

Resuliados e Discugero

Tanto para a SEP GAOT como para a BO5, o sistema $\mathrm{Na}+\mathrm{HF}$ mostrou-se não reativo para o estado vibracional fundamental $(v=0)$. Mesmo para diferentes estados rotacionais j, a probabilidade de reação permaneceu abaixo de 0,02 . Entretanto, para $v=1$, os resultados obtidos mostraram que tanto a excitação vibracional quanto a rotacional desempenham um importante papel na ativação da reação. A figura 1 mostra que, para $v=1$, a probabilidade de reação aumenta com o valor de j, até atingir um máximo para j $=5$. Depois disso, ela decresce rapidamente para valores maiores de j.

É importante destacar a diferença entre os méto-dos de ajuste das SEPs aqui estudadas. A SEP

[^143]GAOT foi ajustada globalmente, enquanto a BO 5 foi ajustada via método da expansão de muitos corpos (MBE - Many-Body Expansion) [5].

Figura 1. Probabilidades de reação utilizando as SEPs BO5 (linha sólida) e GAOT (linha tracejada), para $v=1 \mathrm{ej}=1,2,3, \ldots, 9$, em função da energia total.

Comparando as probabilidades de reação calculadas utilizando as duas superfícies estudadas neste trabalho, concluímos que a SEP GAOT possui a mesma qualidade da SEP BO5, tida como a benchmark da literatura. Este fato sugere que o método GAOT pode ser considerado mais uma boa ferramenta de ajuste de SEPs de sistemas colisionais reativos.

Aoladerinimpins

Ao CNPq, pelo apoio financeiro no desenvolvi-mento deste trabalho.

[^144]
ESTUDO DE ESTRUTURA E SOLVATAÇÃO DA TOXINA GsMTx4 USANDO DINÂMICA MOLECULAR

Elizandra S. Guimarães ${ }^{1}$ (IC); Sérgio L.E. Preza ${ }^{1}(\mathrm{PG})$; Rafael S. Margarido ${ }^{1}$ (IC); João Vitor B. Ferreira ${ }^{1}(\mathrm{PQ})$; Nájla M. Kassab ${ }^{2}$ (PQ); Marcos S. Amaral ${ }^{1,}{ }^{*}(\mathrm{PQ})$
marcos@dfi.ufms.br
${ }^{1}$ Laboratório de Modelagem Molecular, Depart. de Física, Univers. Federal de Mato Grosso do Sul, Campo Grande-MS
${ }^{2}$ Depart. de Farmácia Bioquímica, Univers. Federal de Mato Grosso do Sul, Campo Grande-MS
Palavras Chave: inibidor mecanosensitivo; análise conformacional; gromacs

Throollicato

Em estudos revelaram que o veneno da tarântula Grammostola spatulata, uma toxina denominada GsMTx4, atua como um inibidor mecanosensitivo dos canais de cátion stretch-activated (SACs) ${ }^{1,2,3}$. A GsMTx4, um polipetídeo hidrofóbico catiônico ${ }^{3}$, contém 34 resíduos de aminoácidos. Essa toxina tem sido ativamente estudada como fármaco em potencial para patologias cardiovasculares ${ }^{1}$.

Resmind os emiccussab

A estrutura da toxina GsMTx4 foi obtida no Protein Data Bank (código PDB: 1LU8), Figúra 1, e, dos 20 modelos disponíveis obtidos por RMN, três foram selecionados. As simulações computacionais foram desenvolvidas no pacote de programas GROMACS utilizando o campo de forças GROMOS96.

Figura 1. Seqüência e estrutura da GsMTx4. Duas fitas β (resíduos 21 ao 24 e do 29 ao 33) e três pontes dissulfeto (linhas tracejadas).

Os sistemas foram construídos em caixas cúbicas contendo moléculas de água no modelo SPC/E. Otimizações de geometria foram realizadas para relaxaçã̃o dos sistemas. A etapa de DM foi iniciada com velocidades obtidas pela distribuição de Maxwell à temperatura de 298K. Em equilíbrio termodinâmico, o sistema foi simulado por DM durante 2.000 ps . Todas as etapas da simulação foram realizadas no ensemble canônico (NVT).
O RMSD dos resíduos do esqueleto peptídico foi calculado em relação à estrutura do modelo extraída do PDB (Figura 2). Os ângulos de Ramachandran indicam que a estrutura da cadeia principal está em excelente acordo com os dados experimentais.
A camada de solvatação envolvendo os modelos para o esqueleto da GsMTx4 foi analisada através das funções de distribuição radial de pares, $g(r)$.

Figura 2. RMSD dos resíduos da GsMTx4 com relação à estrutura do modelo inicial obtida por NMR.

COMCIVSOCS

Simulações de DM permitiram investigar como a estrutura da toxina GsMTx4 se comporta em meio aquoso. A boa correlação entre os resultados teóricos e experimentais comprova o sucesso da metodologia computacional utilizada e sua importância nos estudos sobre solvatação e estrutura de peptídeos. Dessa forma, esse estudo poderá contribuir para o entendimento do efeito do solvente sobre a conformação da toxina, bem como para o entendimento das interações que ocorrem entre esta toxina e os canais de cátion SACs. Futuramente, pretende-se estudar sua ação tóxica por DM, incluindo explicitamente seus receptores.

- GIRaleg hich Los

À Fundação de Apoio ao Desenvolvimento do Ensino, Ciência e Tecnologia do Estado de Mato Grosso do Sul (FUNDECT/MS), pelo apoio financeiro.

[^145]
Influência do Tamanho de cadela em excitações não lineares no TRANS-POLIACETILENO.

Pedro Henrique de Oliveira Neto* (PG), Wiliam Ferreira da Cunha (PG), Geraldo Magela e Silval(PQ)
pedrohenrique@fis.unb.br
Instituo de Física - Universidade de Brasília (UnB), 70.917-970
Brasilia, DF - Brasil
Palavras Chave: Pólarons, Bipólarons, Excitações não-lineares.

Nhiloc पनebor
Nas últimas décadas a descrição das propriedades dos polímeros conjugados vem sendo tratada com muito interesse pela comunidade científica. Este fato é devido a sua grande aplicação industrial [1], sua estrutura simples e pela característica de que, sobre algumas condições, tais materiais exibem condutividade metálica. O modelamento teórico do trans-poliacetileno foi inicialmente proposto por Su, Schrieffer, Heeger [2] e desde então vem sendo modificado incluindo aspectos não tratados pelo modelo original.

Na descrição dos mecanismos de transporte de carga em polímeros condutores, excitações não-lineares como pólarons e bipólarons são fundamentais. Pólarons são quasi-partículas que se movem pela cadeia polarizando sua vizinhança e modificando o tamanho das ligações. Tais estruturas podem ter carga $\pm e$ com spin $\pm 1 / 2$. Um bipólaron pode ser considerado uma ligação de um par de sólitons carregados. Assim, esta estrutura terá carga ± 2 e e spin nulo.

Nesse trabalho propomos uma investigação do efeito de comprimento da cadeia do transpoliacetileno na transição de excitações não lineares como de pólarons para bipólarons. Tais transições foram estudadas numericamente a partir da dinâmica de sistemas elétrons-rede na presença de um campo elétrico, utilizando uma versão estendida do modelo Su, Schrieffer, Heeger dentro da Aproximação Hartree-Fock Irrestrita. A dinâmica da rede é modelada classicamente por meio de uma formulação lagrangeana.

Priesulticosed Decussab

Nas simulações variamos sistematicamente o tamanho da cadeia, estudamos situações com diferentes graus de impurezas e intensidade de campo. Os resultados obtidos ate o presente momento estão representados em termos de uma média das distâncias entre grupos CH , denominada "parâmetro de ordem".O gráfico da
figura 1 representa a evolução temporal do parâmetro de ordem.

Figura 1. Evolução temporal do parâmetro de ordem.

A simulação acima representada, consiste na cinética de um pólaron em um sistema de 200 sítios durante 40fs. Observa-se efeitos de ponta a partir de 20fs onde inicia-se a transição pólaron bipólaron.

Whaluspes

Investigamos os efeitos do tamanho de cadeia nas transições de excitações não lineares no poliacetileno. As transições do tipo pólaronbipólaron bem com a estabilidades dessas estruturas são afetadas pelo comprimento da cadeia. Os efeitos de ponta e impurezas são agentes na quebra de simetria que por sua vez são fundamentais na formação das excitações não lineares.

Este trabalho foi financiado pelo CNPq e auxiliado pelo Instituto de Física da UnB.

[^146]
DYNAMICS OF PHOTO-EXCITATIONS WITH INTERCHAIN COUPLING IN CONJUGATED POLYMERS.

Pedro Henrique de Oliveira Neto* (PG), Wiliam Ferreira da Cunha (PG), Geraldo Magela e Silval(PQ)
pedrohenrique@fis.unb.br
Institute of Physics. University of Brasilia, 70.917-970

Brasilia, DF - Brasil

Key words: polarons, bipolarons and photo-excitations.

Throutiolon

In general, polymers are insulators and colorless structures, e.g. they do not have free charge carries and the lowest electronic excitation lies in the U.V. region. However, polymers with alternated double and single bound in the main chain, present conductivity and interact with visible light under certain condition. Those are the so called conjugated polymers. The theoretical modeling used to describe the conjugated polymers conducting mechanism was initially proposed by Su , Scherieffer and Heeger (SSH)[1]. Since then, it has been modified so as to include aspects not directly treated previously by the original SSH model.

In describing the optical and charge transport mechanism in conjugated polymers, non linear structures such as solitons, polarons and bipolarons are of fundamental importance. Solitons are chain defects characterized by pattern change of bonds between carbons, representing a phase change of this pattern. It can be neutral with spin $\pm 1 / 2$, or can be charged, with $\pm e$ and no spin. Polarons, on the other hand, are quasi-particles that moves trough the lattice polarizing the neighborhood and modifying the length of the bonds without changing the phase. It has charge $\pm e$ with spin $\pm e$, responding to magnetic and electric fields simultaneously. A bipolaron can be considered as a charged soliton pair combination resulting in a structure with $\pm 2 e$ and no spin.
We intent to study the chains length influence on the photo-generation mechanism of these quasiparticles. For this propose we use a Su-SchriefferHeeger (SSH) model modified to include an external electric field and electron-electron interactions via a Parr-Pariser-Pople (PPP) mean field Hamiltonian and site-type impurity interactions. We study the dynamics using the Euler-Lagrange equations within the Unrestricted Hartree-Fock approximation, so as to describe the nuclear time-evolution. We also use the Schrödinger equation to describe the time-evolution of the electronic part. The Brazovskii-Kirova-Type symmetry-breaking interaction is also included. The electric field is introduced in terms of a timedependent vector potential which is present in the

Hamiltonian through a Peierls substitution of the phase factor to the transfer integral.

RESM H5 ancoblscussioms

In this work we investigated the chains length influence on the photo-generation mechanism of these quasi-particles. We studied two different cases: the first one considering the coupling between the chains only, and the second one also including the impurity participation.

Figure 1. Time evolving order parameter.
Figure 1 shows the time evolving order parameter. We observe clearly that initially the lattice shrinks as a hole and after that the lattice returns to it's original size and a typical polaron shape is present.

Conclusions

Interchain impurities as well as Coulombian interactions are determinant in the photo-carrier quantum efficiency calculation in conjugated polymers.

This study was supported in part by CNPq and in part by Institute of Physics, UnB

[^147]
THEORETICAL ESTIMATES OF THE INFRARED SPECTRUM OF WATER INTERCALATED INTO KAOLINITE.

Renan Borsoi Campos (PG) and Harley Paiva Martins Filho* (PQ) (hpmf@quimica.ufpr.br)
Departamento de Química, Universidade Federal do Paraná, CP 19081, CEP 81531-990, Curitiba, PR, Brasil.

Key words: Infrared pectra, Intercalation, Cluster models, Water, Kaolinite

Thucruchel

Vibrational spectroscopy (IR and Raman) is an important tool for characterizing intercalated layered silicates. Modifications on frequency and intensity of the silicate OH stretchings and the presence of bands similar to those of the isolated intercalate on the spectra are offered as evidence of the intercalation process. So far, quantum chemical calculations have restricted to geometry optimizations of the intercalate position inside small clusters and intercalation energies ${ }^{1}$. We report calculations of part of the IR spectrum of the water-kaolinite system based on a simplified model consisting of one water molecule in a 99atom cluster of kaolinite

RGSULIS ETHROSGISSIOR

The water molecule position was optimized from seven starting geometries to test for the possibility of H bond formation with both aluminate and siloxane surfaces of the interlayer spacing. The cluster atom positions and the interlayer distance were kept in the experimental values and hydrogen atoms were attached to some of the fractionary-valence oxygen atoms in the cluster edges in order to make the system closed-shell. IR band frequencies and intensities were calculated for the water vibrations and stretchings of four aluminate surface hydroxyls through hessian matrices and polar tensors obtained by numerical differentiation of energy gradients and dipole moment with respect to the coordinates of just the water atoms and the hydroxyls hydrogen atoms. In this way the cluster atoms are kept frozen with respect to vibrations. The OH stretchings were calculated also for the isolated cluster of kaolinite. Calculations were made at AM1, PM3 and HF/6-31G levels.
The water molecule was found to attach to the cluster mainly through a double H bond to the siloxane surface (all AM1 and HF/6-31G results and most of PM3 results) as observed in figure 1. The calculated OH stretching frequencies for the isolated cluster agree with experiment in that the lowest frequency comes from the internal hydroxyl. Intensities calculated for stretching of two aluminate hydroxyls decrease substantially upon intercalation, indicating that these two hydroxyls are more involved in H bonds which hold the layers together.

Figure 1. AM1 optimized position of a water molecule .inside a kaolinite cluster

According to the AM1 and HF/6-31G results, one OH stretching frequency of the water molecule should be within the range of the cluster OH stretchings and the other slightly above (slightly below, according to PM3 results) but both bands appear slightly below the cluster OH range in the observed spectrum ${ }^{2}$.

The intercalated water molecule interacts mainly with the siloxane internal surface of kaolinite. H bonds were evidenced by the lowering of the OH stretching frequencies of water upon intercalation but all calculations seem to be underestimating the H bond strength, which is responsible for lowering the OH frequencies

CNPq.

[^148]
Theoretical estimates of the infrared spectrum of formamide intercalated into kaolinite.

Renan Borsoi Campos (PG) and Harley Paiva Martins Filho* (PQ) (hpmf@quimica.ufpr.br)
Departamento de Química, Universidade Federal do Paraná, CP 19081, CEP 81531-990, Curitiba, PR, Brasil. Key words: Infrared spectra, Intercalation, Cluster models, Formamide, Kaolinite. observed broad band in the spectrum. This band was suggested to be composed of four overlaping bands of NH stretchings from just one formamide molecule ${ }^{1}$, but we suggest instead that NH stretchings from differently attached molecules must be involved. Unlike the observed spectrum, the calculated CO stretching frequencies for most of the conformations decrease upon intercalation. Observed bands at $1695 \mathrm{~cm}^{-1}$ and $1674 \mathrm{~cm}^{-1}$ thought to be due to to NH_{2} deformations from just one formamide molecule are also suggested to be due to to NH_{2} deformations from molecules differently attached to the siloxane surface.

Figure 1. Conformation of intercalated formamide according to AM1 results.

Topolmerme

The formamide molecule attaches to the kaolinite surfaces in multiple conformations, always with its plane tilted with respect to the interlayer surfaces. The spliting of infrared bands due to the formamide vibrations is attributed to vibrations from differently attached molecules.

CNPq

[^149]
CÁLCULO E MEDIDA DA FORÇA DE OSCILADOR GENERALIZADO PARA ESTADOS DE VALÊNCIA DO TRANS-BUTADIENO.

Elmar de Oliveira Uhi ${ }^{1}(P G)$, M. C. A. Lopes ${ }^{2}(P Q)$, M. L. M. Rocco ${ }^{1}(P Q)$, C. A. Lucas ${ }^{1}(P Q)$, F. Napole ${ }^{1}(P Q)$, H. Boechat-Roberty ${ }^{1}$ (PQ), G. G. B de Souza ${ }^{1}$ (PQ), Alexandre B. Rocha ${ }^{1}$ (PQ), Carlos E. Bielschowsky ${ }^{1}$ (PQ).
${ }^{1}$ Universidade Federal do Rio de Janeiro (UFRJ).
${ }^{2}$ Universidade Federal de Juiz de Fora.

Palavras Chave: Butadieno, estados excitados, força de oscilador, seção de choque.
Na figura 2 comparamos os resultados teóricos e experimentais para a FOG destas quatro transições. Esta figura mostra um excelente acordo entre os resultados teóricos e experimentais obtidos neste trabalho.

Figura 2. FOG teórica e experimental para transição aos quatro primeiros estados singletes do butadieno.

PReVomalisoes

No presente trabalho foram obtidos resultados teóricos e experimentais para a Força de Oscilador Generalizada e resultados teóricos para a Força de Oscilador Ótica para processos de excitação eletrônica do estado fundamental aos quatro estados excitados singletes de mais energia do butadieno. Os resultados teóricos e experimentais para a FOG apresentam um excelente acordo.

Ao CNPQ pelo apoio financeiro.
J. J. Sakurai "Modern Quantum Mechanics", Hardcover.M.W.Schmidt, K.K.Baldridge, J.A.Boatz, S.T.Elbert,
${ }^{2}$ Alexandre Braga da Rocha "Intensidade de Transições Eletrônicas Em Sistemas Moleculares Calculada Dentro Ou Além da Aproximação
Vertical" Tese de Doutorado, Departamento de Físico-Química (UFRJ).
${ }^{3}$ M.S.Gordon, J.H.Jensen, S.Koseki, N.Matsunaga, K.A.Nguyen, S.J.Su, T.L.Windus, M.Dupuis, J.A.Montgomery "General Atomic and Molecular Electronic Structure System" J.Comput.Chem. 14, 13471363(1993)

HOW DO PROTEINS TAKE UP THE HEAT?

Leandro Martínez (PQ), Igor Polikarpov (PQ), Munir S. Skaf*(PQ) (skaf@iqm.unicamp.br)
Instituto de Química, Universidade Estadual de Campinas
Instituto de Física de São Carlos, Universidade de São Paulo.

Keywords: Protein Thermal Diffusion, Signaling, Folding

万h Hometion

The mechanisms by which kinetic energy perturbations are dissipated in protein structures are important for folding stability and signaling. It was observed that charged groups represent the fastest routes for energy dissipation, and that anisotropic, funnel-like mechanisms are responsible for relaxing the heme group in globins. ${ }^{1,2}$ Recently, a technique called Anisotropic Thermal Diffusion was proposed for the study of the heat propagation within a protein. ${ }^{3}$ Here we report a comprehensive analysis of the thermal diffusion mechanisms in Thyroid Hormone Receptors by an extensive exploration of the ATD technique. We explore pathways of thermal diffusion by heating each residue of the LBD of TRs independently, heating natural and isoform-selective ligands, and side-chain mutated residues. We are able to propose a general view of protein thermal diffusion pathways from a structural point of view, analyze the importance of particular sidechains and ligand-specific properties.
The proposed mechanisms show that the backbone is the most important wire for thermal energy diffusion and that charged residues are particularly important for these mechanisms. Furthermore, we show that not all charged residues are equally important and that their chemical nature determines their ability to diffuse heat. The mechanisms proposed here may be general for NRs and probably to other proteins as well.

The protein structure is equilibrated to a temperature of 10 K . Then, a single residue is instantaneously heated to 300 K and kept at that temperature, by a temperature coupling method, through the whole simulations. ${ }^{3}$ The heat naturally diffuses to the protein structure. We compute the temperature of each residue during the simulation for each other residue of the protein being heated independently, providing a profile of heat diffusion as shown in Figure 1.
If one computes the average temperature of the protein after a given amount of time, we obtain a measure of the effectiveness of the heat flow from each residue to the rest of the protein. We then compute similar measures of this quantity but after mutating each amino-acid side chain to glycine. Thus we obtain, by difference, the importance of the residues side-chains to overall thermal diffusion.

Stability, Thyroid Hormone Receptors, Nuclear Receptor We show that the mechanisms of thermal diffusion may be classified in three categories: 1) A direct diffusion through the covalently bonded chain, which appears to be uncorrelated with the chemical nature of the residue been heated. 2) The propagation through non-covalent bonds, particularly ones which are very close in the structure. 3) Propagation of heat along the covalent chain of the residues heated indirectly by mechanism 2.
Arginines are particularly important for non-bonded thermal diffusion in TRs, and this is related to the fact that they usually interact with the inner residues of the protein. The most important heat diffusers appear to be all functionally important residues, being most of them related to mutations found in the Thyroid Hormone Resistance Syndrome.

Figure 1. Thermal diffusion profile for single residue heating. Here, the Arg429 was heated.

(0) oncicions

The study of thermal diffusion provides insights into intramolecular signaling pathways and can be used for the identification of functionally important residues. The mechanisms of thermal diffusion here represent pathways of energy dissipation that may be generally important for protein folding stability.

We thank FAPESP, CAPES and CNPq for financial support.

[^150]
Water Dynamics in Carbohydrate Solutions

Milton T. Sonoda ${ }^{1}$ (PQ), Érica T. Prates ${ }^{2}$ (IC), Munir S. Skaf ${ }^{* 2}$ (PQ) (skaf@igm.unicamp.br)
${ }^{I}$ Instituto de Física de São Carlos / USP. ${ }^{2}$ Instituto de Química - UNICAMP
Keywords: Water dynamics, biomolecules, carbohydrate solutions, hydrogen bonding dynamics.

that the formation of carbohydrate clusters upon increasing concentration enhances the H -bond

Water around biomolecular systems such as proteins, DNA, organic polymers (gels), phospholipid membranes, reverse micelles, and carbohydrate solutions, to name a few, may exhibit anomalous dynamics. Although the underlying physical origin of such behavior is not completely clear, it has been shown that charged or highly polar groups in the solute provide pinning sites which bind water and induces its slowing down. The dynamical behavior of saccharide aqueous solutions stems from the complex interplay between the water-sugar and sugar-sugar interactions, predominantly through H-bonding. For low concentrations, the water dynamics slows down linearly with increasing sugar content due to the attending availability of the carbohydrate hydroxyl groups. For concentrated solutions, the observed deviations from linearity have been attributed to the formation of solute clusters which, in turn, hamper the mobility of the water molecules.

In this work we present a Molecular Dynamics study of water-fructose systems ranging from nearly diluted (1 M) to concentrated (5 M) solutions to investigate structure, H -bonding, and dynamics.

We find that the solute tends to appear as scattered "isolated" molecules at low concentrations and as H -bonded clusters for less diluted solutions. The sugar cluster size distribution exhibits a sharp transition to a percolated cluster between 3.5 and 3.8 M . The percolated cluster forms an intertwined network of H-bonded saccharides that imprisons water (Fig.1). For the dynamics, we find good agreement between simulation and experimental self-diffusion coefficients. Water librational dynamics is little affected by sugar concentration, whereas reorientational relaxation is described by a concentration-independent bulk-like component attributed to non-interfacial water molecules and a slower component (strongly concentration dependent) arising from interfacial solvent molecules and, hence, depends on the dynamics of the cluster structure itself. Analysis of H bonding survival probability functions indicates
life-time between molecules and slows down the entire system dynamics.
We find that multi-exponential or stretched-exponential fits alone cannot describe the H -bond survival probabilities for the entire post-librational time span of our data (0.1-100 ps), as opposed to a combined stretched-plusbiexponential function which provides excellent fits.

Figure 1. Sugar cluster size distribution shows a percolation transition around 3.8 M .

Our results suggest that water dynamics in concentrated fructose solutions resembles in many ways that of protein hydration water. For concentrated solutions, the carbohydrates appear as a percolated cluster whose van der Waals surface establishes microheterogeneous regions of solvent entrapment. Water dynamics within these regions departs quite strongly from that of bulk water and is coupled to the dynamics of the sugar clusters.

We thank FAPESP and CNPq for financial support.

A new Hyllerais-Like approach to obtain the energy levels of the helium
 ATOM

Deise T. Cavalcante (IC), Lidiane A. Camelo(IC), Leticia Negrão (IC), Daniel L. Nascimento(PQ), Antonio L. A. Fonseca* (PQ)
alaf20@gmail.com
Institute of Physics
University of Brasilia P. O. Box 04455
70919-970, Brasilia, DF - Brazil
Palavras Chave: Hamilton-Jacobi equation, helium atom, Hylleraas-like approach
It is shown that our method is capable of

1/1700 Dicao

It is well known that the Hylleraas[1] method is not appropriate for studying the excited states of the helium atom and it also does not determine the correct asymptotic behavior for the ground-state energy of the helium ion. In this work we revisited the helium atom problem through the HamiltonJacobi classical theory combined with the Sommerfeld quantization rule, using an equivalent eigenvalue differential equation to the integral Hylleraas equation.

RGSUliter e DHS ISSaO

In the present work we employed the formalism based in the non-relativistic HamiltonJacobi Equation developed in our previews work $[2,3]$ to study two-body problems. It yields solutions to the equation of motion by solving the associated differential eigenvalue equation, using a Hylleraaslike approach.

We used approximated solutions for the state vectors which were obtained through the optimization of a trial solution made up by the product of one electron asymptotic solution times a power series in the three atomic variables. This power series is fitted by minimizing the square of the deviation function formed by the substitution of the trial function in the differential equation for the helium atom. Then, the result is integrated against the atomic coordinates. The solution of the extremum problem yields the energy eigenvalues and the corresponding power series coefficients for the approximated state vectors.

We hope this approach may be used in the calculations of many-electron atoms.
reproducing the atomic ground-state and the excited binding energies for the helium atom. We have also obtained the exact asymptotic limit for the groundstate of the helium ion.

Arodectinenios

Acknowledgements

ALAF wishes to thank CNPq (Brazilian research agency) for his Research Grant and DLN acknowledges FUBRA
${ }^{1}$ Hylleraas, E. A. Z. Physik 1929, 54, 347.
${ }^{2}$ Nascimento, D. L.; Fonseca, A. L. A. Int.. J. Quantum Chemistry 2006, 106, 2779.
${ }^{3}$ Fonseca, A. L. A.; Nascimento D. L. Chap.5, pp. 149 in Quantum Chemistry Research Trends (2007, Nova Science Publisher, N. Y.) In press

Acoplamento Magnético em Metal Organic Frameworks (MOFs) Baseadas em Unidades de Dicobre (III) Bezenotricarboxilatos (BTC)

Ana Paula Souza Santos*1 (PG) e Ricardo Longo ${ }^{1,2}$ (PQ). apaula.souzas@uol.com.br.
${ }^{1}$ PGMTR - UFPE -- Av. Prof. Luiz Freire, s/n - Cidade Universitária - 50.740-901 - Recife, PE - Brasil.
${ }^{2}$ DQF - UFPE - Av. Prof. Luiz Freire, s/n - Cidade Universitária - 50.740-540 - Recife, PE - Brasil.

Palavras Chave: MOF, Acoplamento Magnético, HF, DFT.

ThTrog 1 (G6)

Devido a presença de um par de cobres II que se ligam a carboxilatos, como visto na Figura 1, a MOF $\left[\mathrm{Cu}_{3}(\mathrm{BTC})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]_{n}$ tem sido alvo de nossos estudos. Estes cobres acoplam magneticamente, o que pode ser medido experimentalmente, através de susceptibilidade magnética ou EPR, por exemplo. Como o valor do acoplamento magnético (J) varia de acordo com a molécula ligada ao metal, esta MOF pode agir como sensor magnético de gases.

Figura 1. Sistemas modelos (1 e 2, respectivamente) representativos da MOF $\left[\mathrm{Cu}_{3}(\mathrm{BTC})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]_{\text {n }}$.
Neste trabalho, usando os modelos apresentados na Figura 1, calculamos J através da aproximação de simetria quebrada, representada pela equação:

$$
J=\frac{2\left(E_{B S}-E_{T^{\prime}}\right)}{1+S_{a b}^{2}}
$$

onde $E_{B S}$ e E_{T}, são, respectivamente, as energias de simetria quebrada e do tripleto contaminado, e $S_{a b}$ é a integral de superposição que pode assumir três valores. Para J1, $S_{a b}=0$ (limite fortemente localizado); para $\mathrm{J} 2, S_{a b}=1-\rho_{a}$ (ρ_{a} é a densidade eletrônica em um dos centros magnéticos), e; para $\mathrm{J} 3, S_{a b}=1$ (limite fortemente deslocalizado).
O objetivo deste trabalho é avaliar a influência sobre o J do nível computacional (Hatree-Fock ou DFT), do modelo empregado e da molécula de gás ligada aos metais (amônia, água e fosfina).

Resultalo es DISculsta

Os resultados preliminares mostram que os menores valores calculados para J foram obtidos ao nível HF. Para o Modelo 1, com a fosfina como ligante, temos $J 3=3,07 \mathrm{~cm}^{-1}$, resultado 58 vezes menor que o calculado para o DFT PBE1PBE ($\mathrm{J} 3=174,768 \mathrm{~cm}^{-1}$). Os DFTs híbridos (B3LYP $J 1=612,202 \mathrm{~cm}^{-1}-, B 3 L Y P^{*}-J 1=799,238 \mathrm{~cm}^{-1}-e$ PBE1PBE $-\mathrm{J} 1=503,65 \mathrm{~cm}^{-1}$) apresentam J menores
que os DFTs puros (BLYP $-J 1=1685,52 \mathrm{~cm}^{-1}-\mathrm{e}$ PBE - J1 $=1782,66 \mathrm{~cm}^{-1}$).

Figura 2. Gráfico do acoplamento magnético (J1 -cm^{-1}) em função dos níveis computacionais para os ligantes amônia, água e fosfina.

Ao nível HF, o J calculado cresce à medida que diminui a força do campo do ligante. Já para os cálculos DFT, o J sempre é maior para a fosfina quando comparado com a amônia. No entanto, para os funcionais híbridos, a água aparece com os valores de J maiores que os encontrados para a fosfina. Uma inversão destes resultados para os funcionais puros.

Para avaliar a influência do sistema modelo sobre o J estão em andamento cálculos para o sistema modelo 2 e para a unidade secundária de construção da MOF obtida a partir de dados cristalográficos desta.

Coriclusores

Os menores valores calculados para J foram obtidos ao nível HF. Os funcionais densidade híbridos apresentam J menores que os puros.
Quanto à força do campo ligante, ao nível HF, o J cresce à medida que esta diminui. Independente do nível computacional, o J sempre é maior para a fosfina quando comparado com a amônia. Para os funcionais híbridos, a água aparece com maiores valores de J que os encontrados para a fosfina. O inverso ocorre quando se trata de funcionais puros.

Arorecestmentos

Ao CNPq.

UNDERSTANDING DIFFERENTIAL ACTIVATION OF ANGIOGENESIS RELATED PROTEINS

Bruno A. C. Horta* (PG) and Ricardo B. De Alencastro (PQ). bruno@iq.ufrj.br
LabMMol, Physical Organic Chemistry Group, Departamento de Química Orgânica, Instituto de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária, CT, Bloco A, lab. 609, Rio de Janeiro, RJ 21941-909, Brazil.
keywords: Molecular dynamics, homology modeling, protein-protein interactions, VEGF, angiogenesis.

Angiogenesis, the mechanism by which new blood vessels are formed from pre-existing ones, is involved in many physiological processes such as wound healing and ovulation. It is also induced in many pathological processes such as tumor growth and diabetic retinopathy. Thus, modulation of angiogenesis may provide alternative treatments for a vast number of diseases. ${ }^{1,2}$
The angiogenesis signaling cascade is not fully understood, but it is well known that the vascular endothelial growth factor (VEGF) is its main regulator and inducer. VEGF is a member of the cystine knot superfamily of signaling proteins, which includes blood vessels regulators (VEGF (or VEGF-A), VEGFB and PIGF (placental growth factor)), and also lymphatic vessels regulators (VEGF-C and -D). Each one of these proteins acts by differential activation of three tyrosine kinase receptors: VEGF receptor-1 (VEGFR-1), VEGFR-2 and VEGFR-3. VEGF activates receptors VEGFR-1 and -2; VEGF-B and PIGF activate VEGFR-1 only; and VEGF-C and -D activate VEGFR-2 and VEGFR-3. ${ }^{1}$ X-ray crystal structures of VEGF and PIGF in complex with VEGFR-1 have shown how these growth factors interact with this receptor. Unfortunatelly, there are no available structural studies regarding the interactions between VEGF proteins with the other receptors.
In this work, we analyze a series of homology models and long (10 ns) molecular dynamics (MD) simulations in order to try to understand the structural and dynamical features that govern the differential activation of VEGF receptors.

We investigated the dynamical behavior of VEGF free in solution by MD. Results have shown that the internal motion of the protein is governed by a principal mode in which the motion of loops-1 and -3 (i.e. loops that include the most important residues for receptor binding) are coupled. ${ }^{3}$ We also carried out simulations of VEGF bound to peptide inhibitors in order to characterize the main interactions and to investigate the effects of binding on the structure and dynamics of VEGF.
A per residue analysis was performed to identify the most important residues for binding. Figure 2a shows the per residue electrostatic contribution and $\mathbf{2 b}$
shows the VdW contribution. Although this analysis is based on the partition of a parametrized force-field, and thus is not reliable for quantitative assumptions, results are in good qualitative agreement with experimental mutagenesis data. This method is being used to extract the per residue interactions of other complexes. The most strong electrostatic interactions are shown in figure 2c. These are stable (figure 2d) complementary charged interactions which seem to play a role in receptor recognition. In this work, we also explore the dynamical effects of binding (results not shown).

Figure 1. a. Electrostatic and b. VdW contribution per residue of VEGF to the entire Flt-1 group. c. Charged interactions between VEGF and FIt-1. d. distances between the pairs of residues FIt-1-Glu141 and VEGF-Lys16 (red), Flt-1-Arg224 and VEGF-Asp63 (black), and FIt-1-Lys171 and VEGF-Glu103 (green).

The overall results obtained until now indicate that the structures of VEGF and receptors are not significantly changed upon binding, but dynamics is somewhat affected, indicating that configurational entropy is possibly contributing to the binding free energy. The complementary charged interactions seem to be the key to the differential activation of VEGF receptors.

 CNPq and FAPERJ

[^151]
Estabilidade relativa e deslocamento químico de ${ }^{13} \mathrm{C}$ de um intermediário RELEVANTE PARA A SÍNTESE DA CALISTEGINA B_{2}.

Luis Maurício da Silva Soares (PG)*1, José Walkimar de M. Carneiro (PQ) ${ }^{2}$, Carlos Roberto Ribeiro Matos (PQ) ${ }^{1}$, Raimundo Braz Filho (PQ) ${ }^{1}$
${ }^{1}$ Pós-Graduação em Ciências Naturais, Universidade Estadual do Norte Fluminense - UENF
${ }^{2}$ Departamento de Química Inorgânica, Universidade Federal Fluminense - UFF
*(msoares@uenf.br)

Palavras Chave: calistegina, carbeno, b3lyp, nmr.

A calistegina B_{2} pertence a um grupo de alcalóides dos quais muitos de seus membros são potentes inibidores das enzimas glicosidases, possuindo potencial de utilização em, câncer ${ }^{2}$, infecções virais ${ }^{1}$ e em glicoesfingolipidoses hereditárias (doença de Fabry) ${ }^{3}$. Neste trabalho abordamos um intermediário na rota de síntese da calistegina B_{2}, calculando geometria, deslocamentos químicos de ${ }^{13} \mathrm{C}$ e reação de interesse com clorocarbeno.

P: racsulfacos erbrchesto

A estrutura do composto, abaixo, e de seu estereoisômero, foi otimizada via DFT b3lyp/631G(d) e b3lyp/6-311+G(3df).

O confôrmero onde o anel ciclopropano encontra-se orientado em posição anti ao átomo de oxigênio 6 é mais estável que o confôrmero sin por $3,5 \mathrm{Kcal}_{\mathrm{Kc}}^{\mathrm{mol}}{ }^{-}$ 1. As duas estruturas foram submetidas a cálculos dos deslocamentos químicos de ${ }^{13} \mathrm{C}$ utilizando o método b3lyp/6-311+G(d), os quais, quando compa;ados a dados experimentais, mostram desvios superiores a 20 ppm para o carbono ligado aos átomos de cloro. Em razão disto, decidimos calcular deslocamentos químicos de ${ }^{13} \mathrm{C}$ para o

sistema modelo 7,7-dicloronorcarano. Os resultados são mostrados na tabela 1. Em particular analisamos a diferença de deslocamento químico entre os carbonos α (ligados aos átomos de cloro) e β. Os deslocamentos químicos para os dois estereoisômeros são muito similares entre si.

Os desvios padrão em relação aos valores experimentais são 11,24 para o isômero sin e 11,14 para o isômero anti.

Otimizsco dageomeria	Fibl\| ${ }^{\text {6 }}$	$\begin{aligned} & \text { W\% } \\ & \text { pom } \end{aligned}$
bithes-316(d)		54.63
	mpes-31s d)	5053
		676
	phetphers 31+G(3d)	50.12
mpan payte $36(6)$		595
meses-3cy	mperench	3.42
expelimental		41,3

* $\Delta \delta$: diferença entre os deslocamentos químicos entre os carbonos α e β aos átomos de cloro do anel ciclopropano.

Observando os dados da tabela acima, é possível inferir que a otimização da geometria nos níveis b3lyp/6-31G(d) e mpw1pw91/6-31G(d), produziram resultados idênticos, o que demonstra certa correspondência para a qualidade do cálculo obtido. Embora o nível de cálculo utilizado para a otimização da geometria seja preponderante para a qualidade dos cálculos do deslocamento químico, o cálculo ao nível mp2/6-31G(d), apresentou resultados melhores mesmo quando se otimizou a geometria ao nível b3lyp/6-31G(d). O uso do nível b3lyp/6-311+G(3df) produziu melhores resultados que o nível b3lyp/6-31G(d) para a otimização da geometria.

O cálculo MP2 pode fornecer os deslocamentos químicos de boa qualidade, entretanto, para tal é necessário geometria otimizada pelo menos no nível b3lyp/6-311+G(d) ou mp2/6-31G(d).
No nível b3lyp/6-311+G(d) o isômero de configuração anti é mais estável por $3,5 \mathrm{Kcal}_{\mathrm{K}} \mathrm{mol}^{-1}$

Capes, CNPQ, FAPERJ.
1- Block, T.M., et al. "Secretion of human hepatitis-b virus is inhibited by the imino sugar N-butyldeoxynojirimycin". Proceedings of the National Academy of Sciences of USA, v.91, n.6, p.2235-2239, 1994.

2- Dennis, J. W. "Effects of swainsonine and polyinosinic-polycytidylic acid on murine tumor-cell growth and metastasis". Cancer Research, v.60, n.10, p.5131-5136, 1986.
3- Platt, F.M., et al. "Prevention of lysosomal storage in Tay-Sachs mice treated with N-butyldeoxynojirimycin". Science, v.276, n.5311, p.428-431, 1997.

Estudo teórico sobre o Ácido barbitúrico e o tiobarbitúrico

Víctor de S. Bonfim ${ }^{1}$ (IC) ${ }^{*}$, José Roberto dos Santos Politi' (PQ).

1 - Universidade de Brasília, Instituto de Química, CP 4478 Brasília, DF, CEP 70919-910, Brasil.
e-mail: *victordsb@gmail.com
Palavras Chave: Ab initio, ácido barbitúrico, desprotonação, ácido tiobarbitúrico.
é mais provável que o 1° próton a sair da molécula esteja ligado a C e não a N. Pode-se observar também que o ácido barbitúrico deve apresentar um caráter ácido menor que o do tiobarbitúrico.
As geometrias de equilíbrio obtidas com os cálculos permitem que comparações sejam feitas entre os dois ácidos, como o acompanhamento de mudanças no comprimento de uma mesma ligação com a desprotonação, conforme feito na tabela 2.
Tabela 1. valores de E^{D} ($\mathrm{kJ} / \mathrm{mol}$) para os ânions dos dois compostos

$\mathrm{p} / \mathrm{a}^{*}$	2 a	3 a	2 b	3 b	4
$8 / \mathrm{O}$	416,343	911,517	451,332	900,248	367,059
$8 / \mathrm{S}$	377,699	845,250	418,117	856,733	288,192

* posiçãolátomo (figura 1).

Tabela 2. comprimentos de ligação (\AA) N1-C2 para os dois compostos e seus ânions

p/a*	eutra	2a	$3 a$	$2 b$	$3 b$	4
$8 / O$	3723	3519	3200	3297	3840	3634
$8 / \mathrm{S}$	3557	3276	2859	3011	3486	3247

* posição/átomo (figura 1).

Comparando as seqüências de comprimentos de ligação descritas na tabela 2 , percebe-se que nas mesmas etapas em que a ligação alonga-se ou encurtase para o ácido barbitúrico, a sua equivalente no ácido tiobarbitúrico apresenta o mesmo comportamento.

Commmenos

Através deste trabalho foi possível o estudo das energias e das geometrias de equilibrio do ácido barbitúrico, do tiobarbitúrico e dos respectivos ânions de cada um. Em termos de geometria, uma comparação com dados de literatura experimental ${ }^{3}$ para o ácido barbitúrico resulta em discrepância de no máximo 2% para comprimento de ligação e 2,4\% para ângulo de ligação. Além disso, um estudo comparativo entre os dois ácidos para as propriedades estudadas indica um comportamento análogo do ácido tiobarbitúrico com relação ao barbitúrico, apesar do caráter ácido ser mais acentuado no ácido tiobarbitúrico.

Molegerling ios

CNPq, Funpe-UnB, PIC-UnB.

[^152]
ESTUDO TEÓRICO COMPARATIVO DE PROPRIEDADES ELETRÔNICAS E CONFORMACIONAIS ENTRE DIFERENTES FRAGMENTOS DE MIOTOXINAS.

Antônio J. N. Fernandes ${ }^{1,2^{*}}(\mathbb{P G})$, Maria C. dos Santos ${ }^{3}(\mathbb{P Q})$, Antônio F. C. Alcântara ${ }^{4}(P Q)$
${ }^{1}$ Laboratório de Bioinformática, CAM, UFAM; ${ }^{2}$ Departamento de Biologia, CSTB, UEA; ${ }^{3}$ Departamento de Biologia Parasitologia, ICB, UFAM; ${ }^{4}$ Departamento de Química, ICEx, UFMG (*antoniojnf@ufam.edu.br)

Palavras Chave: Crotalus, miotoxinas, cálculos teóricos sobre crotaminas.
LUMO desses fragmentos apresentam variações significativas.

O mapa de superfície do orbital HOMO desses fragmentos (Figura 1) mostra uma similaridade entre os três fragmentos, com contribuição significativa do enxofre da cisteína 18. Nessa figura, as geometrias otimizadas desses fragmentos mostram-se como conformações diferentes, proporcionando especificidades em suas interações intramoleculares e intermoleculares.

Figura 1. Mapa de superfície dos fragmentos (a) KICLPP, (b) VICLPP e (c) KICTPP, empregando cálculos B3LYP/3-21G* e considerando o efeito da água como solvente.

Pelos resultados teóricos obtidos, os três fragmentos apresentam propriedades eletrônicas diferentes somente no orbital LUMO, sugerindo que suas diferentes atividades biológicas podem ser relacionadas com suas propriedades eletrofílicas. Além disso, as geometrias otimizadas desses fragmentos são diferentes, não apresentando as mesmas especificidades em suas interações intra e intermoleculares que possam ser relacionadas com suas atividades biológicas.

-a

UFAM, UEA e FAPEAM.

[^153]
TRANSITION STATE STRUCTURE, ENERGETIC, RATE CONSTANTS AND KINETIC ISOTOPE

 EFFECTS FOR THE $F(2 \mathrm{P})+\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5}+\mathrm{HF}$ REACTIONOrlando Roberto-Neto ${ }^{1}$ (PQ)* (orlando@ieav.cta.br), Francisco B. C. Machado ${ }^{1}$ (PQ)
${ }^{1}$ Divisão de Aerotermodinâmica e Hipersônica, Instituto de Estudos Avançados - São José dos Campos - SP.
${ }^{2}$ Departamento de Química - Instituto Tecnológico de Aeronáutica - São José dos Campos - SP.

Palavras Chave: $\mathrm{F}+\mathrm{C}_{2} \mathrm{H}_{6}$, energetic, rate constants.

hiloomelyon

The hydrogen atom abstraction from hydrocarbons by fluorine is a key step in various processes that are relevant to combustion chemistry. One of these systems, include the $\mathrm{F}+\mathrm{CH}_{4}$ reaction which kinetics has been extensively explored in the last years. ${ }^{1}$ The $\mathrm{F}+\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5}+\mathrm{HF}$ reaction constitutes a natural extension of the $\mathrm{F}+\mathrm{CH}_{4}$ one, and is currently a challenging subject for both experimental and theoretical investigations. Experimental rate constants are measured by competitive methods using either the reaction of F atoms with CH_{4}, or the reaction of F atoms with H_{2}, and they give a low activation energy varying from 0.28 to 0.96 $\mathrm{kcal} / \mathrm{mol} .^{2}$ This reaction is very exothermic having an enthalpy of reaction at 0 K varying from 35.9 ± 0.5 to $37.8 \pm 1 \mathrm{kcal} / \mathrm{mol} .^{3}$ There is just one previous theoretical work of this reaction, which values of the forward classical barrier height and the activation energy calculated with the MP4/6-31G(d)//MP2/6$31 \mathrm{G}(\mathrm{d})$ method are equal to 3.5 and $2.1 \mathrm{kcal} / \mathrm{mol}$, respectively. ${ }^{4}$ This last quantity is overestimated in relation to experiment, $0.28-0.96 \mathrm{kcal} / \mathrm{mol}$. In this work our target is to complement and improve calculations of the geometries, vibrational frequencies, reaction rates, and kinetic isotope effects of the $F\left({ }^{2} \mathrm{P}\right)+\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5}+\mathrm{HF}$ abstraction reaction.

RResimis ant phecussion

The MP2 and $\operatorname{CCSD}(\mathrm{T})$ methods and the cc-pVXZ (D, $\mathrm{T}, \mathrm{Q})$ basis sets of Dunning are employed to characterize the energies, geometries, and harmonic frequencies of the stationary states. Additionally, the extrapolation scheme of Halkier et al. ${ }^{5}$ is also used to estimate the energetic values at the complete basis set (CBS) limit. All studied open shell species are not severely contaminated by higher spin states, and they also show weak non-dynamic effects, in which the calculated values of the T_{1} diagnostic are smaller than 0.023 . Thermal rate constants calculations were carried out with the IVTST-0 approach, in which Wigner and zero-curvature tunneling corrections are also included. As further care, the lowest-frequency vibration of transition state is treated as hindered internal rotation in the calculations of vibration-rotational partition functions.

Table Energetics in $\mathrm{kcal} / \mathrm{mol}$.

Method	$\Delta \mathrm{V}_{\mathrm{f}}^{\#}$	$\Delta \mathrm{~V}_{\mathrm{f}}^{\#}+\mathrm{ZPE}$	$\Delta \mathrm{H}_{0}$
$\mathrm{MP} 2 / \mathrm{DZ}$	4.3	2.2	-28.8
$\mathrm{MP} 2 / \mathrm{TZ}$	2.6	1.0	-37.0
$\mathrm{MP}^{\prime / Q Z}$	2.1	0.6	-39.5
$\mathrm{CBS}_{\mathrm{T}-\mathrm{Q}}$	2.0	0.3	-41.3
$\mathrm{CCSD}(\mathrm{T}) / \mathrm{DZ}$	-	-	-25.1
$\mathrm{CCSD}(\mathrm{T}) / \mathrm{TZ}$	-	-	-32.5
$\mathrm{CCSD}(\mathrm{T}) / \mathrm{QZ}$	-	-	-35.2
$\mathrm{CBS}_{\mathrm{T}-\mathrm{Q}}$	-	-	-36.7
$\mathrm{Exp}^{2,3}$		0.26	-35.9

Cencirislons

We have carried out MP2 and $\operatorname{CCSD}(\mathrm{T})$ calculations of energies, equilibrium geometries, and harmonic frequencies of the stationary states for the $\mathrm{F}+\mathrm{C}_{2} \mathrm{H}_{6} \rightarrow \mathrm{C}_{2} \mathrm{H}_{5}+\mathrm{HF}$ hydrogen abstraction reaction. MP2/cc-pVQZ calculations have predicted a bent transition structure with a $\angle C H F$ angle equal to 159.0°. CCSD (T)/cc-pVQZ and $C B S_{T-Q}$ calculations give values of the enthalpies of reaction at 0 K of -35.5 and -36.7 $\mathrm{kcal} / \mathrm{mol}$, in close agreement with the experimental value of $35.9 \pm 0.5 \mathrm{kcal} / \mathrm{mol}$. At 300 K , the ratio of experimental and theoretical rate constants is only 1.3 , thus indicating that the IVTST-0 method is a reliable approach to describe this reactional system.

Heflome omonis

CNPq, FAPESP, ITA-CTA.

[^154]
Seção de Choque Diferencial Elástica da Interação de Elétrons de Energias Intermediárias com Moléculas de Metanol

Ivana P. Sanches ${ }^{(1){ }^{*}}(\mathbb{P Q})$, Renato T. Sugohara ${ }^{(2)}(\mathbb{P G})$, lone Iga ${ }^{(1)}(\mathbb{P Q})$.

*ivanapsanches@yahoo.com.br.
(1) Universidade Federal de São Carlos, Departamento de Química
(2) Universidade Federal de São Carlos, Departamento de Física

Palavras Chave: metanol, seção de choque, fluxo relativo

Thillooflic: 10

A descoberta de álcoois simples nos espaços interestelares e na atmosfera dos planetas em nosso sistema solar provocou o interesse de estudos de seção de choque para essas moléculas. Na literatura são escassas as medidas para essas moléculas ${ }^{1}$.

Sabemos que os elétrons podem ativar os estados excitados da molécula, tanto rotacional, vibracional quanto eletrônico e também podem ser capturados pelas moléculas formando ânions de vida transitória. Tanto os processos de excitação como de capturas podem resultar em dissociação. Um conceito fundamental nos processos de colisão entre partículas é certamente a Seção de Choque (SC), pois ela fornece as probabilidades respectivas de transição das partículas envolvidas aos estados finais possíveis, póscolisão. Portanto, o conhecimento preciso da SC para cada canal de colisão é de grande importância.
Por esta razão, neste trabalho damos enfoque à molécula de metanol, onde através da técnica do fluxo relativo ${ }^{2}$, realizamos medidas de seção de choque elástica absoluta para energias intermediárias dos elétrons incidentes. Os resultados são comparados ao Modelo dos Átomos Independentes (MAI) ${ }^{3}$.

Na Figura 1 apresentamos o gráfico da SCDE para o metanol, onde estão representados os valores experimentais normalizadas ao MAI para energia de 500 eV e ângulos de $\sim 3^{\circ}$ a 130°.

Figura 1. SCDE elétron-metanol. Círculos pretos: medidas experimentais normalizadas, linha cheia: cálculo teórico do MAI para energia de 500 eV .

Observamos em geral, uma excelente concordância quanto à tendência experimental e o teórico. Para as energias menores (100 eV e 200 eV) a concordância é razoável, como será mostrado no Simpósio. É importante frisar que na Figura 1 está sendo avaliado apenas o formato da curva, uma vez que os valores foram normalizados. Valores absolutos obtidos pela técnica de fluxos relativos para 500 eV e outras energias no intervalo de 200 e 1000 eV serão mostrados e discutidos no Simpósio.

Comcliseors

Os estudos realizados até o momento permitem concluir que há uma concordância qualitativa entre os valores experimentais e calculados pelo MAI. A avaliação quantitativa está em andamento e será discutida no simpósio.

2 AGLSDerchinchios
FAPESP, CNPq e CAPES

[^155]
Medidas de Seção de Choque Diferencial Elástica da Interação de Elétrons com Energia de 200-1000 eV Etanol em Fase Gasosa

Renato T. Sugohara ${ }^{1}$ * (PG), Ivana P. Sanches ${ }^{2}$ (PQ), Ione Iga ${ }^{2}(P Q)$.
* sugohara@df.ufscar.br.
1 Universidade Federal de São Carlos, Departamento de Física
2 Universidade Federal de São Carlos , Departamento de Química

Seção de Choque, Etanol, Elétrons, Energia, Impacto.

Hilocluczo

No Brasil vem ocorrendo uma crescente produção e consumo de etanol, e conseqüente aumento de sua emissão na atmosfera, pela sua demanda como combustível alternativo ao petróleo. A identificação dos possíveis efeitos desta molécula e respectivos fragmentos no meio ambiente carece ainda de mecanismos de elucidação. A tentativa de entender e mitigar os efeitos desse composto depende ainda de vários tipos de estudos de natureza fundamental tais como formação de íons, radicais, reações íonmolécula, etc. As colisões entre elétrons e moléculas contribuem para formar espécies iônicas, excitadas e radicais livres atuantes e que são determinantes para as transformações químicas no meio. As seções de choque são então, importantes dados de entrada para este tipo de modelamento. Como um passo nessa direção serão medidos valores de Seção de Choque Diferencial Elástica (SCDE). A determinação de valores absolutos será feita pela aplicação da Técnica de Fluxos Relativos ${ }^{[1]}$ (TFR) e será utilizado como comparação teórica o Modelo dos Átomos Independentes ${ }^{[2]}$ (MAI).

Resulfrorose Discuscro

Utilizando o equipamento desenvolvido no DQ-UFSCar, realizam-se as medidas de espalhamento de elétrons em função dos ângulos. A figura a seguir mostra a curva da SCDE da interação $e^{-}-\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ em função dos ângulos de espalhamento $\left(\sim 3^{\circ}-130^{\circ}\right)$ com energia incidente de 500 eV e normalizada com o MAI.

Figura 1. Comparação de valores experimentais de SCDE do Etanol (Círculos pretos) que foram normalizadas ao MAI (Linha sólida) para energia de impacto de 500 eV .

Através da figura pode-se observar uma boa concordância quanto à tendência dos valores experimentais com o formato da curva teórica. Valores absolutos de SCDE serão obtidos e dados de SCDE para as demais energias de impacto (200-1000eV) serão mostrados no simpósio.

Colich lusedu

Os estudos realizados até o momento permitem concluir que há uma concordância qualitativa entre os valores experimentais e calculados pelo MAI. A avaliação quantitativa está em andamento e será discutida no simpósio.

P2. Aollabecminemios
FAPESP, CNPq e CAPES.

[^156]
QSAR MULTIVARIADO DE UM CONJUNTO DE COMPOSTOS COM ATIVIDADE ANTIMALÁRICA

Flávia da Silva Pereira (PG), Kerly Fernanda Mesquita Pasqualoto (PQ), Márcia Miguel Castro*. marcia@iqm.unicamp.br

Instituto de Química, Universidade Estadual de Campinas, CP 6154, 13083-970 Campinas - SP
Palavras Chave: Malária, Artemisinina, QSAR, PLS

1hill odimato

Segundo a Organização Mundial de Saúde (OMS), a malária tornou-se um problema de saúde publica em 90 países, nos quais cerca de 2,4 bilhões de pessoas, ou seja, cerca de 40% da população mundial convivem com os riscos de contágio. ${ }^{1}$ A OMS determinou prioritário o desenvolvimento de esquizonticidas sanguíneos de ação rápida, derivados da artemisinina (Fiqura1), ao tratamento da forma grave de malária e, também, ao controle de cepas multirresistentes de P. falciparum.

Figura1. Estrutura molecular da artemisinina.
Estudos de QSAR (Quantitative Structure Activity Relationships) relacionam estrutura e atividade de conjuntos de compostos, considerando descritores eletrônicos, hidrofóbicos e estéricos.O presente estudo tem como finalidade aplicar a metodologia QSAR a um conjunto de derivados da artemisinina. O fármaco de referência também foi incluído na análise.

RESUHEGOS E BHEULGSbo

Estudo preliminar foi realizado com 30 compostos, ensaiados sob um mesmo protocolo farmacológico. Os compostos foram desenhados considerando como referência as coordenadas da estrutura da artemisina (CSD versão 1.9). Os métodos empregados na otimização da geometria dos compostos foram mecânica molecular (MM+), semi-empírico (AM1) e nétodo Hartree-Fock, com os conjuntos de bases: HF/3-21G e HF/6-31G.

Os dados de atividade dos análogos foram obtidos atilizando a artemisinina como referência, ${ }^{2}$ a partir da seguinte relação:

Log Atividade Relativa (LogRA) $=$

Descritores estruturais (distância de ligação, àngulos de ligação e diedros), eletrônicos (HOMO, _UMO, cargas, polarizabilidade entre outros) e opológicos (Balabam, Randic entre outros) foram
calculados e utilizados como variáveis independentes na construção do modelo. O melhor modelo, construído com o conjunto de treinamento ($\mathrm{N}=24$), apresentou três variáveis latentes com $57,8 \%$ de informação total do sistema, valor de SEVC $=0,44$, Rval $=0,65$ e Rcal $=$ 0,81 . O modelo apresentou 3 amostras atípicas. O conjunto de validação externa ($\mathrm{N}=3$) apresentou um erro de previsão satisfatório, semelhante ao do modelo.

A seleção dos descritores foi realizada com base no coeficiente de regressão (programa PIROUETTE) ${ }^{3}$ e no significado físico de tais variáveis em relação à atividade biológica. Os descritores mais representativos ao modelo estão apresentados na equação abaixo:
$\operatorname{LogRA}=-0,24 \mu+0,61 \mathrm{Eel}+0,27 \mathrm{LUMO}-0,38 \pi \mathrm{R}$ $-0,35$ BALABAN $-0,39 \mathrm{nH}+0,26 \mathrm{qO} 1-0,26 \mathrm{q} \mathrm{C9}+$ 0,30 O3-C10-0,28 D(O1C9O3C10)

Considerando o modelo obtido, os descritores que contribuem favoravelmente à atividade são: Eel, LUMO, qO1 e O3-C1, que são descritores eletrônicos e estruturais (distância). Os demais são desfavoráveis à atividade do sistema investigado.

Como perspectiva, outros compostos serão incluídos no conjunto, além de outros descritores (descritores termodinâmicos), a fim de extrair informações mais relevantes. Além disso, outra metodologia de otimização na construção de modelos será empregada (algoritmo de aproximação da função genética, GFA, Genetic Function Approximation). ${ }^{4}$

O estudo preliminar forneceu modelo robusto, com destaque aos descritores eletrônicos e estruturais. O modelo final será construído com inclusão de novos compostos e descritores termodinâmicos. A metodologia de algoritmo genético (GFA) também será utilizada na otimização da construção dos modelos.

48lladealmenilos

Os autores agradecem ao CNPq e a FAPESP.

[^157]XIV Simpósio Brasileiro de Química Teórica (SBQT)
Interações de Prilocaína com Bicamadas de Fosfolipídios
Mónica Pickholz ${ }^{\mathrm{a}}{ }^{\mathrm{x}}(\mathrm{PQ})$, Leonardo Fernandes Fraceto ${ }^{\mathrm{a}, \mathrm{b}}(\mathrm{PQ})$, Eneida de Paula ${ }^{\mathrm{a}}(\mathrm{PQ})$
*monik@ifi.unicamp.br
${ }^{\text {a }}$ Departamento de Bioquímica, Instituto de Biologia I Universidade Estadual de Campinas, SP, Brazil.
${ }^{b}$ Departamento de Bioquímica, Universidade Estadual Paulista Júlio de Mesquita Filho, Sorocaba, SP, Brazil
Palavras Chave: Prilocaine, POPC, molecular dynamics, local anestethetics.
Figura 1: a) Estrutura da Prilocaina protonada e b)

milioduce:

Os anestésicos são substâncias capazes de induzir alívio de dor. Enquanto anestésicos gerais agem nas sinapses, os anestésicos locais (AL) atuam diretamente nos neurônios, interrompendo a transmissão do estímulo nervoso - e a sensibilidade à dor - entre terminações (nonciceptores) e o encéfalo. Por serem moléculas anfifificas, os anestésicos locais têm grande afinidade pela membrana celular. Assim, o estudo da interação de AL com biomembranas tem por finalidade entender o mecanismo de ação destes fármacos, para melhorar a eficácia dos mesmos e minimizar seus efeitos colaterais através do desenho racional de novos compostos com atividade anestésica ou através da veiculação (drug-delivery) de AL de uso consagrado utilizando, por exemplo, lipossomas. ${ }^{\text {. }}$
Neste trabalho, investigamos a interação da prilocaina (PLC), um anestésico local amplamente utilizado em odontologia, com membranas modelo de palmitoil-olei-fosfatidilcolina (POPC) mediante simulações de Dinâmica Molecular (DM).

hresillialor aligcurselo

A PLC é um anestésico local pertencente ao grupo das aminoamidas, possuindo um pKa de 7.9, assim a pH fisiológico pode se encontrar ambas formas a neutra e a protonada.

Inicialmente, realizamos otimizações de geometria da prilocaína neutra e protonada (vide Figura 1a), utilizando a Teoria de Funcional de Densidade (DFT) com o funcional B3LYP e a base 6$311 \mathrm{G}^{* *}$, que foram subsequentemente utilizados para as parametrizações dos potenciais intramoleculares. Para as simulações de DM é preciso conhecer as cargas parciais de cada um dos átomos da molécula. Com esse propósito, usamos métodos que produzem cargas atômicas parciais para ajustar o potencial eletrostático de acordo com o esquema de Merz-Singh-Kollman (MK), no nível de teoria HF/6-31G*.

Instantânea da bicamada de POPC (cinza) contendo PLC.

A seguir, realizamos simulações de DM de prilocaina em bicamadas de POPC onde tanto os lipídios, quanto a prilocaina e água foram levados em conta explicitamente. As estruturas iniciais foram construídas utilizando-se o pacote packmol. ${ }^{\text {ii }}$ O sistema consta de 198 lipídios, 5940 moléculas de água e 66 de PLC (vide Figura 1b). Investigamos os dois estados de ionização da droga para uma razão molar PLC:lipídio de 1:3.As simulações foram feitas a uma temperatura de 303 K usando o ensemble NPT. Foram calculadas diferentes propriedades estruturais e dinâmicas do sistema como parâmetros de ordem, perfil de densidade eletrônica, coeficiente de difusão dos lipídios, etc.

BUng1LSOLES

Os resultados indicam que a PLC protonada localizase predominantemente na interface cabeça polar de lipidio-água, enquanto que a PLC neutra insere-se mais profundamente na região hidrofóbica da bicamada.

AOradecimentos

A FAPESP pelo apoio financeiro.

[^158]
ESTUDO AB INITIO DA PEROVSKITA YTiO 3

Marcos Antonio Barros dos Santos ${ }^{1 *}$ (PG); Raimundo D. P. Ferreira ${ }^{1}$ (PG); Márcio S. Farias ${ }^{1}$ (PG); Jardel P. Barbosa ${ }^{1}$ (PG); Antonio F. de Figueiredo ${ }^{1}$ (PG); José C. Pinheiro ${ }^{1}$ (PQ); Oswaldo Treu-Filho ${ }^{2}$ (PQ); Rogério T. Kondo ${ }^{3}$ (PQ). E-mail: mbsantos@ufpa.br
1. Laboratório de Química Teórica e Computacional, Depto. de Química, UFPA, Belém - PA, Amazônia, Brasil.
2. Instituto de Química, Universidade Estadual Paulista - CP 335, 14800-900, Araraquara-SP, Brasil.
3. Secção de Suporte, Centro de Informática de São Carlos- USP, CP 13560-970, São Carlos - SP, Brasil.

Palavras Chave: Perovskita YTiO_{3}, Método CGHF, Efeito Piezoelétrico.
evidenciando que o íon Ti^{4+} não apresenta

FITOOMC
Em estudos anteriores, Pinheiro e Colaboradores ${ }^{1,2,3}$ investigaram o efeito piezoelétrico nas perovskitas $\mathrm{LaFeO}_{3}, \mathrm{LaNiO}_{3}$ e BaTiO_{3}. Neste trabalho aplicamos a teoria Hartree-Fock Roothaan (HFR) para investigar a piezoeletricidade em Titanato de İtrio $\left(\mathrm{YTiO}_{3}\right)$. Inicialmente, o método Coordenada Geradora Hartree-Fock (CGHF) foi utilizado como critério de escolha dos conjuntos de bases gaussianas estendidas para os átomos de Oxigênio (24 s 14 p), Titânio (30s19p14d) e Itrio (30s21p16d), todos no estado fundamental, e em seguida contraídos para $5 s 4 p$, 10s6p3d e 15s9p6d, respectivamente, a fim de calcular a energia total, $\varepsilon_{\text {номо }} \mathbf{e} \varepsilon_{\text {номо- }}$ dos fragmentos diatômicos ${ }^{2} \mathrm{TiO}^{1+}$ e ${ }^{1} \mathrm{YO}^{1+}$ afim de avaliar a qualidade dos conjuntos de bases em cálculos moleculares.

desubraios c DHEMESa

Os resultados obtidos para os conjuntos de bases estendidas para $\mathrm{O}\left({ }^{3} \mathrm{P}\right)$, $\mathrm{Ti}\left({ }^{3} \mathrm{~F}\right)$ e $\mathrm{Y}\left({ }^{2} \mathrm{D}\right)$ apresentam desvios de $1,90 \times 10^{-6}, 2,14 \times 10^{-5}$ e $3,80 \times 10^{-}$ ${ }^{2}$ hartree, respectivamente, quando comparados com os valores HF-Numérico. Os conjuntos de bases gaussianas contraídas em comparação com as bases estendidas apresentam diferenças de $2,76 \times 10^{-3}$, $4,80 \times 10^{-3}$ e $1,00 \times 10^{-2}$ hartree, respectivamente, evidenciando a qualidade dos conjuntos de bases.

A seguinte estratégia foi utilizada no trabalho: (1) Otimizou-se a geometria do fragmento $\left[\mathrm{YTiO}_{3}\right]$; (2) com a geometria do fragmento otimizada, cálculos "single point" para o Ti ${ }^{4+}$ nas posições a, b, c e d (corresponde ao encurtamento das ligações $\mathrm{Ti}_{1}-\mathrm{O}_{3}, \mathrm{Ti}_{1}-$ O_{4} e $\mathrm{Ti}_{2}-\mathrm{O}_{4}$ de $0,005 \AA$) foram desenvolvidos no nível HFR (Figura1). Este procedimento permite simular as condições necessárias para a existência do efeito piezoelétrico em perovskitas.

Os comprimentos de ligação em Angström dos fragmentos diatômicos ${ }^{2} \mathrm{TiO}^{1+}$ e ${ }^{1} \mathrm{YO}^{1+}$ obtidos pela otimização do YTiO_{3} estão de acordo com os valores experimentais reportados na literatura, pois apresentam desvios da ordem de $10^{-2} \AA$. No fragmento $\left[\mathrm{YTiO}_{3}\right]_{2}$, quando Ti^{4+} encontra-se nas
posições b ($1,11 \times 10^{-2}$ hartree) e c $\left(8,13 \times 10^{-3}\right.$ hartree), este é e mais estável do que na posição a,
centrossimetria.
Na Figura 1, quando Ti^{4+} sofre deslocamento da posição a para b, verifica-se a diminuição das cargas nos átomos $\mathrm{O}_{2}, \mathrm{O}_{3}$ e O_{5} e aumento nas cargas nos átomos $\mathrm{Ti}_{1}, \mathrm{Y}_{1}, \mathrm{Y}_{2}, \mathrm{O}_{1}$, O_{4} e O_{6}. Por outro lado, quando Ti^{4+} é deslocado de a para c, nota-se que a diminuição das cargas em $\mathrm{Y}_{2}, \mathrm{O}_{2}, \mathrm{O}_{3}, \mathrm{O}_{5}$ e O_{6} e um aumento de cargas nos átomos $\mathrm{Ti}_{1}, \mathrm{Y}_{1}, \mathrm{O}_{1}$ e O_{4}. Portanto, é razoavel supor que YTiO_{3} não apresenta propriedades piezoelétricas.

Figura 1: Fragmento octaédrico $\left[\mathrm{YTiO}_{3}\right]_{2}$

eoncmisers

Pelo estudo teórico do fragmento $\left[\mathrm{YTiO}_{3}\right]_{2}$, podemos sugerir que o material não apresenta o efeito piezoelétrico, pois ao ser submetido a um "stress" mecânico, não sofre polarização; além do ion Ti^{4+} não ser centrossimétrico.

CAPES/CNPq.

[^159]
INVESTIGAÇÃO COMPUTACIONAL DA PIEZOELETRICIDADE NA PEROVSKITA GdFeO_{3}

Marcos Antonio Barros dos Santos ${ }^{1 *}$ (PG); Antonio F. de Figueiredo ${ }^{1}$ (PG); José C. Pinheiro ${ }^{1}$ (PQ); Oswaldo Treu-Filho ${ }^{2}$ (PQ); Rogério T. Kondo ${ }^{3}$ (PQ). E-mail: mbsantos@ufpa.br
1. Laboratório de Química Teórica e Computacional, Depto. de Química, UFPA, Belém - PA, Amazônia, Brasil.
2. Instituto de Química, Universidade Estadual Paulista - CP 335, 14800-900, Araraquara-SP, Brasil.
3. Secção de Suporte, Centro de Informática de São Carlos- USP, CP 13560-970, São Carios - SP, Brasil.
Palavras Chave: Piezoeletricidade, Método CGHF, Perovskita GdFeO_{3}.

hiver mion

A aplicação da Química Computacional em Ciência dos Materiais é cada vez mais crescente em virtude da possibilidade de construir modelos para se fazer previsões do que ocorre em laboratório. Os compostos piezoelétricos têm atraído grande interesse por vários pesquisadores em virtude de oferecerem vantagens nas mais diversas aplicações tecnológicas. De uma forma geral o efeito piezoelétrico é a habilidade dos cristais em gerar uma tensão em resposta a um stress mecânico ${ }^{1,}$ 2

O objetivo deste trabalho é investigar o efeito piezoelétrico na perovskita GdFeO_{3} com ajuda da teoria Hartree-Fock Roothaan (HFR). O método Coordenada Geradora Hartree-Fock (CGHF) foi utilizado para construção de conjuntos de bases gaussianas 24s13p (O), 29s17p12d (Fe) e 32s22p16d10f (Gd) no estado fundamental, que foram posteriormente contraídos para $4 s 2 p$, 12s6p5d e 19s12p8d4f, e usados para estudar as propriedades eletrônicas em GdFeO_{3}

RHSUlleicros e Disolissao

Os resultados mostram que os conjuntos de bases estendidas para $\mathrm{O}\left({ }^{3} \mathrm{P}\right)$, Fe (${ }^{5} \mathrm{D}$) e Gd $\left({ }^{9} \mathrm{D}\right)$ são de excelente qualidade, pois apresentam desvios na energia de $2,95 \times 10^{-6}, 8,00 \times 10^{-5}$ e $1,58 \times 10^{-2}$ hartree, respectivamente, em relação aos valores Hartree-Fock Numérico.

Figura 1: Funções Peso para O, Fe e Gd
A Figura 1 mostra o gráfico das funções peso para as simetria $2 \mathrm{~s}(\mathrm{O})$, 3d (Fe) e $4 \mathrm{f}(\mathrm{Gd})$. As bases gaussianas contraídas quando comparadas com as bases estendidas apresentaram desvios de $2,32 \times 10^{-3}, 1,06 \times 10^{-3} \mathrm{e}$ $2,53 \times 10^{-1}$ hartree, respectivamente.

Para avaliação da qualidade das bases contraídas em cálculos moleculares, foram realizados cálculos da energia total e dos orbitais (HOMO e HOMO-1) nos fragmentos ${ }^{1} \mathrm{GdO}^{+}$e ${ }^{1} \mathrm{FeO}^{+}$, com estado eletrônico ${ }^{1} \Sigma_{\mathrm{g}}$, em nível HFR. Os resultados apresentaram desvios na ordem de 10^{-3} hartree, evidenciando a qualidade das bases contraídas em cálculos moleculares. Finalmente, os conjuntos de bases contraídos foram suplementados com funções de polarização e difusa para serem utilizados em cálculos moleculares para investigar a piezoeletricidade no fragmento $\left[\mathrm{GdFeO}_{3}\right]_{2}$ (Figura 2).

Figura 2: Fragmento GdFeO_{3}

2. . Wernchisores

As propriedades calculadas foram momento de dipolo, energia total e cargas atômicas, que ao serem analisadas evidenciaram que no fragmento $\left[\mathrm{GdFeO}_{3}\right]_{2}$ o íon Fe^{3+} apresenta a condição de não centrossimetria além de polarizar quando submetido a um "stress" mecânico. Portanto, é possível prever que a perovskita $\left[\mathrm{GdFeO}_{3}\right]_{2}$ apresenta o efeito piezoelétrico.

- Mriocermientos
 CAPES/CNPq.

[^160]
MOLECULAR DYNAMICS SIMULATION OF AR $\mathrm{N}_{\mathrm{N}} \mathrm{H}_{2} \mathrm{O}$ VAN DER WAALS COMPLEXES BASED ON A NONRIGID POTENTIAL SURFACE.

Emílio Borges (PG), Gilmar.G.Ferreira (PG), João.P.Braga* (PQ)
*jpbraga@ufmg.br

Departamento de Química - Instituto de Ciências Exatas (ICEx) Universidade Federal de Minas Gerais . Key Words: $\mathrm{Ar}_{n} \mathrm{H}_{2} \mathrm{O}$ van der Waals complexes, Molecular dynamics

lhfiou Vichom

Particular attention has been devoted to van der Waals complexes of molecular species bounded to rare-gas atoms since these species are prototypes for the description of weak chemical interactions ${ }^{1}$.
Unfortunately, the determination of geometries to intermediate systems presents a very complex problem in the cluster sciences since the number of local minima on the potential energy hypersurface grows exponentially with an increasing in the cluster
size, even for simple pair potentials.
In the present work, the stable structures and minima energies of $\mathrm{H}_{2} \mathrm{O}-\mathrm{Ar}_{\mathrm{n}}(\mathrm{n}=1-18)$ clusters are determined. Molecular vibrational relaxation effects are considered because a non-rigid intramolecular potential surface together with a pairwise-additive intermolecular potential are used in the simulation.

Resuls anic Discuisstoh

In a first step, the $\mathrm{H}_{2} \mathrm{O}$ molecule is centralized into a cubic box with edges of $14 \AA$. Cartesian coordinates for the first argon are randomly generated into this box. For each set of coordinates generated in the phase space, the potential energy is calculated. If another set of coordinates presents a lower energy potential energy, this configuration replace the before. A million different random configurations for the argon atom are tested in this process and the lower potential energy founded is recorded as a local minimum. The correspondent coordinates are taken as preliminary structure which is used in a second step as initial condition for the Hamilton equations that are integrated. The structure founded in the final of the integration corresponds to the global minima for the potential energy ${ }^{2}$. The minima structures for the Ar--- $\mathrm{H}_{2} \mathrm{O}$ van der Waals complexes are shown in figure 1. Also the size dependence for the atomic binding energy, presented in figure 2, shows the more stable structures for the system. A direct relation between symmetry and stability can be observed.

Figure 1. Structures for the $\mathrm{Ar}_{\mathrm{n}} \mathrm{H}_{2} \mathrm{O}$ clusters ($1 \leq n \leq 18$).

Figure 2. Size dependence for the atomic binding energy. The numbers show the most stable sizes for the $\mathrm{Ar}_{\mathrm{n}} \mathrm{H}_{2} \mathrm{O}(2 \leq n \leq 18)$ system.

concluelons

Stable structures and minima energies of $\mathrm{H}_{2} \mathrm{O}-$ $\mathrm{Ar}_{\mathrm{n}} \quad(\mathrm{n}=1-18)$ clusters are determined by performing a stochastic search method coupling to molecular dynamics simulations. Atomic binding energies are calculated for the molecular clusters and the more stable structures determined.

$\square A \operatorname{lnOMED}$

Financial Support: Capes /CNPq/FAPEMIG.

[^161]
AN INVERSION PROCEDURE APPLIED TO CONSECUTIVE KINETICS PROBLEMS

N. H. T. Lemes ${ }^{\text {a }}(\mathrm{PQ})$, E. Borges $^{\text {a }}{ }^{(P G), R . C . O ~ S e b a s t i a ̃ o ~}{ }^{\text {b }}$ (PQ),
R. P.G Monteiro ${ }^{\mathrm{b}}(\mathrm{PQ})$ and J. P. Braga ${ }^{a}{ }^{*}(\mathrm{PQ})$
*jpbraga@ufmg.br
${ }^{\text {a }}$ Departamento de Química - Instituto de Ciências Exatas (ICEx) Universidade Federal de Minas Gerais .
${ }^{\text {b }}$ Centro de Desenvolvimento da Tecnologia Nuclear -CDTN / CNEN
Campus da UFMG - Pampulha

Key Words: Inverse Problems, Consecutive Kinetics.
 experimental data is an inverse problem. The solution of an inverse problem determines unknown causes, based on observation of their effects. In contrast, the direct problem, involves finding effects based on an analysis of their causes. Inverse problems are ill-posed in the sense that one of three conditions; (i) existence, (ii) uniqueness and (iii) continuity with respect to experimental errors, is not satisfied and special techniques are required for their solution ${ }^{1}$. In the present work, a general procedure ${ }^{2}$ to solve inverse problems on artificial neural networks is applied to consecutive chemical kinetics. The method is simple, numerically stable and robust with respect to errors in the initial conditions or experimental data.

As a first application, rate constants are calculated from the product concentration for the hydrolysis mechanism of 2,7-dicyanonaphthalene, represented by the kinetic $A \xrightarrow{k_{1}} B \xrightarrow{k_{2}} C$. In a second analysis, half-life and decay rate constant for ${ }^{238} \mathrm{U}(\mathrm{n} \gamma) \rightarrow{ }^{29} \mathrm{U} \xrightarrow{\lambda_{h}}{ }^{239} \mathrm{~N} \mathrm{P} \xrightarrow{\lambda_{2}}{ }^{299} \mathrm{Pu} \xrightarrow{\lambda_{3}}$ were obtained from gamma activities simulated data. In the first example, a kinetic was studied and the inverted rate constants obtained are $\mathrm{k}_{1}=0.9855 \mathrm{~cm}^{3} . \mathrm{s}^{-1}$, $\mathrm{k}_{2}=0.1637 \mathrm{~cm}^{3} . \mathrm{s}^{-1}$. These values provide concentrations which are within experimental results, as presented in Fig. 1. Also, the results obtained by using these inverted rate constants are in better agreement than previous results ${ }^{3}$.

In nuclear reactions, simulated activity data were evaluated in the direct problem. From the ${ }^{239} \mathrm{Pu}$ activities data, the k_{3} rate constant was retrieved as $k_{3}=9.1584 \times 10^{-13} \mathrm{~s}^{-1}$, that was exactly the constant used to generate the simulated data. The present method was robust either with random experimental and simulated noise or initial conditions deviation. Therefore, the stability of the method allows optimization of values with large

Figure 1. Experimental (dashed line) and inverted (circle) concentration for the 2,7 dicyanophtalene

Conerusions

A method based on artificial neural networks has been used to solve the inverse kinetic problem. Firstly, rate constants from the product concentration for the hydrolysis mechanism of 2,7dicyanonaphthalene were calculated. Secondly, half-life and decay rate constant for daughter nuclides of uranium 239 were obtained from gamma activities simulated data. This method does not require analytical solutions for the differential kinetics equations and can be used for any set of differential equations

AC. Wiower Fing

Financial Support: CNPq/FAPEMIG.

[^162]
THEORETICAL STUDY OF THE REACTION $N F+F=\mathbb{N}+F_{2}$

 Simone Souza Ramalho ${ }^{1}(\mathbb{P G})^{*}$, Patrícia R. P. Barreto ${ }^{2}(\mathbb{P Q})$, and Ricardo Gargano ${ }^{1}(\mathbb{P Q})$.${ }^{1}$ Instituto de Fisica, Universidade de Brasilia, CP 04455, Brasilia - DF, CEP 70.919-970, Brasil.
${ }^{2}$ Laboratório Associado de Plasma - LAP, Instituto Nacional de Pesquisas Espaciais - INPE/MCT, CP515, São José dos Campos, SP, CEP 12247-970, Brazil.
simone@fis.unb.br.
Palavras Chave: nitrogen trifluoride, Transition State Theory, rate constant.

THMOMTIOMOM

The title reaction belongs to a set of 1012 other reactions that compose a kinetic mechanism developed to describe the growth of boron nitride thin films. The rate constants for 117 elementary reactions were obtained from experimental/theoretical reference data and those for the other 895 reactions should be estimated using Transition State Theory (TST).

In this work we present the rate constants, with the Wigner and Eckart tunneling corrections, and the minimum energy path (MEP) calculated with our own code ${ }^{1}$ for these gas-phase reactions, over the temperature range of $200-4000 \mathrm{~K}$, as shown in figure 1.

Results anc DIGCulion

The information about equilibrium geometries, frequencies, and the potential energy for reactants, saddle point and products were obtained from accurate electronic structure calculation. All calculation were performed using GAUSSIAN98 computational code at secondorder Mфller-Plesset (MP2) level with the MP2/ccpVDZ basis set for the geometries optimization. A range of sixteen basis sets was used to perform high level calculation for the energy, potential barriers and enthalpies of this reaction. The geometry of the TS is shown in figure 1.

The rate constants for the abstraction reaction $N F+F=N+F_{2}$ calculated in the temperature range $200-4000 \mathrm{~K}$ at MP4/cc-PVTZ as shown in figure 2.

The ab initio heat of reaction is compared with the one calculated using the experimental heat of formation ${ }^{1}$ for the reactants and products of the reaction $N F+F=N+F_{2}(\Delta H=36,1312 \mathrm{kcal} / \mathrm{mol})$. The difference between the experimental and the calculated enthalpy is $2,3288 \mathrm{kcal} / \mathrm{mol}$ at MP4/cc$p V T Z$ level is shown in figure 2.

Figure 1. Saddle point of the $N F+F=N+F_{2}$ reaction.

Figure 2. MEP and rate constants for the $N F+F=N+F_{2}$ abstraction reaction.

Tomichislons

The species involved in the NF +F reaction had all frequencies and geometries determined at MP2/cc-pVDZ basis set. The energies, barries of energies and enthalpies were calculated in higher levels of calculations and basis sets, as described before.

According to our studies the $\mathrm{NF}+\mathrm{F}=\mathrm{N}+\mathrm{F}_{2}$ reaction appears as an endothermic reaction. The conventional TST rate constants, with Wigner and Eckart tunneling corrections, were calculated using the energies at MP4/cc-pVTZ level.

The authors acknowledge to CNPq and FINATEC for the financial support and CENAPAD for the computational apparatus.

[^163]
CÁlculo das Constantes Espectroscópicas dos Sistemas Diatômicos CH, CN e NH Via Ajuste de Curvas de Energia Potencial.

Fábio V. Moura (PG)*, Alessandra F. A. Vilela(PQ), Ricardo Gargano (PQ)
fabiomoura@fis.unb.br
Instituto de Física, Universidade de Brasilia, CP 04455, Brasilia - DF, CEP 70.919-970, Brasil.
Palavras-Chave: curva de energia potencial, constantes espectroscópicas vibracionais, sistemas diatômicos.

Initoducâo

Dentro da aproximação de Born-Oppenheimer $(\mathrm{ABO})[1]$, a solução da equação de Schrödinger da parte eletrônica fornece, entre outras propriedades, a energia potencial para cada configuração nuclear, a chamada Superficie de Energia Potencial (SEP), que influencia no movimento dos núcleos, tornando-a assim, a responsável direta pela dinâmica molecular. Dentro desta aproximação, a solução da equação de Schrödinger nuclear só pode ser resolvida se conhecermos primeiramente a SEP do sistema. Neste trabalho, são apresentados os ajustes realizados para as curvas de energia potencial (CEP) dos sistemas diatômicos CH, CN e NH necessários, dentro da metodologia MBE[1], para a construção da SEP da reação $\mathrm{H}+\mathrm{CN} \rightarrow \mathrm{N}+\mathrm{CH}$ (ou $\mathrm{H}+\mathrm{CN} \rightarrow \mathrm{C}+\mathrm{NH}$). Para que a SEP desta reação seja ajustada com uma qualidade aceitável é necessário que as CEPs ajustadas reproduzam, da melhor forma possível, as energias e as constantes espectroscópicas rovibracionais dos diátomos CH, CN e NH . Com o ajuste da SEP da reação $\mathrm{H}+\mathrm{CN}$, pode-se determinar as propriedades cinéticas e dinâmicas deste processo colisional reativo. Este estudo é de muito interesse no campo da química de combustão, da atmosfera, da química dos plasmas e química interestelar[2].

Resultalos e Disolissâo

As equações de Schrödinger eletrônica dos sistemas CH, CN e NH foram resolvidas, para várias configurações nucleares indo da região de forte interação até a de dissociação do sistema, utilizando vários níveis de cálculo e bases diferentes. Para ajustar tais energias para uma forma analítica, para todos os sistemas em estudo, foram utilizados polinômios em coordenadas Bond Order (BO) e a função generalizada de Rydberg (Ryd)[1], para vários graus diferentes. Para testar a qualidade destes ajustes, foram calculadas as energias e as constantes espectroscópicas rovibracionais dos sistemas CH, CN e NH. Para o sistema CH , os melhores resultados encontrados para as energias e constantes espectroscópicas rovibracionais foram obtidos usando o nível de cálculo $\operatorname{QCISD}(T)$ e as bases $6311++G(3 d 2 f, 3 p 2 d)$, aug-cc-pvdz e aug-d-cc-pvdz. As melhores energias e constantes espectroscópicas rovibracionais encontradas para o sistema CN foram
obtidas usando o nível de cálculo QCISD(T) e as bases $6-311++G(3 d 2 f, 3 p 2 d)$, aug-cc-pvdz e aug-d-cc-pvdz. Os níveis de cálculo e bases QCISD/aug-cc-pvdz e CCSD/aug-d cc-pvdz foram os que melhores descreveram as energias e as constantes espectroscópicas rovibracionais do sistema NH. As energias rovibracionais, obtidas a partir dos ajustes das CEPs dos sistemas CH, CN e NH , foram determinadas resolvendo a equação de Schrödinger nuclear.

Gonclisocs

Para o sistema CH , os melhores valores encontrados paras as constantes espectroscópicas we e wexe foram de $2858.2 \mathrm{~cm}^{-1}$ e $58.6 \mathrm{~cm}^{-1}$, respectivamente. As diferenças destes valores com os resultados experimentais[3] foram de $0.3 \mathrm{~cm}^{-1}$ e $5.6 \mathrm{~cm}^{-1}$, respectivamente. Para o sistema CN , os melhores valores encontrados foram de $2065.6 \mathrm{~cm}^{-1}$ para we $10.3 \mathrm{~cm}^{-1}$ para wexe. As diferenças destes resultados com os experimentais[3] foram, respectivamente $3.03 \mathrm{~cm}^{-1}$ e $2.77 \mathrm{~cm}^{-1}$. No caso do sistema NH , o melhor valor encontrado para we foi de $3299.6 \mathrm{~cm}^{-1}$ e de $70.7 \mathrm{~cm}^{-1}$ para wexe. As diferenças destes resultados em relação aos experimentais[4] foram de $0.39 \mathrm{~cm}^{-1}$ e de $7.6 \mathrm{~cm}^{-1}$, respectivamente. Estes resultados mostram-se condizentes com os resultados experimentais encontrados na literatura. Desta forma, os ajustes realizados para os sistemas CH, CN e NH podem ser utilizados para determinar, via método MBE, as energias eletrônicas do termo de três corpos da SEP da reação $H+C N$. O passo seguinte será o ajuste destas energias para uma forma analítica com o intuito de determinar finalmente a SEP que descreve o sistema colisional reativo $\mathrm{H}+\mathrm{CN}$.

Alolracolecimentos

Ao CNPq pelo suporte financeiro.
[1] J.N.Murrel,S.Carter,S.C.Farantos, P.Huxley,A.J.C. Varandas, Molecular potential energy functions. Wiley (1984).
[2] Colbert, D. T. e Miller, W. H. (1992). J. Chem. Phys., 96 (3), 1982. [3] A.A. Radzig and B.M. Smirnov. Reference Data on Atoms, Molecules, and Ions. Moscow (1980).
[4] G. Herzberg, Molecular Spectra and Molecular Structure I. Spectra of Diatomic Molecules. Van Nostrand Reinhold Company, New York, second edition, 1950.

TORSIONAL PROFILE OF 2,2,2-TRIFLUOROETHANOL: THEORETICAL ANALYSIS WITH BASIS SET EXTRAPOLATION.

Mauro Barbosa de Amorim (PQ). mbamorim@nppn.ufrj.br
Núcleo de Pesquisas de Produtos Naturais - Centro de Ciências da Saúde - Bloco H - UFRJ - 21941-590 - Rio de Janeiro - RJ.

Palavras Chave: 2,2,2-trifluoroethanol, torsional profile, MP2, basis-set extrapolation.

Phinoorghon

In spite of the theoretical (MP4(SDQ)/cc$\mathrm{pVTZ} / / \mathrm{MP} 2 / \mathrm{cc}-\mathrm{pVTZ}$) prediction of two conformers for 2,2,2-trifluoroethanol (TFE), a more stable (by $1,95 \mathrm{kcal} / \mathrm{mol}$) cis-gauche one (1, Figure 1) and another of trans geometry (2), there is no experimental consensus either with respect to the existence of the trans conformer or with respect to the energy difference between them. ${ }^{1}$ This conflict may result from the incompleteness of basis sets used in the ab initio calculations.

So, we present here the results of a study that involves calculating (at MP2 level) the conformational profile of TFE with two sequences of Dunning correlation consistent n-tuple basis sets, $c c-p \vee n Z$ and aug-cc-pVnZ ($n=\mathrm{D}, \mathrm{T}, \mathrm{Q}$), and extrapolating the energies to the basis set limit. ${ }^{2}$

RHSUlis cillacussion

The torsional potentials were calculated by regular increases of the dihedral angle $\theta_{\text {Hocc }}$ from 0° to 180°, in increments of 10° and fully optimizing the remaining $3 \mathrm{~N}-7$ degrees of freedom at MP2 level. The cis-gauche (1) and trans (2) conformer geometries were then fully optimized without restrictions. The lower energy (circa 140°) transition structures (TS) between the conformers were calculated through the QST3 (STQN) method of Gaussian03 package. Finally, the stationary point energies ($0^{\circ}, 1, \mathrm{TS}$ and 2) were calculated at extrapolated basis-set limit using the power method of Helgaker et al. ${ }^{2}$, as implemented by SanchoGarcia and Pérez-Jiménez. ${ }^{3}$

The results, summarized in the following tables,
Table 1. Dihedral angles $\theta_{\text {Hocc }}\left({ }^{\circ}\right)$

	cc-pVDZ	cc-pVTZ	cc-pVQZ
1	61.2	64.0	64.9
TS	141.8	145.5	147.2

Table 2. Dihedral angles $\theta_{\mathrm{HOcc}}\left({ }^{\circ}\right)$

	AUG-cc- pVDZ	AUG-cc- pVTZ	AUG-cc- pVQZ
1	64.5	65.3	64.9
TS	144.2	149.1	148.5

Table 3. Energy changes ($\mathrm{kcal} / \mathrm{mol}$)

	cc-pVDZ	cc-pVTZ	cc-pVQZ
$\bullet E_{1}{ }^{\circ}$	2.85	2.28	2.28
$\bullet E_{2}{ }^{\circ}$	2.68	2.19	1.99
E_{3}	2.51	2.10	1.91
$\bullet E_{4}{ }^{\circ}$	0.17	0.09	0.08

Table 4. Energy changes ($\mathrm{kcal} / \mathrm{mol}$)

	AUG-cc- pVDZ	AUG-cc- pVTZ	AUG-cc- pVQZ
$\odot E_{1}{ }^{\circ}$	2.44	2.26	2.28
$\odot E_{2}{ }^{\circ}$	2.06	1.95	1.95
$\odot E_{3}$	1.92	1.90	1.88
$\odot E_{4}{ }^{\circ}$	0.14	0.05	0.06

Table 5. Basis-set extrapolated energy changes (kcal/mol)

	cc-pVDZ/cc-pVTZ	cc-pVTZ/cc-pVQZ
$\bullet E_{1}{ }^{\circ}$	2.13	2.26
$\odot E_{2}{ }^{\circ}$	1.96	1.93
$\odot E_{3}$	1.88	1.86
$\odot E_{4^{\circ}}$	0.08	0.07

show that the correct description of 1 and TS geometries and of the energy changes needs at least basis of quadruple zeta quality.

```
Conc|usionS
```

The correct description of the torsional profile of TFE needs, at MP2 level, basis sets of, at least, quadruple zeta quality.

[^164]Figura 1. Conformational profile of TFE (θ_{HOCC}).

ESTUDO TEÓRICO DO POTENCIAL DE TORÇÃO DE ESTIRENOS: ESTIRENO E PARA-HIDROXI-ESTIRENO.

Fabio L. P. Costa $^{1}(\mathrm{PG})^{*}$, Mauro B. de Amorim ${ }^{2}$ (PQ)

1- Universidade Federal do Rio de Janeiro CCS- NPPN flpcosta@nppn. ufri.br
2- Universidade Federal do Rio de Janeiro CCS NPPN
Palavras Chave: anáise coformacional, estirenos, CCSD, aug-cc-pvtz

Abstract

ThITOMCDO Núcleos aromáticos conjugados a sistemas olefinicos têm ocorrência praticamente ubíqua em produtos naturais (estilbenos, flavonoides, etc). Assim, suas propriedades físico-químicas são assuntos de vários trabalhos teóricos ${ }^{1}$ e experimentais. No presente trabalho foram estudas as moléculas de estireno e para-hidroxiestireno, que representam as moléculas mais simples onde há essa conjugação. Este estudo teve como objetivo, utilizando cálculos teóricos de alta qualidade, esclarecer as dúvidas sobre a possível planaridade desses sistemas, determinar as barreiras energéticas entre os confôrmeros, bem como a influência do substituinte hidroxila.

RGSULTHOS DHEMSSaO

Em primeira etapa as geometrias de ambas moléculas foram otimizadas com restrição do ângulo de torção (ϕ) entre a ligação C-C que une o sistema oléfinico ao aromático de maneira a obter o perfil de energia potencial para esta coordenada. Seguiram-se os cálculos de otimização sem qualquer restrição de geometria dos pontos próximos aos mínimos locais para determinação das barreiras energéticas. Foram utilizados cálculos em nível MP2, CCD e CCSD com bases consistentes "por correlação (correlation consistent) cc-pVnZ ($\mathrm{n}=\mathrm{D}, \mathrm{T}$). As tabelas 1 e 2 mostram que tanto para a molécula de estireno quanto para a molécula de $p-\mathrm{HO}-$ estireno à medida que se aumentou a qualidade da base há tendência à planaridade e a diminuição da barreira rotacional entre o ponto de mínimo e estrutura da molécula plana $\left(\Delta E_{1}\right)$. Notou-se também um aumento da barreira para perda absoluta da conjugação $\left(\Delta E_{2}\right), \phi=90$, como mostra a tabela 3.

Tabela 1. Ângulo ϕ (em graus) para as estruturas de mínimo otimizadas sem restrição de geometria.

	ϕ (em graus)	
	Estireno	p-OH-estireno
MP2/cc-pVDZ	18,50	13,58
MP2/aug-c-pVDZ	0	0
MP2/cc-pVTZ	14,99	9,8
CCD/cc-pVDZ	17,09	11,39
CCSD/cc-pVDZ	15,27	7,5

Tabela 2. Dependência da barreira $\Delta \mathrm{E}_{1}$ (em $\mathrm{kcal} / \mathrm{mol}$) com o nível de cálculo.

	$\Delta E_{1}(\mathrm{em} \mathrm{kcal} / \mathrm{mol})$	
	Estireno	p -OH-estireno
MP2/cc-pVDZ	0,050	0,003
MP2/aug-c- pVDZ	0,000	0,000
MP2/cc-pVTZ	0,029	0,005
CCD/cc-pVDZ	0,033	0,007
CCSD/cc-pVDZ	0,023	0,001

Tabela 3. Dependência da barreira ΔE_{2} (em $\mathrm{kcal} / \mathrm{mol}$) com o nível de cálculo

	$\Delta E_{2}(\mathrm{em} \mathrm{kcal} / \mathrm{mol})$	
	Estireno	p -OH-estireno
MP2/cc-pVDZ	3.106	3,319
MP2/aug-c- pVDZ	3,219	3,447
MP2/cc-pVTZ	3,468	3,692
CCD/cc-pVDZ	2,724	2,877
CCSD/cc-pVDZ	2,756	2,947

Conchisors

Os cálculos realizados mostram que:
As moléculas de estireno e de p-HOestireno apresentam suas estruturas de mínimo com o ângulo ligeiramente diferente de $\phi=0$, cuja barreira é aproximadamente 0,03 e $0,001 \mathrm{kcal} / \mathrm{mol}$, respectivamente.
As barreiras $\Delta \mathrm{E}_{1}$ e $\Delta \mathrm{E}_{2}$ são sensíveis ao método e a base.
A hidroxila auxilia na planalização da molécula de p-HO-estireno e aumenta a barreira $\Delta \mathrm{E}_{2}$.

124.

Ao Interlab-UFRJ pelo apoio computacional e ao CNPQ pelo suporte financeiro.
${ }^{\prime}$ S.-Garcia, J. C; P.-Gimenez, A. J., Phys B: At. Mol. Opt. Phy. 35, 1509, 2002.

SIMULAÇÃO TEÓRICA DE ESPECTROS DE ABSORÇÃO ELETRÔNICA NA REGIÃO DO ULTRA VIOLETA E DO VISÍVEL DE PRODUTOS NATURAIS DE INTERESSE TECNOLÓGICO. I= ESTIRENO

Fabio L. P. Costa $^{1}(\mathbb{P G})^{*}$, Gunar V. da Mota (PQ) ${ }^{2}$, Marcos M. R. Chagas(IC) ${ }^{2}$,Mauro B. de Amorim ${ }^{1}(\mathbb{P Q})$
Universidade Federal do Rio de Janeiro CCS- NPPN flpcosta@nppn.ufri.br Universidade Federal de Sergipe NUCEM-CCET
Palavras Chave: , Espectro de Absorção, estireno, TD-DFT

Abstract

O estireno (vinil-benzeno), que ocorre naturalment com baixos teores em vegetais, bebidas e carnes possui inúmeras aplicações industriais e tecnológicas. O espectro eletrônico de sua molécula tem sido objeto de vários estudos teóricos e experimentais, posto que é o mais simples sistema no qual há uma conjugação entre sistemas π aromático e olefínico. O conhecimento das transições eletrônicas desta molécula pode ser utilizado como base para estudo de espectroscopia eletrônica em sistemas similares que apresentem maior complexidade. Assim, iniciamos um estudo que busca descrever por meio de cálculos teóricos em diferentes níveis de teoria a relação entre comprimento de onda e intensidade de absorção com a planaridade da estrutura molecular. Nesta etapa do estudo, foi utilizado um nível de teoria com baixo custo computacional e com boa reprodução de dados experimentais.

As geometrias foram otimizadas em nível B3LYP/6$31 \mathrm{G}(\mathrm{d})$ com restrição do ângulo de torção (τ) entre a ligação C-C que une o sistema olefinico ao aromático de maneira que este variasse em passos de 10, de 0 a 90 graus. Este nível de cálculo reproduziu adequadamente os parâmetros geométricos experimentais da molécula de estireno, cuja geometria de equilibrio é representada pela estrutura plana ou quase plana ${ }^{1}$. Nossos cálculos indicam o anglo de diedro (τ) entre a olefina e o anel benzênico igual a 0° como mínimo global e o de 90° como o máximo de energia. Para a simulação dos espectros de absorção eletrônica utilizou-se a Teoria do Funcional de Densidade Dependente do Tempo (TD-DFT), com o mesmo funcional e base, nas geometrias anteriormente otimizadas. O valor de $\lambda_{\max }$ experimental ${ }^{2}$ observado no espectro de UV é de 244 nm , resultante da conjugação dos sistemas π do anel benzênico com o da olefina, ambos com transições $\pi-\pi^{*}$, o nível TD-B3LYP/6$31 \mathrm{G}(\mathrm{d})$ reproduziu adequadamente o $\lambda_{\max }(241,5 \mathrm{~nm})$ para o mímino global. Nossos resultado mostram que, neste nível de teoria, à medida que a molécula de estireno perde a conjugação as transições eletrônicas principais sofrem um deslocamento hipsocrômico acompanhado da diminuição da intensidade de absorção, que pode ser entendido como diminuição da força do oscilador (f), como mostra a Tabela 1.
Tabela 1. Relação entre variação de τ com a diminuição do $\lambda_{\max }$ responsável pela banda principal do
espectro de UV-VIS da molécula de estireno e a força do oscilador (f).

τ (graus)	$\lambda_{\max }(\mathrm{nm})$	f
0	241,5	0,35
10	240,9	0,35
20	239	0,36
30	236,2	0,36
40	232,2	0,36
50	227,46	0,31
60	222,36	0,24
70	216,65	0,16
80	213,56	0,07
90	205,17	0,00

Quando τ é 80° observa-se que a transição é praticamente proibida e em τ igual a 50° os valores $\lambda_{\text {max }}(187,04 \mathrm{~nm} \mathrm{f}=0,3047$ e $162,58 \mathrm{~nm} \mathrm{f}=0,2731$) se aproximam dos correspondentes aos $\lambda_{\text {max }}$ da absorção da banda E_{1} do anel benzênico (180 nm) e a banda de absorção da olefina (165 nm). Em 90° os valores de $\lambda_{\text {max }}$ indicam que não há mais conjugação na molécula de estireno.

3- Embora utilizado métodos de cálculo teórico de baixo custo computacional, foi possível reproduzir o $\lambda_{\text {max }}$ experimental.
4- Observar a perda de conjugação do molécula de etileno de maneira satisfatória.
5- Percebeu-se que valores de próximos a 20° possuem valores de $\lambda_{\text {max }}$ dentro do erro experimental.

Ao CNPQ pelo suporte financeiro.
${ }^{1}$ S. K. Ritter, Chemical \& Engineering News, 19 March 2007, p. 46
${ }^{2}$ S.-Garcia, J. C; P.-Gimenez, A. J., Phys B: At. Mol. Opt. Phy. 35, 1509, 2002.

ESTUDO TEÓRICO DA REAÇÃO DE NITRAÇÃO DO METANO PELO NITRATO DE FORMILA CATALISADA POR H-ZSM5

Alexander Martins da Silva* (PQ), Marco Antonio Chaer Nascimento (PQ) alex@iq.ufrj.br

Instituto de Química, Departamento de Físico-Quimica, Universidade Federal do Rio de Janeiro, CT Bloco A, Sala 412, Cidade Universitária, RJ 21949-900.

Palavras Chave: zeólitas, cálculos DFT, isobutano,

Atualmente, a compreensão e elucidação dos mecanismos de reações de transformação de hidrocarbonetos catalisadas por zeólitas têm sido alvo de vários estudos teóricos, principalmente as reações de desidrogenação, craqueamento e isomerização de alcanos. Entretanto, pouca atenção tem sido dada a reação de nitração de alcanos, tanto do ponto de vista teórico quanto experimental. A possibilidade de substituir os agentes nitrantes tradicionais, altamente poluidores, por um catalisador facilmente regenerável e não poluidor, seria de grande interesse tecnológico e ambiental. Neste trabalho, apresentamos os resultados para a reação de nitração do metano pelo nitrato de formila $\left(\mathrm{HCOONO}_{2}\right)$, catalisada pela zeólita $\mathrm{H}-\mathrm{ZSM} 5$.
Os cálculos foram realizados empregando-se o funcional de densidade X3LYP e a base 6-31G**. A metodologia MP2 foi empregada para se obter valores mais acurados das energias de adsorção das moléculas de metano na zeólita. O sítio ácido da zeólita H -ZSM5 foi representado pelo aglomerado modelo 20T, composto de 19 átomos de silício e um átomo de alumínio dispostos em dois anéis paralelos.

Na etapa de adsorção dos reagentes na cavidade zeolítica, observa-se que o nitrato de formila forma um complexo de adsorção com a zeólita, através da interação entre o átomo de oxigênio ligado ao grupo nitro e o próton do sítio ácido. Através desta conformação é possível uma evolução ao estado de transição da primeira etapa da reação de nitração, o que não ocorreria caso o nitrato de formila se adsorvesse pelo átomo de oxigênio do grupo carbonila. A estrutura do primeiro estado de transição envolve a migração do próton do sítio ácido na direção do nitrato de formila e, simultaneamente, a separação do fragmento NO_{2}. Este fragmento possui caráter semelhante ao de um ion nitrônio $\left(\mathrm{NO}_{2}{ }^{+}\right)$. Entre as duas etapas deste mecanismo, essa espécie apresenta carga fracionária em torno de $+0,30$ e ângulo ONO de aproximandamente 150°. Este estado de transição evolui para um intermediário consistindo do ácido fórmico recém formado, adsorvido à zeólita, e o fragmento livre $\mathrm{NO}_{2}{ }^{+}$.
metano, reação de troca, complexo de adsorção. A estrutura do segundo estado de transição é mostrada na Figura 1. O ataque do grupo nitro ao átomo de carbono do metano é seguido pelo estiramento de uma de suas ligações C-H. As demais ligações C-H estão aproximadamente no mesmo plano. A partir dessa estrutura ocorre a migração de um próton do metáno à zeólita, restaurando assim o seu sítio ácido, e a formação do produto de interesse, o nitrometano.

Figura 1. Estado de transição para a etapa de ataque do grupo nitro à molécula de metano.

C, णhiclusores

Neste trabalho, a reação de nitração do metano pelo nitrato de formila catalisada por H-ZSM5 foi investigada, segundo a metodologia DFT/X3LYP. Esta reação consiste de duas etapas: protonação do nitrato de formila para a formação do fragmento NO_{2}, com caráter de íon nitrônio; ataque do fragmento NO_{2} à molécula de metano, para formar o nitrometano com simultânea restauração do sítio ácido da zeólita.

7VHEDectimentos

CNPq, FAPERJ, PRONEX e Instituto do Milênio de Materiais Complexos pelo suporte financeiro.

ESTUDO TEÓRICO DA NATUREZA DO COMPLEXO DE ADSORÇÃO ENTRE ISOBUTANO E H-ZSM5

Alexander Martins da Silva* (PQ), Ivan Milas (PQ), Marco Antonio Chaer Nascimento (PQ)
alex@iq.ufrj.br
Instituto de Química, Departamento de Físico-Química, Universidade Federal do Rio de Janeiro, CT Bloco A, Sala 412, Cidade Universitária, RJ 21949-900.
Palavras Chave: zeólitas, cálculos DFT, isobutano, metano, reação de troca, reação de nitração.

de energia de adsorção são suficientes para concluir se o complexo envolve o carbono terciário ou o primário da molécula de isobutano.
As energias de ativação aparente para as reações de troca ocorrendo nos centros primários e terciários são de 23.1 e $20.6 \mathrm{kcal} / \mathrm{mol}$, respectivamente. Para o metano esse valor de energia de ativação aparente é de $28.4 \mathrm{kcal} / \mathrm{mol}$, valor em bom acordo com as estimativas experimentais ${ }^{4}$ de $29.2-31.3 \mathrm{kcal} / \mathrm{mol}$. Esses resultados indicam, como esperado, uma maior energia de ativação para a reação de troca do metano quando comparada à reação do isobutano. Entretanto, a diferença prevista nas energias de ativação está entre $5.3 \mathrm{kcal} / \mathrm{mol}-7.8$ $\mathrm{kcal} / \mathrm{mol}$, um valor muito menor do que aquela obtida a partir de resultados experimentais. Os resultados experimentais sugerem uma energia de ativação quase duas vezes maior para o metano, o que é de difícil entendimento se levarmos em conta a semelhança dos estados de transição e a pequena diferença nas energias de ligação $\mathrm{C}-\mathrm{H}$, no metano e no isobutano.

Condeluselas

Neste trabalho investigamos as reações de troca de metano e isobutano catalisadas por H-ZSM5. Os resultados teóricos confirmam a formação de complexos específicos entre os substratos e a zeólita e também que a zeólita é suficientemente ácida para ativar a ligação $\mathrm{C}-\mathrm{H}$. Entretanto, nem os dados de RMN nem os de energia de adsorção são suficientes para garantir que a reação se passa somente através dos centros primários.

CNPq, FAPERJ, PRONEX e Instituto do Milênio de Materiais Complexos pelo suporte financeiro.

[^165]
SIMULAÇÃO DINÂMICA MOLECULAR DA INTERCONVERSÃO ENTRE AS CONFORMAÇÕES A E B DO DNA.

Clarisse Gravina Ricci ${ }^{1}(\mathrm{IC})$, Paulo Augusto $\mathrm{Netz}^{1}(\mathrm{PQ})^{*}$. netz@iq.ufrgs.br.

(1) Instituto de Química, UFRGS

Palavras Chave: Dinâmica Molecular, DNA, conformações A e B do DNA.

O ácido desoxirribonucléico é uma macromolécula de grande importância biológica, pois é o reservatório molecular da informação genética. Por ser rico em ligações de hidrogênio e em grupamentos carregados, o DNA é difícil de ser simulado computacionalmente, exigindo escolha criteriosa do campo de força utilizado. Além disso, o DNA pode adotar mais de uma conformação. Em condições fisiológicas, o DNA costuma adotar a conformação B, no entanto, fatores ambientais e estruturais podem induzir a transição conformacional para a forma A do DNA (mais achatada e de maior diâmetro). Está bem estabelecido que algumas seqüências são propensas a adotar determinadas conformações: seqüências ricas em guanina e citosina tendem a favorecer a conformação A, enquanto seqüências ricas em timina e adenina tendem a estabilizar a conformação $B^{1,2}$. As alterações que as transições conformacionais provocam na estrutura do DNA podem ser importantes durante a interação do DNA com outras moléculas, incluindo fármacos e proteínas.

Resill Pose liscussalo

Utilizando o módulo fiber do programa X3DNA ${ }^{3}$, foram gerados dodecâmeros de seqüências (dC-dG) $)_{6}$ ou (dA-dT) ${ }_{6}$ tanto na conformação B como na conformação A. As simulações foram realizadas com o pacote $G R O M A C S^{4}$, utilizando o campo de força $53 A 6^{5}$. Os dodecâmeros foram solvatados em solução fisiológica e simulados por $1,5 \mathrm{~ns}$. Após as simulações, as estruturas iniciais e finais foram submetidas à análise pelo programa X3DNA, para comparação da geometria dos pares de bases. Observou-se que o dodecâmero (dC-dG) ${ }_{6}$ que iniciou na conformação B , convergiu parcialmente para a conformação A. O oposto ocorreu com o dodecâmero (dA-dT) ${ }_{6}$, o qual transformou-se parcialmente da conformação A para a conformação B. Quando partindo das conformações mais estáveis (A para o dodecâmero $\mathrm{d}(\mathrm{C}-\mathrm{dG})_{6}$ e B para o dodecâmero (dA$d T)_{6}$), houve manutenção de conformação.

Figura 1. Dodecâmero (dC-dG) $)_{6}$ exibindo transição de B (esquerda) para A (direita). Revremonclusors

Observou-se uma propensão do dodecâmero (dCdG) ${ }_{6}$ para adotar a conformação A e uma propensão do dodecâmero (dA-dT) ${ }_{6}$ a adotar a conformação B. Como ocorrem em ambos os sentidos $(A \rightarrow B$ e $A \leftarrow B)$, as transições não consistem em um artefato do campo de força, mas decorrem de propriedades intrínsecas de cada seqüência. Esses resultados estão de acordo com a literatura, demonstrando que simulações do DNA com parâmetros adequados permitem reproduzir propriedades intrínsecas desta molécula in silico.

Os autores agradecem ao CNPq pela concessão de auxilio via Edital Universal 2004 (processo 477158/2004-8).

[^166]
ANOMALIAS DINÂMICAS, TERMODINÂMICAS E ESTRUTURAIS EM FLUIDOS DIATÔMICOS COM POTENCIAL DE INTERAÇÃO SHOULDER.

Eduardo B. Neves ${ }^{1}$ (IC), Alan B. de Oliveira ${ }^{1}$ (PG), Márcia C. Barbosa ${ }^{1}(\mathbb{P Q})$, Paulo A. Netz ${ }^{2 *}(\mathbb{P Q})$ netz@iq.ufros.br

(1) Instituto de Física, UFRGS, (2) Instituto de Química, UFRGS

Palavras Chave: Dinâmica Molecular, Fluidos complexos, Interações Intermoleculares, Diagrama de Fases.

Inप or 10 rebe

Usando simulações do tipo dinâmica molecular investigamos aspectos termodinâmicos, dinâmicos e estruturais de sistemas de partículas interagindo mediante potenciais intermoleculares arbitrários com duas distâncias características, do tipo rampa ou "shoulder" (Figura 1). Simulações de fluidos simples monoatômicos usando estes potenciais mostraram anomalias similares às apresentadas pela água ${ }^{2}$, a saber: a densidade, a uma dada temperatura, exibe um máximo. A mobilidade, medida pelo coeficiente de difusão, mostra um comportamento nãomonotônico mediante a aplicação de pressão. Neste trabalho, analisamos o comportamento de fluidos diatômicos interagindo com um potencial shoulder Lennard-Jones modificado:

$$
\begin{equation*}
U(r)=4\left[r^{-12}-r^{-6}\right]+\alpha \mathrm{e}^{\left(\frac{(r-\beta)^{2}}{\gamma^{2}}\right)} \tag{1}
\end{equation*}
$$

Usamos $\alpha=5,0, \beta=0,7$ e $\gamma=1,0$ e distância entre os átomos no dímero $\lambda=0,2$ em unidades reduzidas.

Figura 1. Potencial interatômico do tipo shoulder. Em detalhe a pequena região atrativa e o esquema da estrutura dos dímeros.

Rasulphos el Discirsag

O sistema de dímeros interagindo mediante o potencial da equação (1) exibe um comportamento complexo no diagrama de fases. Em temperaturas entre 0,20 e 0,60 (em unidades reduzidas) o sistema exibe, sob compressão isotérmica, transições do tipo fluido \rightarrow sólido \rightarrow fluido. A temperaturas acima de 0,65 e a densidades moderadas há fortes anomalias na difusão, como pode ser visto na figura 2, que mostra o comportamento não monotônico do coeficiente de difusão, similar ao exibido pela água ${ }^{3}$.

Figura 2. Anomalias difusivas em dímeros interagindo com o potencial shoulder.

Além das anomalias difusivas, o sistema também anomalias termodinâmicas e estruturais.

Comicinsocs

Constatou-se, para um sistema de moléculas diatômicas interagindo com um potencial do tipo shoulder, que a densidade, a difusão e os parâmetros de ordem estruturais se comportam de modo anômalo em algumas faixas de pressão e temperatura. Deve-se salientar que o potencial não possui interações de longo alcance ou direcionais como a água, contudo exibe anomalias similares. Logo a anisotropia ou a existência de interações como ligações de hidrogênio não é necessária para que haja comportamento anômalo. Pode-se especular, então a possibilidade da existência de uma ampla gama de substâncias que pode exibir anomalias similares.

Os autores agradecem ao CNPq.

[^167]
CÁLCULOS DFT DOS PARÂMETROS DE EPR DOS COMPLEXOS [M(CN $\left.\left.\mathrm{N}_{4}\right)\right]^{-3}$ ($M=N I, ~ P D, F E, R U, O S$) EM REDES IÔNICAS.

Marcos C. Esteves(PG) ${ }^{1 *}$, Ney V. Vugman $(P Q)^{2}$, Alexandre A.Leitão(PQ) ${ }^{3}$,Carlos E. Bielschowsky(PQ) ${ }^{1}$
${ }^{1}$ Instituto de Química e ${ }^{2}$ Instituto de Física - Universidade Federal do Rio de Janeiro; ${ }^{3}$ Departamento de Química - UFJF. Palavras Chave: EPR, DFT, constantes hiperfinas. tensor g, metais de transição.

HMTorlicalo

Os tensores A e g foram calculados para cinco cianocomplexos de coordenação $\left[\mathrm{M}(\mathrm{CN})_{4}\right]^{3-}(\mathrm{M}=$ $\mathrm{Ni}, \mathrm{Pd}, \mathrm{Fe}, \mathrm{Ru}, \mathrm{Os}$) imersos em redes hospedeiras de KCl e NaCl , utilizando a aproximação de aglomerados embebidos. Em nosso modelo, os complexos cianetos $\left[\mathrm{M}(\mathrm{CN})_{4}\right]^{-3}$ são envolvidos em duas camadas de embebimento: uma primeira composta por potenciais iônicos totais (PITs) - representando os K+ (ou $\mathrm{Na}+$) primeiros vizinhos ao complexo - e uma segunda contendo 1306 cargas pontuais representando as interações Coulombianas de longo alcance.

Figura 1 - Aglomerado $\left[\mathrm{M}(\mathrm{CN})_{4} \mathrm{Cl}_{2}\right]^{-5}$ envolvido pela primeira camada de embebimento

A estrutura eletrônica dos complexos e o cálculo dos parâmetros de EPR foram realizados utilizando o pacote Gaussian 2003^{2}. A metodologia empregada foi a teoria do funcional da densidade, utilizando a base $6-311++G(d, p)$ para os átomos de carbono, nitrogênio e cloro, sendo os elétrons pertencentes às camadas internas dos metais e do cloro - primeiros vizinhos ao complexo representados através de um potencial efetivo de caroço. Utilizamos, nestes cálculos, três funcionais distintos: o funcional de troca de Slater e de correlação VWN (SVWN), o funcional de Perdew-Burke-Ernzerhof (PBE) e o funcional híbrido de três parâmetros de Becke (B3LYP).

As otimizações das geometrias foram realizadas mantendo-se fixas as coordenadas do embebimento, permitindo a variação das coordenadas dos aglomerados $\left[\mathrm{M}(\mathrm{CN})_{4} \mathrm{Cl}_{2}\right]^{-5}$. Este processo de otimização restrita já se mostrou adequado em um
trabalho anterior para o cálculo de parâmetros de EPR em redes iônicas ${ }^{1}$.

Nas otimizações de geometria realizadas, observamos que os valores otimizados para a distância de ligação $\mathrm{M}-\mathrm{Cl}$ foram próximos aos valores das distâncias internucleares da rede pura, indicando que os cloros, próximos ao metal, não são quimicamente coordenados. Portanto, os íons dos aglomerados apresentam-se essencialmente como cloros da rede.

Os resultados para as constantes hiperfinas e para o tensor g apresentaram um bom acordo com os resultados experimentais, sendo que o funcional B3LYP foi o que apresentou o melhor acordo. O erro médio obtido, através deste funcional, para o cálculo das constates hiperfinas foi de 11.4 \% e de 1.9 \% para o tensor g^{3}.

A comparação com os trabalhos recentes para o cálculo dos parâmetros de EPR de amostras sólidas, reafirma a validade do modelo de cálculo empregado. A utilização deste modelo, conjugando descrições clássicas e quânticas, mostra ainda a possibilidade de calcular adequadamente os parâmetros de EPR em sólidos iônicos, utilizando um modelo que possui baixo custo computacional.

Goncuscos

Neste trabalho, mostramos que o modelo de aglomerado embebido fornece uma representação adequada das redes iônicas, permitindo o cálculo dos parâmetros de EPR dos complexos de metais de transição. O bom acordo obtido entre os valores teóricos e experimentais, valida o modelo utilizado. Futuramente, pretendemos estender este trabalho para a análise de outras redes iônicas.

ATHaCeminemios

Os autores agradecem à CAPES e ao CNPq pelo financiamento desta pesquisa.

[^168]
FT-IR SPECTRUM, DFT: 3LYP/6-311G(d) STRUCTURAL AND SPECTRA DETERMINATIONS OF TWO LINKAGE ISOMERS OF [Zn(Cys)CI2]'

Joanna Maria Ramos ${ }^{1 *}(P G)$, Grisset Faget $O^{1}{ }^{1}(P Q)$, Pedro Puppin ${ }^{1}(P G)$, Judith Felcman ${ }^{1}(P Q)$, Claudio
A. Soto. ${ }^{2}(\mathrm{PQ})$. joannamaria@uol.com.br
${ }^{1}$ Departamento de Química - PUC-Rio. Rua Marquês de S. Vicente 225. Gávea. CEP: 22453-070 - Rio de Janeiro - RJ - Brazil.
${ }^{2}$ Instituto de Química - Departamento de Química - UFF. Morro de Valonguinho s / n. Niterói - 24210-150 - RJ - Brazil.

Key words: Linkage isomers, FT- infrared spectrum, DFT:B3LYP/6-311G (d)

Thincelletion

The cysteine dichloride zinc (II) potassium was synthesized and the structural analysis was carried out through the following methods: determination of the C , $\mathrm{H}, \mathrm{N}, \mathrm{S}$ and O contents, thermogravimetry, and infrared spectrum. The most probable structure for the anion complex at a minimum of energy was calculated by means of the DFT: B3LYP/6-311G(d) quantum mechanical method. The infrared spectra shows the presence of two linkage isomers, and the DFT calculations shows that the $\mathrm{Zn}-\mathrm{S}$ and $\mathrm{Zn}-\mathrm{N}$ central bonds are favored in the formation of the anion complex $\left[\mathrm{Zn}(\mathrm{Cys}) \mathrm{Cl}_{2}\right]^{-}$, being the stabilization energy equal to: $E(R B+H F-L Y P)=-3421.31533275$ A. U. For the anion complex where Zn atom coordinates with the S and O (from carboxilate) atoms, the stabilization energy was -3421.30075630 A.U. Features of the infrared spectrum confirm the theoretical structural prediction. Full assignment of the vibrational spectra is proposed based on the DFT procedure, and from a carefully analysis of the distorted geometries generated by the normal modes ${ }^{1,2}$.

The $3 n-6=42$ normal modes of $\left[\mathrm{Zn}(\mathrm{Cys}) \mathrm{Cl}_{2}\right]^{-}$can be subdivided as: in complex I we can define: 16 stretching, 29 bending and 7 torsion's; in complex I we found 16 stretching, 27 bending and 8 torsion's. With exception of the $\mathrm{O}-\mathrm{H}, \mathrm{N}-\mathrm{H}$ and $\mathrm{C}-\mathrm{H}$ stretching of higher vibrational energy, the remained stretching normal modes including the $\mathrm{C}=\mathrm{O}$ stretching can be found as coupled modes. Overlapped bands are expected in the higher energy region of the spectrum ($2700-3500 \mathrm{~cm}^{-}$ ${ }^{1}$), and as a way to characterize these bands we have used the deconvolution analysis, and we have also calculated the second derivative of the band spectrum.
The $\mathrm{Zn}-\mathrm{S}$ stretching has a higher participation in the normal modes found at $298 \mathrm{~cm}^{-1}$ (IR), ($266 \mathrm{~cm}^{-1}$ calc.) with 16%, and at $383 \mathrm{~cm}^{-1}(\mathrm{IR}),\left(312 \mathrm{~cm}^{-1}\right.$ calc.) with 14%.

Figure 1. Calculated structure of the two linkage isomers of the [Zn (cyst) $\mathrm{Cl2}]^{\text {] }}$ complex

The $\mathrm{Zn}-\mathrm{O}$ stretching spread out taking part in the composition of several vibrational modes with different and low percentage of participation. In the wavenumber calculated at $649 \mathrm{~cm}^{-1}, 648(\mathrm{IR}) \mathrm{cm}^{-1}$, the assignment can be writing as: $\delta($ NCC $) 18 \% ~+$ $\delta(\mathrm{CCS}) 14 \%+\mathrm{v}(\mathrm{CN}) 10 \%+\mathrm{v}(\mathrm{ZnO}) 8 \%$. For the wavenumber calculated at $523 \mathrm{~cm}^{1}, 538 \mathrm{~cm}^{-1}(\mathrm{IR})$, the most probable assignment considering the percentage of deviation of the geometrical parameters is: $\delta(C C=O) 17 \%+\delta(N C C) 10 \%+v(C C)$ $10 \%+\mathrm{v}(\mathrm{ZnO}) 7 \%$.

Comglisions

Vibrational assignments of bands in the infrared spectrum the two $\left[\mathrm{Zn}(\mathrm{Cys}) \mathrm{Cl}_{2}\right]^{-1}$ anions complexes have been done based in the procedure: the DFT:B3LYP/6-311G quantum mechanical calculation. For the framework or skeletal vibrations, the most probable assignment was based in the interpretation of the distorted geometry of the normal modes, having as focus the study of the percentage of deviation of the geometrical parameters. The results suggest the proposed structures depicted in Figure 1 as the most probable.

J.M.Ramos, C.A.T. Soto e J.Felcman thanks the CNPq for financial assistance and research grant.

[^169]
XIV Simpósio Brasileiro de Química Teórica (SBQT)

CÁLCULOS DFT DOS PARÂMETROS DE EPR NO ARSENETO DE GÁLIO

Marcos C. Esteves(PG) $)^{1^{*}}$, Alexandre B. da Rocha (PQ) ${ }^{1}$, Ney V. Vugman(PQ) ${ }^{2}$, Carlos E. Bielschowsky(PQ) ${ }^{1}$
${ }^{1}$ Instituto de Quimica e ${ }^{2}$ Instituto de Física - Universidade Federal do Rio de Janeiro

Palavras Chave: EPR, DFT, tensor g, GaAs.

A presença de defeitos do tipo $\mathrm{As}_{\mathrm{Ga}}$ nas redes de GaAs tem sido cada vez mais investigadas devido a sua importância tecnológica ${ }^{1}$. O defeito de $\mathrm{As}_{\mathrm{Ga}}$ é obtido formalmente pela troca de um átomo de gálio por um outro de arsênio. Quando o sistema é submetido à radiação ionizante, gera o defeito paramagnético $A s_{G a}^{+}$, que pode ser estudado pela ressonância paramagnética eletrônica (EPR).

Em trabalhos anteriores ${ }^{2,3}$, mostramos a viabilidade do cálculo dos parâmetros de EPR para complexos de metais de transição, em redes de NaCl e KCl , através de um modelo de aglomerado embebido, que incorpora descrições clássicas e quânticas. Neste trabalho, propomos um modelo de aglomerado para a determinação da estrutura eletrônica e parâmetros de EPR do defeito $A s_{G a}^{+}$da rede de arseneto de gálio

Resultuorelshussao

Os cálculos da constante hiperfina e do tensor g foram realizados utilizando o pacote computacional Gaussian03 ${ }^{4}$. A metodologia de cálculo empregada foi a teoria do funcional densidade (DFT), funcional B3LYP.

A descrição da rede foi realizada utilizando a aproximação do modelo de aglomerados. Dentro desta aproximação construímos dois modelos. No primeiro, que denominaremos de modelo A, o aglomerado é constituído por 40 átomos da rede, acrescido de 42 átomos de hidrogênio que completam as valências (Figura 1).

No segundo modelo, que denominaremos de modelo B, o cluster descrito anteriormente é inserido numa cavidade que possui a constante dielétrica do arseneto de gálio, conforme a metodologia PCM. Através deste segundo modelo procuramos verificar a influência das interações de longo alcance nos valores das propriedades de interesse.

As otimizações das coordenadas dos aglomerados foram realizadas apenas para as distâncias de ligação dos primeiros vizinhos ao defeito. Este processo de otimização restrita é importante pois permite apenas uma relaxação local, que é fundamental para o cálculo das constantes hiperfinas, enquanto a estrutura global
do aglomerado é mantida nas coordenadas do arsento de gálio puro.

Figure 1 - Modelo de cluster A
Os valores obtidos para os parâmetros de EPR através do modelo A apresentaram um bom acordo com os dados experimentais, fornecendo um erro médio de 2.2 \% para as constantes hiperfinas e 1.1% para o tensor g .

O modelo de cluster B apresentou uma pequena melhora nos resultados: o erro no cálculo das constates hiperfinas foi de 0.7% e, para o tensor g , foi de 1.1%. Através destes resultados, notamos que a inclusão do PCM à metodologia não realiza mudanças significativas nos resultados.

Comerisbos

Os resultados obtidos para os parâmetros de EPR mostram que a metodologia utilizada, neste trabalho, é adequada para o cálculo dos parâmetros de RPE na rede de GaAs. Pretendemos estender este trabalho para a determinação de parâmetros de EPR em outras redes covalentes.

Os autores agradecem ao CNPq por fornecer bolsas de pesquisadores (NVV, ABR e CEB) e a CAPES por fornecer uma bolsa de doutorado (MCE). Agradecemos ao Dr. Alexandre Amaral Leitão por disponibilizar recursos computacionais para a realização deste trabalho.

[^170]
ESTUDO TEÓRICO AB INITIO DA TRANSFERÊNCIA PROTÔNICA INTRAMOLECULAR NO ESTADO EXCITADO DO 2-(2'-

 HIDROXIFENIL)BENZOXAZOL.Lívia Streit (IC) ${ }^{1}$, Leandro Greff da Silveira (PQ) ${ }^{2}$, Paolo Roberto Livotto (PQ) ${ }^{1 * *}$
${ }^{1}$ Instituto de Química, Universidade Federal do Rio Grande do Sul. *ivotto@iq.ufrgs.br.
${ }^{2}$ Departamento de Ciências Exatas e da Terra, Universidade Regional Integrada do Alto Uruguai e das Missões.

Palavras Chave: cálculos teóricos, transferência de próton, 2-(2-hidroxifenil)benzoxazol . $\mathrm{kcal} / \mathrm{mol}$. No estado excitado singlete a forma

1)TCLC 10.6

Moléculas que apresentam a transferência protônica intramolecular no estado excitado (Excited State Intramolecular Proton Transfer - ESIPT), como o 2-(2'-hidroxifenil)benzoxazol, HBO, apresentam espectro de emissão com grande deslocamento de Stokes, o que gera um grande interesse fotofísico e fotoquímico, possibilitando um grande número de aplicações tecnológicas dessas moléculas.

O mecanismo do processo de ESIPT ainda está sujeito a algumas controvérsias quanto à forma da curva de potencial da transferência do próton e quanto às espécies envolvidas no ciclo, mesmo após anos de pesquisa ${ }^{1,2}$. Os métodos quânticos computacionais aparecem como uma ferramenta muito útil para o desenvolvimento de estudos que permitem a melhor compreensão desses sistemas.

Neste trabalho apresentamos um estudo teórico ab initio do ciclo de ESIPT do HBO, que ocorre através de reações de isomerização tautoméricas ceto-enólicas nos estado fundamental e excitado, visando caracterizá-lo estrutural e energeticamente.

O ciclo de ESIPT do HBO ocorre através da absorção de radiação pela espécie enólica no estado fundamental (${ }^{1} E$), gerando a espécie singlete excitada $\left(^{1} E^{*}\right)$ que, após uma reação de transferência de próton ultra-rápida, forma a espécie cetônica excitada (${ }^{1} \mathrm{~K}^{*}$). Esta espécie, por sua vez, emite radiação decaindo para a forma cetônica no estado fundamental ($\left.{ }^{1} \mathrm{~K}\right)$ que retoma a forma enólica após nova transferência protônica. Eventualmente as etapas no estado excitado podem se realizar através das espécies tripletes ($\left.{ }^{3} E^{*} e^{3} K^{*}\right)$ por cruzamento entre sistemas de ${ }^{1} E^{*}$. Estas espécies foram estudas teoricamente utilizando um conjunto de base $6-311 \mathrm{G}++(2 d, 2 p)$, onde as espécies excitadas foram obtidas com o método CIS. O estudo das espécies no estado fundamental incluiu a análise conformacional das estruturas cetônicas e enólicas. Todos os cálculos foram realizados com o programa GAUSSIAN 98.

Os principais resultados estão resumidos na figura 1. Os resultados mostram que a forma enólica do HBO no estado fundamental é $16,47 \mathrm{kcal} / \mathrm{mol}$ mais estável que a forma cetônica e uma barreira de retrotransferência do próton de somente 3,82
cetônica é mais estável em relação à forma enólica em $1,20 \mathrm{kcal} / \mathrm{mol}$, e no estado excitado triplete a forma enólica é mais estável que a forma cetônica por $0,13 \mathrm{kcal} / \mathrm{mol}$. As geometrias obtidas para os isômeros apresentam os anéis benzazolil e fenila no mesmo plano, nos estados fundamental e excitado, o que é consistente com o processo de fluorescência. Encontrou-se uma barreira energética na transferência do próton da ordem de $10 \mathrm{kcal} / \mathrm{mol}$ no estado excitado singlete, e uma barreira energética para a transferência ${ }^{3} \mathrm{~K}^{*}$--> ${ }^{3} \mathrm{E}^{*}$ por cruzamento entre sistemas da ordem de 20 kcal/mol.

Figura 1. Energias do ciclo ESIPT do HBO.

0 OLEMCDES

Os resultados indicam que o processo de ESIPT deve ocorrer através de uma barreira de ativação. No entanto a hipótese de relaxação vibracional não pode ser inteiramente descartada devido a magnitude da barreira de ativação poder ainda ser reduzida ao se incluir efeitos de correlação. A planaridade da espécie cetônica excitada é compatível com emissão fluorescente. O processo via sistema triplete é desfavorecido pela existência de uma alta barreira entre os sistemas $\left.{ }^{3} K^{*} e^{3} E^{*}\right)$.

Os autores agradecem ao (CNPq) pelo financiamento deste projeto.

[^171]
THE ROLE PLAYED BY HEAD-TO-TAIL CONFIGURATION ON THE MIOLECULAR WEIGHT DISTRIBUTION OF A-CYCLODEXTRIN TUBES

Cleber P. A. Anconi (PG) ${ }^{a^{*}}$, Clebio S. Nascimento, Jr (PG) ${ }^{a}$, Hélio F. Dos Santos (PQ) ${ }^{\text {b }}$, Wagner B. De Almeida (PQ) ${ }^{\text {a }}$
${ }^{\text {a LQC-MM: Laboratório de Química Computacional e Modelagem Molecular-Departamento de Química, ICEx, }}$ Universidade Federal de Minas Gerais (UFMG), Campus Pampulha, Belo Horizonte, MG, 31270-901, Brazil.
${ }^{b}$ NEQC: Núcleo de Estudos em Química Computacional- Departamento de Química, ICE, Universidade Federal de Juiz de Fora (UFJF), Campus Universitário, Martelos, Juiz de Fora, MG, 36036-900, Brazil.

*cleber@netuno.qui.ufmg.br
Keywords: Cyclodextrins, Molecular Tube, Binary Numbers

Rumatuon

The so-called "Molecular Tube" (MT), synthesized by cross-linking adjacent α-CDs in a polyrotaxane ${ }^{1}$, is expected to act as host for large molecules in inclusion processes. These tubes can also be used as buildingblocks in the formulation of novel materials. However, molecular tubes constructed with $\alpha-C D$ are obtained as a mixture containing entities with various molecular weights ${ }^{2}$, and the molecular features determining the tube size distribution are not completely understood. In this context, we propose the use of a statistical procedure based on binary numbers to examine the molecular tube formation process.

Binary numbers can completely represent the three possible CD conformations formed in the threading process, as depicted in Figure 1. The number of CD rings of a given necklace corresponds to the number of binary digits of the sequences analysed. In our approach, the HH conformation (head-to-head) is introduced with a probability equals to P and the ${ }^{Q} H T$ conformation (head-to-tail), is introduced with probability equals to Q, where $Q=1-P$. Similarly, the TT conformation (tail-to-tail) is introduced with a probability equals to R and the ${ }^{\mathrm{S}} \mathrm{HT}$ (also head-to-tail) which disputes with TT, is introduced with probability equals to S, where $S=1-R$. The superscripts stand for HT conformations obtained from $\mathrm{HH} / \mathrm{HT}$ and TT/HT disputes. In addition, it was assumed that the first inclusion of a CD molecule is introduced with a probability of $1 / 2$. The two mentioned competitions are mutually excluding, as well as, the two possible outcomes obtained from those disctinct competitions.

Figure 1- (a) Binary representation of CD's units included with distinct orientations. (b) Molecular conformations and related binary pair for CDs in supramolecular sequential structures.

A computer simulation program, in FORTRAN, has been developed in order to abtain the MT distribution, assuming that insufficient cross-linking is due to the existence of HT conformations. Therefore, binary sequences stored, representing polyrotaxanes, have been "fragmented" providing the numberingaverage molecular weight (Mn), of the MT theoretically obtained.

Resmilis

In the Figure 2, the results obtained, in accordance with the existence of 20% of HT conformations, in polirotaxanes employed in MT synthesis ${ }^{3}$, have been summarized.

Figure 2- Theoretical Mn obtained assuming that the HT conformation is responsible for the insufficient cross-linking between adjacent α-CD's units in polyrotaxanes employed in synthesis of MT.

Tolic lision

In this work, we develop a statistical model in order to study the MT molecular weight distribution. Assuming that the insufficient cross-linking between adjacent CD's units in poly-rotaxanes, is due to the existence of 20% of the head-to-tail conformations. An excellent agreement with experimental characterization of MT was obtained, for numberingaverage molecular weight (Mn). These results, strongly indicates that the hypothesis made, was correct.

CNPq e FAPEMIG

[^172]
ESTUDO DAS ESTRUTURAS E DA ESTABILIDADE DOS AGLOMERADOS MP3 (M=B,AL,GA) UTILIZANDO O MÉTODO B3LYP

Cinara Lopes ${ }^{1}$ (IC) ${ }^{*}$ (Icinara@ita.br), Orlando Roberto-Neto ${ }^{2}(\mathrm{PQ})$, Sylvio Canuto ${ }^{3}(\mathrm{PQ})$, Francisco B. C. Machado ${ }^{1}(\mathrm{PQ})$
${ }^{1}$ Departamento de Química - Instituto Tecnológico de Aeronáutica - São José dos Campos - SP.
${ }^{2}$ Divisão de Aerotermodinâmica e Hipersônica - Instituto de Estudos Avançados - São José dos Campos - SP.
${ }^{3}$ Instituto de Física - Universidade de São Paulo - São Paulo - SP.

Palavras Chave: Aglomerados, Estrutura Conformacional, DFT,Estrutura Eletrônica

h Hodurco

O estudo de aglomerados moleculares formados por átomos da família 13 a 15 da tabela periódica. são de grande importância tecnológica devido ao seu uso na construção de dispositivos microeletrônicos e diodos de emissão de luz, por exemplo. Devido a estas aplicações, eles vêm recebendo várias contribuições, tanto em estudos teóricos, como experimentais [1].
Os aglomerados formados por um dos elementos da família 13 com três átomos de fósforo $\mathrm{MP}_{3}(\mathrm{M}=\mathrm{B}, \mathrm{Al}$ e Ga) têm recebido algumas contribuições teórica, principalmente para aqueles formados pelos átomos de alumínio $\mathrm{AlP}_{3}[1-5]$ e gálio $\mathrm{GaP}_{3}[6-7]$. No entanto, até onde sabemos, para BP_{3} nenhuma contribuição foi encontrada na literatura. Desta forma, o presente trabalho tem como objetivo realizar um estudo sistemático, onde é feita uma análise comparativa das propriedades moleculares e da estrutura eletrônica destes aglomerados. Para tal, utilizamos o método da teoria do funcional da densidade usando o funcional B3LYP.

A conformação geométrica dos aglomerados $\mathrm{MP}_{3}(\mathrm{M}=$ B, Al e Ga) foram investigados utilizando o método B3LYP e os conjuntos bases de Dunning aug-cc-pVTZ (VTZ) e aug-cc-pVQZ (VQZ). Cálculos de otimização de geometria e freqüência vibracional foram realizados para as conformações geométricas $\mathrm{C}_{2 \mathrm{v}}, \mathrm{C}_{\mathrm{s}}$ e $\mathrm{C}_{3 \mathrm{v}}$ de simetria de spin singleto (S) e tripleto(T). Os resultados foram extrapolados para o limite do conjunto base completo (CBS).
Na Tabela ao lado estão apresentadas as energias relativas das conformações para os três aglomerados. Para os sistemas AlP_{3} e GaP_{3} os primeiros resultados da literatura indicavam a conformação $\mathrm{S}-\mathrm{C}_{3 \mathrm{v}}$ como, a mais estável [2,6$]$, mas resultados recentes mostram que para AlP_{3} a mais estável é $S-\mathrm{C}_{2 v}[1,3-5]$ e para GaP_{3} a conformação $\mathrm{S}_{-\mathrm{C}_{\mathrm{s}}[7] \text {. Nossos resultados estão }}$ de acordo com os dados recentes da literatura. Para o aglomerado AIP_{3} a conformação mais estável é a $\mathrm{S}-\mathrm{C}_{2 \mathrm{v}}$ diferindo da estrutura $\mathrm{S}_{-\mathrm{C}_{2 v}}$ por $1,37 \mathrm{kcal} / \mathrm{mol}$ de acordo com o resultado $\operatorname{CCSD}(\mathrm{T}) / C B S / / M P 2 / a u g-c c-p V T Z$, igual a $1,57 \mathrm{kcal} / \mathrm{mol}[5]$. Para GaP_{3} nossos resultados
indicam a conformação $\mathrm{S}-\mathrm{C}_{\mathrm{s}}$ como a mais estável, em concordância com o resultado $\operatorname{CCSD}(\mathrm{T}) /$ B3LYP [7]. Para o primeiro estado excitado, nosso resultado prevê a conformação $\mathrm{T}_{\mathrm{C}} \mathrm{C}_{3 \mathrm{v}}$, embora quase degenerada com a S-C ${ }_{2 v}$. O resultado da ref. [7] prevê a conformação $\mathrm{S}_{-2} \mathrm{C}_{2 \mathrm{~V}}$, mas não fornece resultado para o estado que calculamos na simetria $\mathrm{T}_{-\mathrm{C}_{3 \mathrm{v}} \text {. Para o }}$ aglomerado BP_{3}, prevemos que a conformação mais estável é $\mathrm{S}-\mathrm{C}_{2 \mathrm{v}}$ seguida da S_{S}. por $29,22 \mathrm{kcal} / \mathrm{mol}$.
Tabela. Energias relativas com energias do ponto zero (Kcal/mol) para os aglomerados $\mathrm{MP}_{3}(\mathrm{M}=\mathrm{B}, \mathrm{Al}$ e Ga) utilizando o método B3LYP.

BP_{3}						
Base	$\mathrm{S}-\mathrm{C}_{2 v}$	$\mathrm{~S}-\mathrm{C}_{\mathrm{s}}$	$\mathrm{S}-\mathrm{C}_{3 v}$	$\mathrm{~T}-\mathrm{C}_{2 v}$	$\mathrm{~T}-\mathrm{C}_{\mathrm{s}}$	$\mathrm{T}-\mathrm{C}_{3 v}$
VTZ	0,00	28,86	25,11	48,17	33,38	68,01
VQZ	0,00	29,07	25,33	48,31	33,48	68,39
CBS	0,00	29,22	25,48	48,41	33,56	68,67
AlP $_{3}$						
VTZ	0,00	0,73	40,37	24,97	12,43	11,37
VQZ	0,00	1,10	40,63	25,39	11,81	11,81
CBS	0,00	1,37	40,82	25,70	11,36	12,13
GaP_{3}						
VTZ	7,68	0,00	57,85	32,27	31,71	7,44
VQZ	7,52	0,00	57,94	32,52	31,75	7,41
CBS	7,40	0,00	58,01	32,70	31,78	7,39

Wencmicoes

Os aglomerado $\mathrm{MP}_{3}(\mathrm{M}=\mathrm{B}, \mathrm{Al}$ e Ga) foram estudados utilizando o método B3LYP e extrapolação de conjunto base. As conformações mais estáveis para $\mathrm{BP}_{3}, \mathrm{AlP}_{3}$ e GaP_{3} são respectivamente $\mathrm{S}-\mathrm{C}_{2 \mathrm{v}}$, S $\mathrm{C}_{2 \mathrm{v}}$ e S-C.

Arrareminentos

Os autores agradecem ao CNPq e FAPESP.

[^173]
PEPTIDEOS ANTIMICROBIANOS: ESTUDOS PRELIMMNARES DA ESTRUTURA DA PROTEGRINA E DA GOMESINA, EM MEIO AQUOSO.

Jorge Ricardo Moreira Castro (PG)* , Léo Degrève (PQ)
Departamento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto - Universidade de São Paulo Av. dos Bandeirantes, 3900 14040-901 - Ribeirão Preto - SP ircastro@usp.br
Palavras Chave: Protegrina, gomesina, peptídeos antimicrobianos.

Figura 1. RMSD das regiões mais flexível (3) e menos flexível (4) da gomesina.

Informações sobre os ângulos de Ramachandran e as ligações de hidrogênio indicam que estes peptídeos apresentam mais de uma conformação estável em solução aquosa. Estas observações são confirmadas pelos histogramas das energias por resíduo e pelos RMSD por resíduo que apresentam perfis multimodais. Os RMSD mostram que em ambos os peptídeos ocorre uma menor movimentação na $4^{\text {a }}$ região (região entre as duas últimas cisteinas da cadeia). Estas informações em conjunto com os valores de anfipatia sugerem que existem regiões responsáveis pela fixação do peptídeo na membrana e regiões responsáveis pela sua ruptura. Estas regiões devem apresentar flexibilidade suficiente para se agregar às superficies das membranas.

Con he lesoss

As várias conformações detectadas por diversas propriedades possivelmente estão relacionadas com o amplo espectro de ação apresentado pelos peptídeos, uma vez que conformações diferentes podem permitir que estes se adaptem melhor aos diferentes tipos de membranas, tornando as interações mais eficientes de forma a apresentar atividades antimicrobianas sobre diversos microorganismos diferentes.
CAPES \quad CNPq \quad FAPESP

[^174]
GERAÇÃO DE BASES ATÔMICAS APLICANDO-SE NOVA PROPOSTA DE DISCRETIZAÇÃO DAS EQUAÇÕES GRIFFIN-WHEELER-HARTREE-FOCK.

Ricardo Celeste ${ }^{1}$ (PQ)*, Roberto Luiz Andrade Haiduke ${ }^{2}$ (PQ) e Albérico Borges Ferreira da Silva ${ }^{3}$ (PQ) (1) UNICENTRO (rcricardoceleste@yahoo.com.br), (2) UFPR, (3) IQSC-USP

Palavras Chave: Coordenada Geradora Hartree-Fock, Bases Gaussianas, Bases Atômicas.

Wh10 1 Hera

Em 1986, uma versão integral das equações Griffin-Wheeler-Hartree-Fock (GW-HF) foi apresentada na literatura ${ }^{1}$, inspirada no Método da Coordenada Geradora (MCG), introduzido por Griffin e Wheeler nos anos 1950^{2}. A versão integral das equações de Hartree-Fock foi denominada de Método da Coordenada Geradora Hartree-Fock (MCG-HF) e uma de suas primeiras aplicações foi na geração de bases atômicas universais.
Recentemente, foi proposto por Barbosa e da Silva ${ }^{3}$ uma modificação no modo de se obter as bases do MCG-HF, gerando funções de base Gaussianas acuradas tão boas ou melhores que aquelas até então obtidas, com a vantagem de serem mais compactas e mais eficientes.
Esta modificação no esquema de escolha das funções de base está implementada no pacote computacional denominado GENBASIS.
Aplicou-se este novo esquema de discretização das equações GW-HF para obtenção de bases gaussianas atômicas, via MCG-HF, que serão usadas em cálculos atômicos e moleculares.

Desenvolvemos bases para os átomos de Lítio a Criptônio. As bases estendidas são de tamanho 18s e 12p para o primeiro período (Li-Ne), 20s e 14 p para o segundo período (Na-Ar) e 22s, 14p e 10d para o terceiro período (Ca-Kr). As bases obtidas foram contraídas ao nível de bases quádrupla e quíntupla zeta na valência. O critério de qualidade adotado para as bases estendidas é a diferença de energia, comparadas aos resultados Hartree-Fock Numérico ${ }^{4}$ (HFN), menores que um mhartree.

Como se pode ver a partir da Tabela 1, as energias obtidas estão em excelente concordância com o melhor resultado numérico da literatura. As contrações das bases visaram à obtenção de conjuntos contraídos que fossem competitivos, ou melhores, do que as bases contraídas de Pople e de Dunning.

Tabela I. Resultados de Energia para alguns átomos dos primeiro, segundo e terceiro períodos.

Átomo	Base (*)	E (Hartrees)	HFN (Hartrees)
C	18 s 12 p	$-\mathbf{3 7 . 6 8 8 6 1 1 5 6}$	$-\mathbf{3 7 . 6 8 8 6 1 8 9 5}$
N	18 s 12 p	-54.40092986	-54.40093419
O	18 s 12 p	$-74,80939233$	$-74,80939845$
P	20 s 14 p	$-\mathbf{3 4 0 , 7 1 8 7 2 4 6}$	$-\mathbf{3 4 0 , 7 1 8 7 8 0 8}$
S	20 s 14 p	$-\mathbf{3 9 7 , 5 0 4 8 3 7 7}$	$-\mathbf{- 3 9 7 , 5 0 4 8 9 5 8}$
Cl	20 s 14 p	$-459,4820074$	$-459,4820721$
Fe	22 s 14 p 10 d	$-\mathbf{- 1 2 6 2 , 4 4 3 4 6 5}$	$-\mathbf{1 2 6 2 , 4 4 3 6 6 5}$
Co	22 s 14 p 10 d	$-\mathbf{1 3 8 1 , 4 1 4 3 3 7}$	$-1381,414553$

Estas bases foram contraídas para quádrupla e quíntupla zeta na valência e levam ao mesmo valor de energia das bases estendidas. As contrações quádrupla e quintupla zeta, respectivamente, para os átomos apresentados na tabela são: primeiro período: [$5 s, 4 p]$ e $[6 s, 5 p]$; segundo periodo: $[6 s, 5 p]$ e [7s,6p]; terceiro periodo: [7s,5p,4d] e [8s,6p,5d].

Conoribers

Os valores das energias obtidos para os elementos de Lítio a Criptônio, nos levam a afirmar que estes conjuntos de funções de bases serão de grande utilidade em cálculos moleculares.

Fundação Araucária, CAPES, CNPq.

[^175]
A COMPUTATIONAL STUDY OF THE H + $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ REACTION

Edson F. V. de Carvalho ${ }^{1}(\mathrm{PG})^{*}$, Francisco B. C. Machado ${ }^{1}$ (PQ), Orlando Roberto-Neto ${ }^{2}$ (PQ) edfcar@ita.br
${ }^{1}$ Departamento de Química - Instituto Tecnológico de Aeronáutica - São José dos Campos - SP.
${ }^{2}$ Divisão de Aerotermodinâmica e Hipersônica, Instituto de Estudos Avançados - São José dos Campos - SP.

Keywords: $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$, energetic, transition state.

FHodractor

This work represents an initial step in a long project which goal is to employ electronic structure and chemical dynamics methods in the study of hydrogen abstraction reactions of ethanol. ${ }^{1}$ HF-DFT, MP2, $\operatorname{CCSD}(\mathrm{T})$, and CASSCF approaches will be used in energetic and structural characterizations of the reactants, products, and the transition states, as well as, in the calculations of the intrinsic reaction coordinates (IRC) from the $\mathrm{H}+\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{OH}$ reactions. Methods of energy extrapolations will be used in order to achieve more accurate values of the classical barrier heights and reaction energies. The computed electronic and structural data will be employed in order to compute chemical dynamics properties, with the Variational Transition State Theory (VTST) approach. Rate constants in function of temperature, activation energies, kinetic isotope effects, are some of the chemical kinetic properties to be computed. One of the targets of this project is to complement, and to achieve more accurate kinetic and thermochemical data from the combustion chemistry of ethanol. Another target of this work is figured out methods with a reliable balance between cost and accuracy in the construction of potential energy surfaces and in the computation of thermochemical and kinetics for combustion reactions. Electronic structure calculations will be carried out with the GAUSSIAN and MOLPRO codes, and the POLYRATE program will be applied in the computation of chemical dynamics observables.

Rasults onc piscinssion

In a first step, the stationary points of the first channel were identified for local minima and the transition state by vibrational analysis using the MP2 methods combined with the cc-pVTZ correlation-consistent basis sets of Dunning. Next, using the MP2/cc-pVTZ geometries, single-point calculations were carried out with the $\operatorname{CCSD}(\mathrm{T})$ approach and the $\mathrm{cc}-\mathrm{pVTZ}$ and $\mathrm{cc}-$ pVQZ basis sets. Additionally, the extrapolation scheme of Halkier et al. ${ }^{2}$ is also used to estimate the energetic values at the complete basis set (CBS) limit. Effects of core correlation are also computed using the cc-pCVTZ basis sets. Calculations show a quasicollinear $\angle \mathrm{CHH}$ angle (178.6 degree) of H attack on the transition structure. A high value for the imaginary frequency ($1739 \mathrm{i} \mathrm{cm}^{-1}$) calculated with the MP2/ccpVTZ method indicates a high curvature at the top of
the potential surface, and the importance of tunneling corrections for the accurate calculations of the rate constants. This result is in disagreement with a previous B3LYP/6-311+G(d,p) study which predicts a low value for the imaginary frequency ($958 \mathrm{i} \mathrm{cm}^{-1}$). ${ }^{3}$ Note that the DFT and HF-DFT methods usually give artificially lower imaginary frequencies for the transition structures, when compared with the MP2 and $\operatorname{CCSD}(\mathrm{T})$ methods. ${ }^{4}$

Table 1. Energetics (in $\mathrm{kcal} / \mathrm{mol}$) with the CBS corrections using the method of Halkier et. al.[2].

$$
\mathrm{H}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \rightarrow \mathrm{CH}_{3} \mathrm{CHOH}+\mathrm{H}_{2}
$$

Method	$\Delta \mathrm{V}_{f}^{\#}$	$\Delta \mathrm{E}$
MP2/cc-pVTZ	12.33	-2.81
$\mathrm{CCSD}(\mathrm{T}) / \mathrm{cc}-\mathrm{VTZ}$	7.89	-7.29
$\mathrm{CBS}_{\mathrm{T}-\mathrm{Q}}$	7.78	-7.31
$\operatorname{CCSD}(\mathrm{~T}) / \mathrm{cc}-\mathrm{pCVTZ}$	7.89	-7.34
$\operatorname{CCSD}(\mathrm{~T})($ full $) / \mathrm{cc}-\mathrm{pCVTZ}$	7.93	-7.27

Comer mian

We have carried out MP2/cc-pVTZ calculations of energies, equilibrium geometries, and harmonic frequencies of the stationary states for the $\mathrm{H}+$ $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH} \rightarrow \mathrm{CH}_{3} \mathrm{CHOH}+\mathrm{H}_{2}$ hydrogen abstraction reaction. Concerning the $\angle \mathrm{CHH}$ angle in the transition structure, a quasi-linear structure is predicted. $\operatorname{CCSD}(\mathrm{T})$ single-point calculations and CBS extrapolated values of the barrier heights and reaction energies were also evaluated in order to help build a whole view of the energetics of the first and more important reactive channel of this reactional system.

Maknomed menes

CNPq, FAPESP, ITA-CTA.

[^176]
ESTUDO QUALITATIVO DA RELAÇÃO ESTRUTURA-ATIVIDADE DE DERIVADOS DO ÁCIDO ABIÉTICO CONTRA ARTEMIA SALINA.

João Paulo Ataide Martins ${ }^{1}$ (PG), Marinaldo Sousa de Carvalho ${ }^{1}$ (PG), Paulo Mitsuo Imamura ${ }^{1}$ (PQ), Márcia Miguel Castro Ferreira ${ }^{1}$ (PQ)*
${ }^{-1}$ Instituto de Química, Universidade Estadual de Campinas, CP 6154, 13083-970 Campinas - SP
*marcia@iqm.unicamp.br

Palavras Chave: ácido abiético, DFT, PCA, HCA, KNN

linirocaricalo

Uma das principais fontes de ácidos diterpênicos no Brasil é a resina do Pinus elliottiiss utilizada amplamente em reflorestamento, principalmente na região sul do Brasil, onde a madeira é empregada na fabricação de papéis, tábuas, etc.

O breu extraído de Pinus elliottiiss, contém ácidos diterpênicos de fórmula molecular $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{2}$, constituída principalmente pelo ácido abiético e em menor quantidade, os ácidos levopimárico, palústrico e neoabiético ${ }^{1}$.
Os ácidos mencionados constituem uma das principais fontes de compostos diterpênicos utilizados na síntese de diversas substâncias biologicamente ativas.
O objetivo deste trabalho é o estudo da relação estrutura-atividade de um conjunto de derivados do ácido abiético contra o microorganismo artemia salina, visto que a atividade contra este microorganismo é um indício de atividade antitumoral.

RGSUlta os el Thsclissao

As moléculas tiveram suas geometrias otimizadas no nível de teoria DFT/B3LYP com conjunto de base $6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ utilizando-se o programa Gaussian 03. A partir das estruturas otimizadas foram obtidos descritores eletrônicos, topológicos e estéricos utilizando-se os softwares Gaussian, Marvin e Hyperchem.
Uma análise exploratória de dados foi feita no intuito de separar as espécies ativas (dose letal inferior a $30 \mu \mathrm{~g} / \mathrm{mL}$) das inativas utilizando-se as ferramentas quimiométricas (PCA) e (HCA) ${ }^{2}$. Após seleção de variáveis, os resultados dessas análises mostraram uma separação entre compostos ativos e inativos, com exceção de três amostras inativas que apareceram entre as ativas (Figura 1).
Dentre as variáveis selecionadas encontram-se 2 variáveis eletrônicas, 2 variáveis topológicas (relacionadas à forma/ramificação) e 1 variável estérica. Uma análise de classificação foi feita utilizando-se o método KNN (Tabela 1) e com 3 vizinhos observou-se que as mesmas 3 amostras
classificadas incorretamente com o PCA também foram classificadas incorretamente com o KNN.

Figura 1. Gráfico de escores obtidos no PCA
Tabela 1. Resultados obtidos com a análise KNN

	Acertos	Erros
Ativos	.8	0
Inativos	7	3

Cálculos de otimização estão sendo feitos em duas outras moléculas com o objetivo de fazer a previsão com o modelo KNN obtido.

Concmisers

As análises quimiométricas realizadas no conjunto de moléculas estudadas mostraram bons resultados na separação das moléculas ativas das inativas com $83,33 \%$ de acerto. Os descritores selecionados para a construção dos modelos serão utilizados para a proposição de um mecanismo de ação para essas moléculas.

- Acrecemmenios

Os autores agradecem ao CNPq pelos recursos disponibilizados à pesquisa.

[^177]
ESTUDO TEÓRICO DA ATIVIDADE DE TIOSSEMICARBAZONAS CONTRA SALMONELLA TYPHIMURIUM.

João Paulo Ataide Martins ${ }^{2}(\mathrm{PG})$, Samuel Anderson Alves de Sousa ${ }^{1}(\mathrm{PG})^{*}$, Márcia Miguel Castro Ferreira ${ }^{2}$ (PQ), José Machado Moita Neto ${ }^{1}$ (PQ)

1-Departamento de Química, Universidade Federal do Piauí, 64049-550, Teresina, Pl, Brasil.
*samuel2006@ufpi.br
2-Laboratório de Quimiometria Teórica e Aplicada, Instituto de Química, Universidade Estadual de Campinas, 13083974, Campinas, SP, Brasil.

Palavras Chave: QSAR, PLS, tiossemicarbazonas.

1 If 1 or olverao

As tiossemicarbazonas constituem uma classe de compostos com amplo espectro de ação farmacológico. Segundo alguns autores estas atividades biológicas estão relacionadas com a alta afinidade das tiossemicarbazonas à enzima ribonucleotídeo reductase (RNR) que catalisa a etapa principal na síntese de deoxiribonucleotideos necessários à biossintese do DNA participando assim na divisão celular. Por outro lado a ação das tiossemicarbazonas vem sendo também associada à capacidade em formar complexos com cátions metálicos.
O objetivo deste trabalho foi investigar a ação antibacteriana de uma classe de doze tiossemicarbazonas frente à Salmonella typhimurium, um dos principais microorganismos causadores de infecções alimentares, realizando um estudo de relação quantitativa entre a estrutura e a atividade (QSAR) a partir de regressão por minimos quadrados parciais (PLS).

Resulforlos e Discussto

As estruturas e atividades antibacterianas de 12 compostos frente às cepas de Salmonella typhimurium (Concentração Inibitória Mínima - MIC) das tiossemicarbazonas foram obtidas na literatura (Pandeya et al., 1999). Na obtenção de descritores eletrônicos e estruturais utilizou-se cálculos ab initio com o pacote Gaussian 03W. Os cálculos foram realizados pelo método RHF com função de base 6$31 \mathrm{G}^{* *}$ com otimização de geometria. Os valores do logaritmo do coeficiente de partição octanol-água ($\log \mathrm{P}$) foram calculados utilizando o programa CS ChemProp do pacote ChemOffice. O modelo PLS foi obtido através do software estatístico Pirouette.
O modelo PLS com duas variáveis latentes obteve um Q^{2} (quadrado do coeficiente de correlação da validação cruzada) igual a 0,85 na validação cruzada pela metodologia leave-one-out. Os descritores mais importantes para o desenvolvimento do modelo foram os comprimentos de ligação entre os carbonos a-b e c-d (figura 1), a carga atômica do oxigênio e o calor de formação dos compostos.

O valor de Q^{2} indica uma alta qualidade no modelo PLS na predição das atividades para a classe de compostos estudada.

Figura 1. Estrutura geral das tiossemicarbazonas estudadas.

O envolvimento de comprimentos de ligação entre os descritores mais importantes sugere que o mecanismo de ação das tiossemicarbazonas passa por "encaixes". Este aspecto conformacional ressalta a importância de uma similaridade geométrica entre a molécula ativa e o sítio no substrato (RNR). Este fator é ainda reforçado pela importância do calor de formação no modelo obtido.
A importância da carga eletrostática no átomo de oxigênio indica a influência de uma transferência eletrônica (ligação coordenada) para orbitais com energia e orientação suficiente para interação com a tiossemicarbazona, o que deve ocorrer com os pares de elétrons livres do oxigênio.
Estes resultados promissores indicam a necessidade de um aprofundamento no estudo envolvendo análises conformacionais e docking.

Conclusoes

A boa qualidade do modelo PLS aliada aos descritores mais importantes obtidos sugere que a ação das tiossemicarbazonas envolve aspectos geométricos e de transferência eletrônica. O modelo sugere os locais da molécula onde as interações ocorrem.

Os autores agradecem ao CNPq pelo auxilio financeiro concedido.

[^178]
CROSS SECTION CALCULATIONS FOR ELASTIC ELECTRON SCATTERING FROM AMINO ACIDS

Manoel Gustavo Petrucelli Homem * (PQ), Lee Mu-Tao (PQ) and Ione Iga (PQ)
Departamento de Química, UFSCar, 13565-905 São Carlos, SP, Brasil
*mghomem@yahoo.com.br
Keywords: cross section, elastic scattering, amino acid, independent atom model

The interaction of electrons with biological molecules has received increasing attention, both theoretically and experimentally, due to the role played by these interactions for understanding of radiation damage induced by exposure of the human body to ionizing radiations (VUV, x-rays, γ-rays, etc.) [1-4]. Recent studies have shown that low- and intermediate-energy electron collisions with DNA and its constituents can induce significant damages, including single- and double-strand breaks[1]. In view of the above considerations, the knowledge of cross sections for electron scattering from a variety of such biological molecules would certainly be of interest. In this work, we presented differential, integral and momentumtransfer cross sections for elastic collisions between electrons and amino acids (glycine and alanine) in the $50-1000 \mathrm{eV}$ energy range. The calculations are performed using the independent atom model (IAM) [5] and is used an optical potential composed by the static, exchange, correlation-polarization and absorption contributions to represent the dynamics of the interaction [6].

HResulis and dicussion

Fig. 1 shows the calculated differential cross sections (DCS) for the elastic electron scattering from alanine at 100,300 and 500 eV . The present results were obtained considering only the static, exchange and correlation-polarization parts of the interaction potential. Fig. 2 shows the integral elastic cross sections (IECS) for alanine and glycine. To our knowledge, there is no other theoretical or experimental data for elastic electron scattering from amino acids available for comparison. However, recent studies have shown that for the intermediateenergy electron collisions, quite reliable DCS can be obtained using the IAM, particularly for incident energies above 300 eV [7]. The complete results obtained will be presented during the conference.

Using relatively simple but reliable approaches, i.e. the independent atom method, cross sections for elastic electron collisions have been computed for wide range of the collision energies. The present results can be useful in a detailed analysis of ionizing radiation damage.

Figure 1. Differential cross sections (DCS) for elastic $e^{-}-$ alanine scattering at 100,300 and 500 eV .

Figure 2. Integral elastic cross sections (IECS) for alanine and glycine electron scattering in the $50-1000 \mathrm{eV}$ energy range.

FTranm corcmenc

This work is supported by FAPESP and CNPq.

[^179]
AJUSTE NÃO-LINEAR DE FUNÇÕES Q-GAUSSIANAS À INTEGRAIS ATÔMICAS SEMI-EMPÍRICAS ATRAVÉS DO MÉTODO GSA.

Higo L. B. Cavalcanti ${ }^{1}(I C)^{*}$, Alfredo M. Simas ${ }^{2}$ (PQ), Kleber C. Mundim ${ }^{3}$ (PQ) e Gerd B. da Rocha ${ }^{1}$ (PQ).
${ }^{1}$ Departamento de química - UFPB, Campus I João Pessoa - PB, CEP: 58051-900.
${ }^{2}$ Departamento de química Fundamental - UFPE, Recife - PE, CEP: 50670-901.
${ }^{3}$ Instituto de Quimica - UnB, Brasilia - DF, CEP: 70904-970.
email: higo.lima@gmail.com
Palavras Chave: GSA, q-Gaussianas, Integrais atômicas, NDDO.

Ihtrodersoo

A área de química teórica vive um momento de grande entusiasmo com a possibilidade do tratamento quântico completo de moléculas importantes em bioquímica contendo dezenas de milhares de átomos. Esse fato passou a ser possível após o surgimento de técnicas que escalonam o tempo de computação e o uso da memória linearmente com o tamanho do sistema. Podemos citar por exemplo: MOZYME, LocalSCF, FMO, CGDMS, D\&C, entre outros.

Num cálculo semi-empírico, a computação das integrais atômicas e a montagem da matriz de Fock escalonam com N^{2} e a diagonalização da matriz de Fock com N^{3}, onde N é o número de átomos do sistema molecular. Dessa forma, esses pontos precisam ser reformulados numericamente ou evitados na tentativa de fazer com que o cálculo passe a escalonar apenas com N .

Esse trabalho é o primeiro passo na tentativa de apresentar uma nova técnica de escalonamento linear para cálculos semi-empíricos de biomoléculas.

Whermmanose briscusero

Num cálculo semi-empírico do tipo MNDO ou AM1, para cada par de átomos contendo uma base de orbitais s e p existem 22 integrais de repulsão eletrônica de dois-centros. A forma geral para essas integrais, considerando o modelo de expansão de multipolos, usado nesses métodos é dada por:

$$
\left(\mu_{A} v_{A} \mid \lambda_{B} \sigma_{B}\right)=\sum_{l_{l_{2} m} 2^{l_{1}}} \frac{e^{2}}{l_{1}+l_{2}} \sum_{i=1}^{2 l_{1}} \sum_{j=1}^{2 l_{2}} \frac{1}{\left[R_{A B}^{2}+\left(\rho_{l_{1}}^{A}+\rho_{l_{2}}^{B}\right)^{2}\right]^{1 / 2}}
$$

Como podemos ver, mesmo as integrais semiempíricas são complicadas de se calcular. No caso de algumas integrais associadas a altos momentos de multipolo, podemos encontrar somas de dezenas de parcelas numericamente custosas de se calcular.

Nesse trabalho, nós nos preocupamos em reduzir o tempo de computação das integrais atômicas de um cálculo semi-empírico, ajustando a essas uma única função denominada de q-Gaussiana através da aplicação sucessiva de métodos não-lineares de
ajustes de funções. Usando esse procedimento, agora, essas integrais podem ser substituídas apropriadamente por uma única função ajustada, muito mais simples e muito mais fácil de ser calculada, do tipo:
$(\mu \nu \mid \lambda \sigma)=\beta_{\mu \nu \lambda \sigma}\left[1-\left(1-q_{\mu \nu \lambda \sigma}\right)-\alpha_{\mu \nu \lambda \sigma}\left(R-R_{\mu \nu \lambda \sigma}\right)^{\gamma_{\mu \lambda \sigma \sigma}} \frac{1}{1-q_{\mu \nu \lambda \sigma}}\right.$
onde, α, β, γ, q e R, são os parâmetros que definem essa função.

Apresentaremos os resultados dos ajustes de funções q-Gaussianas para substituir a computação das 22 integrais atômicas semi-empíricas surgidas para cada par envolvendo os seguintes átomos: H, $\mathrm{C}, \mathrm{N}, \mathrm{O}, \mathrm{P}, \mathrm{S}, \mathrm{F}, \mathrm{Cl}, \mathrm{Br}$ e I e para os métodos AM1, PM3 e RM1, cerca de 3 mil integrais ajustadas.

O procedimento de ajuste seguiu as etapas: (1) para cada integral foi gerado um conjunto de pontos variando a distância interatômica de $0.5 \AA$ até $100 \AA$, em passos de $0.01 \AA$, e em seguida, (2) empregouse uma seqüência de métodos de ajustes de funções: GSA (Generalized Simulated Annealing), Simplex e Levenberg-Marquardt.

Os nossos resultados revelaram que a metodologia empregada no ajuste de curvas aos pontos gerados funciona muito bem. O erro χ^{2} que obtivemos fica em média da ordem de 10^{-9}. Sendo que em certos casos encontramos erros χ^{2} da ordem de 10^{-13}, o que revela uma ótima qualidade do ajuste.

Concmsoes

Com essa técnica, esperamos reduzir bastante o esforço computacional para a computação dessas integrais.
Por fim, essa técnica está sendo implementada na versão de domínio público do programa MOPAC para ser usada na computação de sistemas grandes.

[^180]
COMBINAÇÃO DE DOCKING MOLECULAR E QM/MM NO PROJETO DE NOVOS FÁRMACOS CONTRA A MALÁRIA.

Italo C. dos Anjos(IC)*, Edílson B.A. Filho(PG), Mário L.A.A. Vasconcellos(PQ), Gerd B. Rocha (PQ).
Departamento de química - UFPB, Campus I João Pessoa - PB, CEP: 58051-900.
email: italocurvelo@yahoo.com.br.

Palavras Chave: Docking, QM/MM, RM1.

Dados recentes revelam que cerca de 300 milhões de pessoas no planeta são infectadas pela malária todo ano, e destes, três milhões acabam morrendo. Por afetar, principalmente, países em desenvolvimento, as indústrias farmacêuticas não se interessam em desenvolver novas drogas eficazes para seu tratamento, e, por isso, a malária é considerada uma doença negligenciada.

Nesse trabalho combinamos algumas técnicas de química medicinal (QSAR e docking) com métodos híbridos do tipo QM/MM na tentativa de predizer detalhes conformacionais e a energia de ligação do complexo ligante-enzima para novos fármacos contra a malária. A enzima considerada nesse estudo foi a DHFR-TS (Dihydrofolate Reductase-Thymidylate Synthase, código PDB: 1J3I) e as moléculas candidatas a fármacos foram compostos aromáticos bioativos sintetizados a partir da reação de BaylisHillman.

Drasullaione elolscuscab

O primeiro passo do estudo foi a realização de uma análise de agrupamentos hierárquicos considerando um conjunto de 16 moléculas, de fórmula geral $\mathrm{R}_{1}-\mathrm{CH}(\mathrm{OH})-\mathrm{C}\left(\mathrm{CH}_{2}\right)-\mathrm{R}_{2}$, com diferentes grupamentos em R_{1}, e R_{2} sendo ou $C N$ ou $C(O)$-OCH_{3}. Essa análise foi realizada a partir do cálculo semi-empírico (AM1) em solução aquosa usando os seguintes descritores: ângulos diedros, $\mu, \Delta \mathrm{H}_{\mathrm{f}}, \mathrm{E}_{\text {Lumo }}$, $\mathrm{E}_{\text {номо, }}$ LogP, refratividade molar, peso molecular, área acessível ao solvente, volume acessível ao solvente e número de ligação de hidrogênio intramolecular. Nesse passo conseguimos agrupar três moléculas: MOL1 ($\mathrm{R}_{1}=\mathrm{p}$-nitro-fenil), $\operatorname{MOL} 2\left(\mathrm{R}_{1}=\right.$ β-naftil) e MOL3 ($R_{1}=p$-bromo-fenil), todas com $R_{2}=$ CN , que posteriormente se mostraram as mais ativas.

Em seguida, foi realizado um docking molecular dessas três moléculas em ambos os sítios ativos da enzima DHFR-TS através da utilização do algoritmo DOCK. A partir desse procedimento, selecionamos as conformações de mais baixa energia encontradas para as moléculas consideradas. As geometrias desses complexos moleculares foram fornecidas como ponto de partida para o cálculo $\mathrm{QM} / \mathrm{MM}$.

No cálculo QM/MM, utilizamos o método semiempírico RM1 (Recife Model 1) para a parte QM, que englobou as duas moléculas de cada ligante localizadas nos dois sítios ativos da enzima, e o campo de força CHARMM para a parte MM, que tratou o restante da enzima e, também, as águas de cristalização. Esses cálculos foram conduzidos usando a versão 8.0 do programa Hyperchem, onde está implementado o método RM1. As geometrias foram otimizadas usando um critério de convergência de $0.01 \mathrm{kcal} \mathrm{mol}^{-1} \AA^{-1}$, para o gradiente.

A figura a seguir revela detalhes conformacionais para a interação entre a molécula MOL2 e um dos sítios ativo da enzima DHFR-TS, com energia de ligação QM/MM é igual a $-4773.53 \mathrm{kcal}_{\mathrm{mol}}{ }^{-1}$. A geometria otimizada desse ligante no ambiente do sítio ativo da enzima está em concordância com a obtida através de cálculos B3LYP/6-31++G**.

Gonc IUSors

Após uma combinação de abordagens de química medicinal e métodos híbridos do tipo $Q M / M M$, conseguimos obter a geometria do complexo liganteenzima e calcular a energia de ligação de algumas moléculas selecionadas e a enzima DHFR-TS do agente causador da malária.

Nossos resultados podem ser importantes para indicar novas substâncias que possam se tornar bons candidatos a fármacos no combate a malária.

Os autores agradecem ao CNPq (projeto Universal/2006 e bolsa) e a Fapesq/PB.

ESTUDO DAS PROPRIEDADES MAGNÉTICAS DO MnAs

José Ribamar da Silva Santos (PG)*, Antônio Carlos Pavão (PQ)
joribasan@bol.com.br
Departamento de Química Fundamental - Universidade Federal de Pernambuco - UFPE
Palavras - chave: magnetismo, orbitais moleculares, bandas de energia

Thirothcato

O efeito magnetocalórico é a mudança na temperatura de um material como resultado da exposição de seus spins magnéticos a um campo magnético externo. A refrigeração magnética ${ }^{1}$ é apoiada nesse efeito. Sua magnitude é dada pela mudança de entropia do campo induzido, $\Delta \mathrm{S}_{\mathrm{m}}$. Aplicando-se um campo magnético ao material ocorrerá diminuição em sua entropia magnética em virtude do alinhamento dos spins com o campo. Por outro lado, a redução na entropia magnética é compensada por um aumento na entropia da rede do sistema via criação de fônons, resultando em um aumento de temperatura ${ }^{2}, \Delta \mathrm{~T}$. Compostos tais como $\mathrm{Gd}_{5} \mathrm{Ge}_{2} \mathrm{Si}_{2}, \mathrm{MnFe}_{0,45} \mathrm{As}_{0,55}, \mathrm{La}_{0,8} \mathrm{Sr}_{0,2} \mathrm{MnO}_{3}$ e MnAs exibem o efeito magnetocalórico. O objetivo desse trabalho é a construção de um modelo molecular para a fase ferromagnética do MnAs baseado na existência de dois spins em cada centro atômico. O modelo reproduz corretamente a configuração eletrônica, largura da banda d, profundidade da banda s, exchange spliting (d) e nível de Fermi) do composto estudado.

Realizamos cálculos ab initio de orbitais moleculares usando o funcional de densidade UB3LYP e a base 6-311G (d,p) para os estados de spin tripleto, quinteto e septeto do MnAs, tanto na estrutura tipo NiAs hexagonal, cuja fase $\mathrm{B} 8_{1}$, em baixa temperatura ($\mathrm{Tc}=318 \mathrm{~K}$), é ferromagnética, como para a estrutura tipo MnP ortorrômbica na fase B31, em que é paramagnético. O estado de spin quinteto
apresenta o nível de Fermi altamente localizado (pela teoria dos orbitais moleculares é um estado antiligante $\left(\delta_{u}\right)$), em concordância com a teoria de Stoner. Este estado apresenta um momento magnético para a fase $\mathrm{B} 8_{1}$ de $3,70 \mu_{B}$ para a banda de $-0,29 \mu_{B}$ para a banda p, o que está em excelente concordância com o valor experimental de $3,4 \mu_{B}$ do MnAs. Salientamos ainda o fato da natureza itinerante dos estados d do Mn, que estão fortemente hibridizados com os estados p do As^{3}. Assim, nosso modelo vai além do modelo de Heisenberg. Em magnetos itinerantes, os elétrons que são responsáveis pelo estado magnético participam na formação da superfície de Fermi e saltam através da rede. Para a estrutura B31, é interessante observar a transição de fase de primeira ordem que acontece na temperatura de Curie de 318 K . Os cálculos revelaram corretamente que o nível de Fermi em seu estado de spin quinteto é um orbital ligante π_{u} e que, sendo delocalizado, não representa o estado magnético.

2016 6 Th 0183

Nosso modelo molecular com dois spins em cada centro atômico descreve com sucesso as propriedades magnéticas do MnAs. Cálculos usando funcional de densidade para larguras de bandas, profundidade da banda s e momento magnético encontram-se em boa concordância com os resultados experimentais. Além disso o modelo proposto separa muito bem o estado magnético da estrutura B 81 da não magnética B 31 do MnAs.

ADracemimentos

Ao CNPq pelo apoio financeiro.

[^181]
AN AB INITIO STUDY OF THE IONIZATION POTENTIAL OF HYDRAZINE

Roberta J. Rocha ${ }^{1}$ (IC)* (robjachura@yahoo.com.br), Marina Pelegrini ${ }^{2}$ (PQ), Orlando Roberto-Neto ${ }^{3}$ (PQ), Francisco B. C. Machado ${ }^{1}$ (PQ)
${ }_{2}^{1}$ Departamento de Química - Instituto Tecnológico de Aeronáutica - São José dos Campos - SP.
${ }^{2}$ Departamento de Química - Universidade Federal de Juiz de Fora, Juiz de Fora - MG.
${ }^{3}$ Divisão de Aerotermodinâmica e Hipersônica, Instituto de Estudos Avançados - São José dos Campos - SP.

Palavras Chave: ionization potential, hydrazine, ab initio

InModraion

The hydrazine molecule $\left(\mathrm{N}_{2} \mathrm{H}_{4}\right)$ and its derivatives have been used as propellant fuels in rocket and satellite thrusters. ${ }^{1}$ Due to its importance, hydrazine has been extensively studied. The ground state geometry of the neutral molecule presents gauche form (C_{2} symmetry) characterized by ab initio calculations and from experimental evidence. However, the ground state geometry of $\mathrm{N}_{2} \mathrm{H}_{4}{ }^{+}$ion is predicted theoretically ${ }^{2,3}$ to have $\mathrm{C}_{2 \mathrm{~h}}$ symmetry, although the $D_{2 h}$ structure is quasi-degenerate.
The ionization potential of hydrazine molecule $\left(\mathrm{N}_{2} \mathrm{H}_{4}\right)$ has received many contributions, both experimentally, ${ }^{4,5}$ and theoretically. ${ }^{2,3}$ Experimentally, the adiabatic ionization potential threshold ranges from 8.1 to $8.74 \mathrm{eV} .{ }^{4,5}$ However, the theoretical values are smaller than the experimental ones. The G2 result of Pople and Curtiss ${ }^{3}$ is equal to 8.09 eV and the CASPT2 result of Habas et al. ${ }^{2}$ has a smaller value, equal to 7.64 eV .
The main goal in this work is to examine the convergence of the geometrical values, harmonic vibrational frequencies, and the potential ionization of hydrazine using the $\operatorname{CCSD}(\mathrm{T})$ theory.

The optimized geometries and harmonic vibrational frequencies of the hydrazine ion $\left(\mathrm{N}_{2} \mathrm{H}_{4}{ }^{+}\right)$for the three conformers $\mathrm{C}_{2 \mathrm{~h}}, \mathrm{D}_{2 \mathrm{~h}}$ and $\mathrm{C}_{2 \mathrm{v}}$ were obtained at the $\operatorname{CCSD}(\mathrm{T})$ level. The ground state geometry for the neutral molecule with C_{2} symmetry was optimized in a previous work ${ }^{6}$ using the same methodology. Using these calculated results, the adiabatic ionization potential (aPI) of hydrazine was determined. The basis sets of Dunning cc-pVTZ and $c c-p V Q Z$ were employed. The $\operatorname{CCSD}(T)$ total energies and properties were extrapolated to the complete basis set (CBS) limit by
$E_{C B S}=\left[E(n) \times n^{3}\right]-\left[E(n-1) \times(n-1)^{3}\right] / n^{3}-(n-1)^{3}$ (1)
where n is equal 4 for cc-pVQZ basis set. In order to provide the effect of core correlation we have also used the cc-pCVTZ basis sets of Woon and Dunning. The calculations were carried out correlating the valence electrons and also correlating all electrons. The properties were calculated using the expression,

$$
E=E_{C B S}(v a l)+E(c c-p C V T Z, f u l l)-E(c c-p C V T Z, v a l)(2) .
$$

The ground state of the hydrazine ion has $\mathrm{C}_{2 \mathrm{~h}}$ symmetry. However, the $D_{2 h}$ conformer is quasidegenerate. The difference in energy using our best result, which includes the CBS extrapolation and corevalence correlation (equation 2) became more favored to the $C_{2 h}$ conformer by about 0.001 eV . The $D_{2 h}$ conformer is a saddle point with an imaginary frequency. As discussed by Habas et al. ${ }^{2}$ the double well ($C_{2 h} \rightarrow D_{2 h} \rightarrow C_{2 h}$) is very flat with the first vibrational level higher than the thermodynamic barrier. Therefore, our best result for the adiabatic ionization potential is about to 8.07 eV , which is similar to the result obtained previously by Pople and Curtiss ${ }^{3}$ using the G 2 method, equal to 8.09 eV . The CASPT2 result calculated by Habas et al. ${ }^{2}$ is equal to 7.64 eV . The experimental values for the adiabatic ionization potential in the literature range from 8.1 to $8.74 \mathrm{eV}^{4,5}$ The theoretical results are in better agreement with the smallest experimental result, equal to $8.1 \pm 0.15 \mathrm{eV}$. ${ }^{5}$

T-FMCTISTons

The adiabatic ionization potential calculated using the $\operatorname{CCSD}(\mathrm{T})$ method with the CBS extrapolation and the core-valence correlation is about to 8.07 eV . The CBS value using CASSCF/MRCI is equal to 7.81 eV . These results are similar to those obtained previously using the G^{3} and CASPT2 ${ }^{2}$ methods, respectively equals to 8.09 and 7.64 eV . The experimental values range from 8.1 to 8.74 eV , ${ }^{4,5}$ with the theoretical results in better agreement with the experimental data, equal to $8.1 \pm$ 0.15 eV . ${ }^{5}$

P- Acknomedrements

CNPq e FAPESP.

[^182]
ESTADOS ELETRONICAMENTE EXCITADOS DE MOLÉCULAS DE INTERESSE AMBIENTAL: $\mathrm{O}_{3}, \mathrm{SO}_{2}, \mathrm{H}_{2} \mathrm{O}$ e $\mathrm{H}_{2} \mathrm{~S}$

Nilson Tavares Filho,* (PG), Anselmo Elcana de Oliveira (PQ). nilson_tavares@yahoo.com

Instituto de Química, Universidade Federal de Goiás.
CP 131, CEP 74001-970, Goiânia - GO.

Palavras Chave: estados eletrônicos excitados, SAC-CI, EOM-CCSD

1himorraco

As propriedades espectroscópicas e os estados eletronicamente excitados das moléculas têm grande influência nos processos fotoquímicos. Apesar disso, a quantidade de informações disponibilizada por estudos experimentais é pouca, e deve ser complementada por estudos computacionais. Neste trabalho, foram calculadas energias de excitação vertical para quatro moléculas de interesse ambiental: ozônio $\left(\mathrm{O}_{3}\right)$, dióxido de enxofre $\left(\mathrm{SO}_{2}\right)$, sulfeto de hidrogênio $\left(\mathrm{H}_{2} \mathrm{~S}\right)$ e água $\left(\mathrm{H}_{2} \mathrm{O}\right)$.

Resullarober elscliss6o

Os cálculos foram realizados nas abordagens teóricas EOM-CCSD, TDDFT e SAC-CI, com os programas NWChem 5.0 e Gaussian 03, utilizando as geometrias experimentais do estado fundamental. O conjunto de bases utilizado foi o $6-311++G^{* *}$ e as quatro moléculas foram mantidas na simetria $\mathrm{C}_{2 \mathrm{v}}$. Os dois primeiros estados singleto excitados de todas as moléculas apresentam simetrias A_{2} e B_{1}. A Tabela I resume as energias de transição vertical para esses estados.

Tabela I. Energias de transição eletrônica vertical (em eV) das moléculas $\mathrm{O}_{3}, \mathrm{SO}_{2}, \mathrm{H}_{2} \mathrm{~S}$ e $\mathrm{H}_{2} \mathrm{O}$.

Molécula	EOM-CCSD		TDDFT		SAC-Cl	
	$1 \mathrm{~A}_{2}$	$1 \mathrm{~B}_{1}$	$1 \mathrm{~A}_{2}$	$1 \mathrm{~B}_{1}$	$1 \mathrm{~A}_{2}$	$1 \mathrm{~B}_{1}$
O_{3}	2,23	2,28	2,10	2,03	2,11	2,18
SO_{2}	4,16	4,41	3,90	4,17	4,20	4,45
$\mathrm{H}_{2} \mathrm{~S}$	6,33	6,03	6,01	5,70	6,38	6,07
$\mathrm{H}_{2} \mathrm{O}$	9,18	7,39	8,44	6,90	9,17	7,38

Observa-se que a diferença entre as energias desses dois estados é pequena para moléculas de $\mathrm{O}_{3}(0,06 \mathrm{eV}), \mathrm{SO}_{2}(0,26 \mathrm{eV})$ e $\mathrm{H}_{2} \mathrm{~S}(0,30 \mathrm{eV})$. Para molécula de água essa diferença ($1,70 \mathrm{eV}$) é seis vezes maior que nas moléculas de $\mathrm{SO}_{2} \mathrm{e}$ $\mathrm{H}_{2} \mathrm{~S}$, e ainda maior que para O_{3}.
A substituição do átomo de oxigênio central na molécula de O_{3} por um átomo de enxofre leva a um aumento de $0,20 \mathrm{eV}$ na diferença entre as energias dos estados A_{2} e B_{1}. Esse aumento na
diferença entre as energias é mais pronunciado quando a troca é realizada na molécula de água. Nesse caso, o aumento é de $1,40 \mathrm{eV}$.
Quando os átomos de oxigênio da extremidade do O_{3} são substituídos por átomos de hidrogênio, a diferença de energia entre os dois primeiros estados excitados aumenta significativamente cerca de trinta vezes, passando de 0,06 para $1,70 \mathrm{eV}$.
Apesar do método TDDFT ser aquele que demanda o menor tempo computacional, as energias de transição vertical calculadas com esse método são menores que as obtidas nas outras abordagens teóricas. Essa tendência já havia sido observada em um estudo realizado por Wiberg et al., que comparou o desempenho das abordagens RPA, TDDFT e EOMCCSD [1], mostrando também que o último método fornece energias em ótima concordância com os valores experimentais. No presente trabalho, observouse que os valores obtidos com o método SAC-CI equiparam-se aos do método EOM-CCSD, com desvio máximo de $0,12 \mathrm{eV}$ entre energias verticais calculadas para as mesmas transições. O desvio é menor para a água, onde não passa de $0,01 \mathrm{eV}$. Essa concordância constitui-se em uma vantagem para o SAC-CI, uma vez que o tempo computacional obtido para o cálculo das transições dos cinco primeiros estados excitados verticalmente das moléculas estudadas é cerca de 40% menor que o obtido com EOM-CCSD.

Coniclisorss

Os dois estados excitados singleto de menor energia para as moléculas estudadas (simetria $\mathrm{C}_{2 \mathrm{v}}$) apresentaram boa concordância entre as metodologias estudadas. O SAC-CI, apesar de ser um método computacionalmente bem mais barato, apresenta resultados de energias de transições verticais equivalentes às calculadas com EOM-CCSD. Essa é uma grande vantagem considerando-se a demanda computacional para os cálculos de otimização de geometria dos estados excitados.

A FUNAPE e a CAPES pelo apoio financeiro.

[^183]
A CONFIGURAÇÃO ELETRÔNICA DOS ÁTOMOS SEGUNDO O MODELO GVB.

Gabriel do Nascimento Freitas (IC), Thiago M. Cardozo (PG), Marco A. Chaer do Nascimento* (PQ) *chaer@iq.ufrj.br

Departamento de Físico-Química, Instituto de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária, CT, Bloco A, sala 412, Rio de Janeiro - RJ, 21941-590, Brasil.

Palavras Chave: Estrutura eletrônica, GVB, correlated-pair, distribuição radial

ThTAOMURERO

A configuração eletrônica dos átomos é uma conseqüência direta do uso de um modelo de partículas independentes (MPI) para tratar átomos polieletrônicos. A adoção do modelo Hatree-Fock ${ }^{1}$ (HF) como MPI impõe a dupla ocupação orbital, fato que não encontra nenhuma justificativa na mecânica quântica. Entretanto, essa foi a única saída encontrada por Slater para que a sua função determinantal, além de anti-simétrica, fosse também uma autofunção de spin.

O método Generalized Valence Bond (GVB) ${ }^{2}$, um MPI bem menos usado, mas muito mais acurado que o HF, não impõe nenhuma dupla ocupação e nem obriga que os orbitais dos átomos polieletrônicos tenham a mesma simetria dos hidrogenóides. Em estudo anterior, mostramos, através do método GVB, porque e quando é possível usar a aproximação da dupla ocupação orbital ${ }^{3}$. Porém, o estudo foi realizado ainda obrigando que os orbitais GVB tivessem a mesma simetria dos orbitais hidrogenóides, como no método HF.
O objetivo do presente trabalho é ampliar aquele estudo, permitindo uma flexibilização da forma e simetria dos orbitais GVB. Para tal, foram incluídas funções de base do tipo P, para a descrição dos orbitais atômicos dos sistemas He até Ne^{8+}.

Estudou-se o comportamento da série isoeletrônica He e Li^{+}a Ne^{8+}. Os orbitais otimizados pelo método Hartree-Fock (base gaussiana ${ }^{4}$ descontraída com 10 funções do tipo S) foram utilizados como orbitais de partida para os cálculos GVB.

O primeiro conjunto de resultados consiste nos par de orbitais ocupados GVB, 1s e 1s', de simetria esférica, otimizados na mesma base citada anteriormente. Do trabalho anterior sabemos que à medida que a carga nuclear aumenta, esses orbitais vão se tornando praticamente iguais, o que justificaria a aproximação da dupla ocupação, para os elétrons do caroço.

Ao flexibilizarmos a base, incluindo funções P como os mesmo expoentes da base S , os orbitais ótimos adquirem a forma de orbitais lobos ($s+\lambda p$), onde o grau de mistura (λ) é obtido de forma auto-
consistente. Uma das possíveis análises dos resultados é através das funções de distribuição radial. Abaixo estão ilustradas as distribuições para os orbitais do He e Ne^{8+}, utilizando-se escalas adequadas.

Figura 1. Distribuições radiais para o $\mathrm{He} \mathrm{e} \mathrm{Ne}^{8+}$.

Os resultados acima mostram que, independente da descrição GVB usada, à medida que a carga nuclear aumenta, os dois orbitais GVB vão se tornando muito parecidos, o que justifica a aproximação da dupla ocupação para os orbitais do caroço dos átomos.

7arrargolmentios

Os autores agradecem a CAPES, CNPq e FAPERJ pelo apoio financeiro.

[^184]
SOBRE A NATUREZA DA LIGAÇÃO QUÍMICA.

Thiago Messias Cardozo ${ }^{1}(\mathbb{P G})^{*}$, Marco Antonio Chaer Nascimento ${ }^{1}$ (PQ)
*thiago@chaer.iq.ufr.br
${ }^{1}$ Departamento de Físico-Química - Instituto de Química - Universidade Federal do Rio de Janeiro - Ilha do Fundão Palavras Chave: Partição de Energia, Ligação Química, GVB, Spin-Coupled

Apesar da ubiqüidade das moléculas, as razões que determinam a formação de uma ligação química ainda são alvo de muita pesquisa e especulação teórica. Uma análise em termos da partição da energia total nas suas componentes cinética e potencial conduz ao resultado contraditório de que a componente potencial da energia total do sistema seria a responsável pela formação da ligação química ${ }^{1}$. Vários autores abordaram esse problema dividindo a energia total numa componente "clássica" e noutra "quântica"2-4. Embora as abordagens difiram quanto à forma de se obter a componente quântica, todas elas levam à conclusão de que a formação de uma ligação química decorre do abaixamento da energia cinética dos elétrons, na moléculas de H_{2} e H_{2}^{+}Entretanto, em nenhuma dessas abordagens foi claramente identificado o fenômeno quântico responsável pela formação da ligação. Mais recentemente, mostramos que a ligação química decorre do fenômeno quântico de interferência e que, não só a forma correta da função de onda como também a maneira de particionar a energia total nas componentes clássicas e quânticas, surgem naturalmente do tratamento da interferência ${ }^{5}$. Essa mesma análise ainda não foi conduzida para moléculas com ligações duplas e triplas.
Uma forma natural de investigar o problema é pela análise dos orbitais mono-eletrônicos oriundos de um cálculo GVB ou SC. Neste trabalho, iniciamos a investigação da ligação química na molécula de N_{2}. Para tal, foram obtidas funções de onda na base AUG-ccpVTZ , onde os elétrons de caroço são descritos com orbitais HF duplamente ocupados, os pares de elétrons não-ligantes com orbitais GVP-PP e os elétrons envolvidos na ligação química com SC. Para obtenção da função de onda, o programa VB2000 acoplado ao GAMESS-US foi utilizado ${ }^{4}$.

A superficie de energia potencial do N_{2} foi obtida variando-se a distância internuclear de $0,90 \AA$ até $1,95 \AA$, com intervalos de $0,05 \AA$. O grau de recobrimento entre os dois orbitais SC do espaço σ e entre os orbitais SC do espaço π foram obtidos para cada valor de distância internuclear. Uma vez que o grau de recobrimento está
diretamente relacionado com a interferência, um perfil qualitativo de como varia a contribuição dos espaços σ e π para a ligação química com o aumento da distância internuclear pode ser obtido.

Grau de Recobrimento entre os orbitais da ligação quimica

Figura I. Superficie de Energia Potencial e Grau de.Recobrimento.

É possível identificar quatro regiões de comportamento distinto. As regiões II, III e IV são as regiões de principal interesse. Na região II a queda da contribuição π para a ligação é a mais acentuada. Na região III as contribuições caem numa taxa praticamente igual. Na região IV, a contribuição σ passa a apresentar a taxa mais acentuada.

A partir deste tratamento qualitativo, é possível propor que a interferência construtiva entre os orbitais do espaço σ confere a "força motriz" que dá início à formação da ligação química no N_{2}. Uma análise mais rigorosa por meio da partição de energia em termos das contribuições semi-clássicas e de interferência poderá esclarecer o mecanismo por trás da formação de ligações duplas e triplas.

AClrobleglimentos

CNPq, FAPERJ.

[^185]
estudo Teórico da reação de Desidrogenação de Etano em Silico-Alumino-Fosfatos contendo Gálio

Marcio Soares Pereira ${ }^{1}$ (PG), Marco Antonio Chaer Nascimento ${ }^{1}$ (PQ)*
*chaer@iq.ufrj.br
${ }^{1}$ Instituto de Quimica, Universidade Federal do Rio de Janeiro, Cidade
Universitária, CT, Bloco A, sala 412, Rio de Janeiro, RJ, 21949-900, Brasil.
Palavras Chave: Desidrogenação, Gálio, SAPO

Thilorelvicaro

Algumas zeólitas modificadas com gálio têm sido usadas em processos como a aromatização de parafinas leves (processo CYCLAR) ${ }^{1,2}$, resultando em um aumento tanto de atividade quanto de seletividade dessas zeólitas. No entanto, reações indesejadas, como craqueamento, hidrogenólise e re-hidrogenação podem ocorrer. No intuito de minimizar estas reações colaterais, outros suportes como silico-alumino-fosfatos têm sido estudados. ${ }^{3}$

No processo de aromatização, uma das primeiras etapas envolve a desidrogenação dos reagentes. Assim sendo, foi feito um estudo teórico da reação de desidrogenação de etano em Ga/SAPO-11.
 desidrogenação de etano em Ga/SAPO-11, foi utilizado um aglomerado modelo para o SAPO-11 com 20 sítios tetraédricos (T20) com a espécie de gálio sob a forma não-estrutural de dihidreto de gálio $\left(\mathrm{GaH}_{2}\right)^{+}$.

Figura 1. Estado de transição para a reação de desidrogenação de etano em Ga/SAPO-11

Esta espécie de gálio já foi estudada anteriormente com aglomerados modelo para zeólitas HZSM-5, onde foi apontada como uma provável candidata para a espécie ativa de gálio em catalizadores como os utilizados no processo CYCLAR. ${ }^{4-6}$

A reação de desidrogenação foi estudada segundo o mecanismo concertado, onde a formação de olefina e eliminação de hidrogênio molecular ocorrem na mesma etapa. ${ }^{5,6}$ O mecanismo da reação estudada foi investigado em nível de cálculo DFT (X3LYP) usando a base $6-31 \mathrm{G}^{* *}$ e ECP para o gálio, sem nenhuma restrição de geometria.

Os resultados preliminares mostram um estado de transição bem caracterizado muito semelhante aos obtidos anteriormente no estudo de zeólitas substituídas com gálio. ${ }^{5,6}$

Mromishes
Os resultados preliminares apontam para a existência de um mecanismo de reação para a desidrogenação de alcanos leves em Ga/SAPO-11 análogo ao mecanismo concertado determinado para $\mathrm{Ga} / \mathrm{ZSM}-5$. 5,6 A determinação da barreira de ativação e refinamento dos cálculos estão em andamento.
Outros aglomerados com dois sítios de gálio também estão sendo investigados para se estudar a influencia do segundo sítio na reação de desidrogenação de alcanos leves em Ga/SAPO-11

WWMWHaredinemios
Os autores gostariam de agradecer a CAPES, CNPq, FAPERJ, PRONEX, e Instituto do Milênio de Materiais Complexos pelo apoio financeiro.

[^186]
Desenvolvimento do Método Coupled Perturbed Generalized Valence Bond para Cálculo de Propriedades Elétricas de Átomos e Moléculas

Marcio Soares Pereira ${ }^{1}$ (PG), Marco Antonio Chaer Nascimento ${ }^{1}$ (PQ) ${ }^{*}$
*chaer@iq.ufrj.br
${ }^{1}$ Instituto de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária, CT, Bloco A, sala 412, Rio de Janeiro, RJ, 21949-900, Brasil.

Palavras Chave: Propriedades elétricas, GVB, CPHF,CPGVB, NLO

hTheolueg

Atualmente, métodos $a b$ initio de química quântica são rotineiramente aplicados com sucesso no estudo de inúmeros problemas de interesse químico. Um importante aspecto de tais estudos é o cálculo de propriedades elétricas. Uma das principais técnicas utilizadas para a obtenção destas propriedades é o método CPHF (coupled perturbed Hartree-Fock), onde a interação do sistema com o campo é incluída como uma perturbação no Hamiltoniano e a equação de Fock é resolvida para a obtenção dos orbitais perturbados pela presença do campo através de um processo autoconsistente.

Existem evidências de que efeitos de correlação eletrônica são importantes e devem ser incluídos nos cálculos de propriedades elétricas. Em particular, as hiperpolarizabilidades são extremamente sensíveis à base e ao nível de cálculo empregados. ${ }^{1,2}$

A energia de correlação eletrônica, como definida por Löwdin ${ }^{3}$, é dada pela diferença entre a energia exata e a energia Hartree-Fock. Entretanto, a energia de correlação assim definida, inclui também uma parcela que não corresponde à repulsão eletrônica, mas que está ligada à forma incorreta da função Hartree-Fock. Esta parcela é normalmente denominada de energia de correlação não dinâmica. Por outro lado, se utilizarmos como IPM, uma função de onda com simetria permutacional correta, como GVB ou SCVB, desaparecem os efeitos espúrios atribuídos à correlação não-dinâmica. ${ }^{4}$

Com o intuito de se calcular propriedades elétricas a partir de uma função de onda GVBPP, foi desenvolvida uma metodologia semelhante à empregada no método Coupled Perturbed Hartree-Fock. De forma semelhante ao CPHF, o campo elétrico (E) é tratado como uma perturbação (λ) e introduz-se um termo H^{\prime} no Hamiltoniano devido à
interação do sistema com o campo E, através do momento de dipolo μ :

$$
\begin{aligned}
& \lambda=E \\
& H^{\prime}(r, t)=\mu \cdot E, \mu=-\sum_{j}^{n}\left(e . r_{j}\right)
\end{aligned}
$$

[^187]
Abstract

Introduzindo o Hamiltoniano com o termo perturbativo nas equações do método GVB-PP pode-se chegar aos orbitais corrigidos pela presença da perturbação, e com isso às propriedades de interesse. No método GVB-PP a otimização dos orbitais passa pela resolução de três equações em três etapas distintas: Otimização dos coeficientes, Mistura de Orbitais e OCBSE. Portanto, o termo perturbativo é incluído em cada uma dessas equações, os termos de mesma ordem são coletados e as correções dos orbitais são obtidas para cada etapa. Utilizando o mesmo esquema iterativo do GVB-PP entre as três etapas, pode-se chegar à correção final para os orbitais devido à presença do campo elétrico.

Cobicluboers

Neste trabalho foi desenvolvido o método "Coupled Perturbed Generalized Valence Bond" (CPGVB) para cálculo de propriedades elétricas, análogo ao método CPHF, porém com o uso de GVB, que tem a forma correta para descrever um sistema polieletrônico. O código computacional para a implementação deste método está sendo desenvolvido e com ele espera-se poder avaliar a importância da correlação eletrônica no cálculo de propriedades elétricas.

AHIfrocelinchios

Os autores gostariam de agradecer a CAPES, CNPq, FAPERJ, PRONEX, e Instituto do Milênio de Materiais Complexos pelo apoio financeiro.

ESTUDO DE UM COMPLEXO DE COBRE (III) DO TIPO BASE DE SCHIFF ENVOLVENDO O LIGANTE CALIX[4]PIRROL UTILIZANDO TEORIA DO FUNCIONAL DE DENSIDADE.

Fernando T. S. Vaz ${ }^{1}$ (IC), Káthia M. Honório ${ }^{2}\left(\mathbb{P Q}\right.$), Pablo A. Fiorito ${ }^{1}(\mathbb{P Q})$, Vani X. Oliveira Junior ${ }^{1}(\mathbb{P Q})$, Wendel A. Alves ${ }^{1}$ (PQ), Paula Homem-de-Mello*,1 (PQ). *paula.mello@ufabc.edu.br

${ }^{1}$ Universidade Federal do ABC, Rua Santa Adélia, 166, CEP: 09210-170, Santo André, SP; ${ }^{2}$ Escola de Artes, Ciências e Humanidades, Universidade de São Paulo.
Palavras Chave: composto de coordenação, materiais biomiméticos, DFT.
estabilização da molécula estudada (Fig. 1), não são descritas satisfatoriamente pelos funcionais usualmente empregados em cálculos DFT. ${ }^{3}$ Assim, foram necessárias diversas otimizações de geometria, partindo de diferentes inputs, até que o cálculo convergisse a um mínimo da superfície de energia potencial (confirmado por cálculo de freqüências).
A Tabela 1 apresenta parâmetros estruturais experimentais ${ }^{2}$ e calculados. Foram omitidos os parâmetros do Cu1, pois as ligações e os ângulos formados com os átomos de nitrogênio vizinhos são idênticos às do Cu2. Os dados da Tabela indicam que a estrutura obtida é muito semelhante à determinada por raios- X^{2} Particularmente importante, é descrever corretamente a distância entre os átomos de Cu , pois é a coordenação desses sítios metálicos com um substrato que caracterizam atividade catalítica de um determinado material. ${ }^{4}$
Tabela 1. Comprimentos de ligações (\AA) e ângulos (graus) selecionados para complexo dinuclear de cobre(II)

	Experimental 2	Teórico
Cu2 \cdots Cu1	3,473	3,696
Cu2-N10	1,897	1,918
Cu2-N59	2,040	2,014
Cu2-N60	1,996	2,048
Cu2-N3	1,903	1,908
N59-Cu2-N60	108,69	109,33
N57-Cu2-N58	108,01	109,33

O método utilizado reproduz adequadamente a estrutura do complexo e a distância entre os átomos de Cu . Cálculos para sistemas bi-metálicos com ligantes macrocíclicos baseados na DFT estão em andamento, visando testar também a viabilidade para sistemas maiores com o parque computacional disponível. Além disso, será também incluída correção ${ }^{4}$ para melhor descrição de interações fracas, importante na descrição dos nanotubos.

Ao PIC/UFABC pela bolsa de iniciação científica e ao CNPq pelo financiamento (Proc. 555592/2006-5).

[^188]
Sparkle/PM3 Parameters for the Modeling of all Lanthanide Trivalent cations, from La(ilil) to Lu(ilil).

Ricardo O. Freire ${ }^{* 1}$ (PG), Nivan B. C. Junior ${ }^{2}$ (PQ), Gerd B. Rocha ${ }^{3}$ (PQ), and Alfredo M. Simas ${ }^{1}$ (PQ) *rfreire@ufpe.br
${ }^{1}$ Departamento de Química Fundamental, UFPE, 50670-901, Recife, PE, Brazil
${ }^{2}$ Departamento de Química, CCET, UFS, 49100-000 - Aracaju, SE, Brazil
${ }^{3}$ Departamento de Quimica, CCEN, UFPB, 58.059-970 - João Pessoa, PB, Brazil

Keywords: Sparkle model, lanthanide complexes, semiempirical, AM1, PM3.
examined: (i) $\mathrm{UME}_{(\mathrm{Ln}-\mathrm{L}) \mathrm{S}}$ involving the interatomic

Recently, we introduced Sparkle/AM1 ${ }^{1}$, a new paradigm for lanthanide complexes semiempirical calculations, at a level of accuracy useful for coordination compounds design. Recent research on lanthanide complexes ${ }^{2}$ has indeed indicated that Sparkle/AM1 coordination polyhedron geometries are comparable to, if not better than, geometries obtained with the best contemporary ab-initio calculations with effective core potentials (ab initio/ECP) on complexes of a size large enough to be of value to practical use ${ }^{1,2}$. Besides, sparkle model calculations are hundreds of times faster.

Although AM1 generally produces good results, and its reliability has been extensively time-tested, alternate semiempirical models may prove more advantageous for some particular applications. PM3, another very popular semiempirical model developed by Prof. James Stewart. PM3 presents enthalpies of formation and other properties with lower average errors than AM1. In the present work, we present the Sparkle/PM3 parameters for all lanthanide trivalent cations.

hesuls ahe olscurions

The parameterization procedure used for obtaining the Sparkle/PM3 parameters was essentially the same as the one of our previous work ${ }^{1}$. The same sets of fifteen complexes used to parameterize Sparkle/AM1, for each lanthanide ions, with various representative ligands, chosen to be representative of all complexes of high crystallographic quality (R factor $<0.05 \AA$) in the Cambridge Crystallographic Database $C S D^{3}$, and which possess oxygen and/or nitrogen as coordinating atoms, were used as training sets.

As geometry accuracy measures, we used the average unsigned mean error for each complex i, $U M E_{i}$, defined as:

$$
\begin{equation*}
U M E_{i}=\frac{1}{n_{i}} \sum_{j=1}^{n_{i}}\left|R_{i, j}^{C S D}-R_{i, j}^{\text {calc }}\right| \tag{1}
\end{equation*}
$$

where n_{i} is the number of ligand atoms directly coordinating the lanthanide ion. Two cases have been
distances R_{j} between the lanthanide central ion, Ln, and the atoms of the coordination polyhedron, L; and (ii) UMEs of all the edges of the pyramids, that is, of the interatomic distances R_{j} between the lanthanide central ion and the atoms of the coordination polyhedron, as well as all the interatomic distances R_{j} between all atoms of the coordination polyhedron.

The Sparkle/PM3 average $\mathrm{UME}_{(L n-L)}$ and UME, for a test set of 670 complexes, encompassing all trivalent lanthanide ions, were of $0.072 \AA$ and $0.150 \AA$. These figures are similar to the Sparkle/AM1 ones of $0.073 \AA$ and $0.172 \AA$.

comginions

Sparkle/PM3 present a level of accuracy equivalent to Sparkle/AM1 and also to the most accurate ab initio full geometry optimization calculations that can be nowadays carried out on complexes of a size large enough to be of relevance to complex design. In conclusion, the decision of which of the equivalent models to use, rests with the user who must choose based on an appraisal of the influence of either AM 1 or PM 3 on the quantum chemical description of the specific ligands under investigation, and the likely ensuing impact of this choice on the property of interest.

Instituto do Milênio de Materiais Complexos, CNPq and CAPES.

[^189]
COMBINATORIAL DESIGN OF QUADRUPOLAR ORGANIC MOLECULES FOR TWOPhoton Absorption Applications: Mesoionic compounds

Gustavo L.C. Moura (PG) and Alfredo M. Simas* (PQ) - simas@ufpe.br
Departamento de Química Fundamental, CCEN, Universidade Federal de Pernambuco, Recife-PE-Brazil.

Keywords: Nonlinear Optics, Combinatorial Design, Mesoionic Compounds.

The absorption of two photons by organic molecules has many important technological applications, making the theoretical modeling and synthesis of new organic molecules with large values of cross sections for two photon absorption $\delta(\omega)$ much needed activities. Among the molecules studied, an important class is comprised of structures with quadrupolar arrangements of the type donor-bridge-donor (D-B-D) or acceptor-bridge-acceptor (A-B-A).

Motivated by the recent proposal by Fujita et al. ${ }^{1}$ that cationic defects in the structure of a molecule increase the maximum value of the cross section, $\delta_{\text {max }}$, we began to exploit the intrinsic charge separation in type A mesoionic rings for the combinatorial design of new quadrupolar molecules with large values of $\delta_{\max }$ (Fig. 1).

Type A-B-A
$a, b=O, S$ or NCH_{3}

Figure 1. Quadrupolar arrangements of mesoionic rings connected by polyene bridges studied.

- Resulre हnemblicuesom

The first step in the calculation of $\delta_{\max }$ for the molecules studied is to optimize their geometries using the AM1 methodology. To calculate $\delta_{\max }$ we employ a sum over states (SOS) procedure including 100 excited states in the calculation and a damping factor of $\Gamma=0.1 \mathrm{eV}$. To obtain the energies and transition dipoles for the excited states of the molecules we employ two different configuration interaction (CI) schemes with the INDO/S Hamiltonian. We perform Cl calculations with single excitations only (CIS) and with both single and double excitations (CISD).

Our aim is the molecular design of systems with enlarged values of $\delta_{\text {max }}$. Thus, we are advancing in this work a methodology capable of ordering a series of similar molecules in terms of increasing values of $\delta_{\text {max }}$. To show that we are indeed able to order molecules in terms of $\delta(\omega)$, we compare the calculated values of $\delta_{\text {max }}$ for a series of homologous
bis-donor diphenylpolyene molecules with their experimental counterparts. Indeed, we obtain a linear relationship between the calculated and experimental values of $\delta_{\text {max }}$, showing that our procedure functions as intended.

Our combinatorial study of the values of $\delta_{\text {max }}$, for the systems in Fig. 1, involves the calculation of 216 distinct molecules. Here we vary, not only the mesoionic ring (36 combinations of the groups a, b and Z), but also the substituent R connected to the ring (R equal to phenyl, p-amino-phenyl and p-nitrophenyl) keeping the length of the polyenic bridge fixed for $n=2$ (butadiene bridge).

When we compare the average values of $\delta_{\text {max }}$ for each of the six sets of 36 molecules studied (for each of the three groups R and the two types of linkage of the mesoionic rings to the bridge, D-B-D or $A-B-A)$ we observe that, independently of the Cl scheme employed, the molecules with the A-B-A linkage possess larger average values of $\delta_{\text {max }}$ than the molecules with the D-B-D linkage. For the A-BA arrangement, the largest average values of $\delta_{\max }$ are obtained for p-amino-phenyl in position R and, for the D-B-D arrangement, the best average values are obtained for p-nitro-phenyl in position R.

For the diphenylpolyenes we compute the largest value of $\delta_{\max }$, for a molecule with $n=2$, equal to 603 GM ($1 \mathrm{GM}=10^{-50} \mathrm{~cm}^{4} \mathrm{~s} /$ photon) with the CIS scheme. For the molecules containing mesoionic rings we obtain values with the CIS scheme as large as 3394 GM.

comelusions

In this work we show that quadrupolar molecules containing mesoionic rings are very promising as systems with elevated values of $\delta_{\text {max }}$. For these compounds we also show that the best strategy is to link the polyenic bridge to the two mesoionic rings through their cationic region. Our results are consistent with the proposal by Fujita et al. ${ }^{1}$

Achnomeromens

The authors acknowledge grants form CNPq, CAPES, Instituto do Milênio de Materiais Complexos and CENAPAD/SP.

[^190]
TOWARDS THE OPTHMIZATION OF TWO-PHOTON ABSORPTION CROSS SECTIONS OF BRIDGED ORGANIC MOLECULES

Gustavo L.C. Moura (PG) and Alfredo M. Simas* (PQ) - simas@ufpe.br
Departamento de Química Fundamental, CCEN, Universidade Federal de Pernambuco, Recife-PE-Brazil

Keywords: Nonlinear Optics, Structure Property Relationships, Pople-Pariser-Parr.

ThHorMcton

The absorption of two photons by molecules has many important applications, making the modeling of new molecules with large values of cross sections for two photon absorption $\delta(\omega)$ a much needed activity. A common strategy applied in the design of molecules with large values of $\delta(\omega)$ is to connect two donor/acceptor groups through a bridge. Up to now, the quadrupolar strategy, with arrangements of the type acceptor-bridge-acceptor (A-B-A) or donor-bridge-donor ($D-B-D$), has produced the best results. On the other hand, dipolar arrangements, of the type donor-bridge-acceptor (D-B-A), have not, up to now, produced very good results.
In the case of second order nonlinear optical properties, where only dipolar arrangements are useful, it is well known that there is an optimal set of donor/acceptor groups that maximize the first hyperpolarizability $\beta(0)$ for a given bridge. If we use donor/acceptor groups that are too weak or too strong, the value of $\beta(0)$ decreases. In this work we attempt to answer the following questions:
i) Is there an optimal set of donor/acceptor groups that maximizes the value of $\delta(\omega)$?
ii) Is the quadrupolar strategy really the best one?

Desurs e Discussion

To answer these questions, we considered a model system in which we performed Pople-Pariser-Parr (PPP) semiempirical calculations by varying the strength of the donor/acceptor groups in search of the optimal set of donor/acceptor group parameters.

The PPP parameterization we employed was the one by Schulten, Ohmine and Karplus ${ }^{1}$ for carbon with the Ohno formula for the electron-electron repulsion integrals. We fixed the geometry of our model system as the experimental geometry of 1,3butadiene. We then had a system with four orbitals, two of them in the symmetric bridge. To vary the donor/acceptor strength of the end-groups, we added an extra term $I_{A / D}$ to the negative of the ionization potential of the end-groups. A negative value for $I_{A / D}$ represents an acceptor group and a positive value a donor group. To obtain the energies and transition dipoles for the excited states of the system, needed to calculate $\delta(\omega)$ with a sum over states (SOS) procedure, we performed valence bond calculations retaining only the 20 singlet configurations
in the calculation. To calculate of $\delta(\omega)$ we used a damping parameter of $\Gamma=0.1 \mathrm{eV}$.

In Fig. 1 we have the values of the maximum cross section $\delta_{\text {max }}$ obtained for the system when we vary the value of $I_{A / D}$ symmetrically (quadrupolar strategy). We verified that, in the quadrupolar arrangement, there exists an optimum value of the donor/acceptor strength that maximizes of $\delta_{\max }$.

Figure 1. Value of the maximum cross section $\left(\delta_{\max }\right)$ for the system as a function of the donor/acceptor strength (l_{AD}).

When we varied the values of $I_{A / D}$ for the end groups independently, allowing for a dipolar arrangement for the system, we verified that values of $\delta_{\text {max }}$ larger than 1400 GM , much larger than the ones verified for the quadrupolar arrangements, could be obtained for $\delta_{\max }$. This large value of $\delta_{\max }$ was obtained for $\mathrm{I}_{\mathrm{A} D} \approx-2.75 \mathrm{eV}$ on one end and $\mathrm{I}_{\mathrm{A} D} \approx 2.75 \mathrm{eV}$ on the other. However, the increase in the value of $\delta_{\max }$ is accompanied by the band of two-photon absorption becoming closer to the most intense onephoton transition.

0.0nClursoms

Similarly to the case of $\beta(0)$, we conjecture that intermediate values of the donor/acceptor group strengths are necessary to maximize $\delta_{\max }$ for quadrupolar systems. However, we also conjecture that a dipolar system with a donor and an acceptor groups of equal strength, but with different signs for $I_{\text {AID }}$, can have values of $\delta_{\max }$ larger than the ones obtained for quadrupolar systems.

The authors acknowledge grants form the Instituto do Milênio de Materiais Complexos, CNPq and CAPES.

[^191]
ELABORAÇÃO DE UM BANCO DE DADOS DE PROPRIEDADES MOLECULARES PARA SEREM UTILIZADOS NA PARAMETRIZAÇÃO DE ÍONS LANTANÍDEOS.

Marlene Ramos Luis ${ }^{1}(I C)^{*}$ Ricardo O. Freire ${ }^{2}(\mathrm{PG})$ Alfredo M. Simas ${ }^{2}(\mathrm{PQ})$, Gerd Bruno da Rocha ${ }^{1}(\mathrm{PQ})$.
1Departamento de química - UFPB, Campus I João Pessoa - PB, CEP: 58051-900.
${ }^{2}$ Departamento de química Fundamental - UFPE, Recife - PE, CEP: 50670-901.
email: marlenerl@oi.com.br.
Palavras Chave: Lantanídeos, Banco de dados, Parametrização.

Materiais baseados em compostos supramoleculares contendo íons lantanídeos são largamente utilizados como dispositivos moleculares em diversas áreas da química, biologia, medicina e ciências dos materiais.

Modelos de química teórica que possibilitam a previsão de propriedades moleculares de interesse para esses sistemas possuem grande importância. Com esses modelos podemos realizar o planejamento teórico, e em seguida, sintetizar apenas os compostos mais eficientes, economizando assim, tempo e recursos financeiros.

Após treze anos de investimentos no desenvolvimento de modelos de química quântica que fossem capazes de prever o mais exatamente possível geometria do estado fundamental de complexos de lantanídeos, nosso grupo de química teórica conquistou uma posição de destaque no cenário científico internacional, com a elaboração dos modelos Sparkle/AM1 e Sparkle/PM3.

Uma possibilidade de aperfeiçoar ainda mais estes modelos e permitir novas capacidades de cálculos é a consideração explícita dos orbitais atômicos dos lantanídeos num cálculo semiempírico.

Essa idéia foi proposta recentemente por McNamara e colaboradores, onde uma base de orbitais atômicos spd foi incorporada para os lantanídeos e realizada uma nova parametrização para Eu, Gde Yb usando o método PM3 [1]. No entanto, o banco de dados de propriedades moleculares usadas para a parametrização desses átomos considerou apenas dados de geometria e de energias de estados eletrônicos excitados das espécies atômicas neutras e ionizadas.

Assim, nesse trabalho procuramos elaborar um banco de dados mais completo de propriedades moleculares ($\Delta \mathrm{H}_{\mathrm{f}}$, potencial de ionização, momento dipolar e geometria), a partir de dados experimentais e, também, a partir de resultados de cálculos, com o objetivo de serem usados na parametrização de novos modelos semi-empíricos para os átomos de lantanídeos.

O primeiro passo foi uma extensa pesquisa bibliográfica na busca dos dados moleculares. A captura dos dados de propriedades de substâncias contendo íons lantanídeos foi realizada através das mais diversas fontes de informação disponíveis: artigos científicos, handbooks, banco de dados, internet, contato com pesquisadores, tabelas, etc.

Conseguimos obter muitos dados importantes. Mais do que imaginávamos conseguir, porém, menos do que gostaríamos de dispor.

Mesmo assim, conseguimos encontrar o ΔH_{f} para mais de 40 compostos de lantanídeos, praticamente para todos os íons desta família. Para o potencial de ionização foram coletados valores para 102 compostos de lantanídeos. Para essas duas propriedades, os dados encontrados correspondem à fase gasosa e a $25^{\circ} \mathrm{C}$, para moléculas simples e complexos de coordenação.

Dados experimentais de momentos dipolares são muito escassos e praticamente não conseguimos encontrar nenhuma fonte de informação que relatassem valores dessa propriedade. Por isso, resolvemos usar dados obtidos a partir de cálculos usando o método B3LYP/6-31G*/ECP.

Por fim, dados de geometria em fase gasosa foram encontrados apenas para haletos e óxidos, no entanto, já possuímos muitos dados obtidos por cristalografia de raio-X que foram usados na parametrização dos modelos Sparkle/AM1 e Sparkle/PM3.

Abstract

coinctrgers Após uma exaustiva busca de dados de propriedades moleculares de compostos contendo íons lantanídeos apresentaremos o banco de dados que devemos usar na parametrização de novos modelos semi-empíricos para o cálculo de compostos de lantanídeos com consideração explícita de orbitais atômicos.

Warmerminamost
Os autores agradecem ao IMMC, CNPq (projeto Universal/2006 e bolsas) e Fapesq/PB.

[^192]
TDDFT-PCM STUDY OF THE ABSORPTION AND EMISSION SPECTRA OF ESIPT-EXHIBITING BENZAZOLE DYES

Rodrigo S. Iglesias ${ }^{1 *}$ (PQ), Leandra F. Campo ${ }^{1}$ (PQ), Fabiano S. Rodembusch ${ }^{1}$ (PQ), Valter Stefani ${ }^{1}$ (PQ), Paolo R. Livotto ${ }^{2}$ (PQ)
${ }^{1}$ Laboratório de Novos Materiais Orgânicos, Instituto de Química, Universidade Federal do Rio Grande do Sul.
${ }^{2}$ Grupo de Química Teórica, Instituto de Química, Universidade Federal do Rio Grande do Sul.

Av. Bento Gonçalves, 9500. CP 15003 CEP 91501-970, Porto Alegre, Brazil.
*rsiglesias@gmail.com Palavras Chave: ESIPT, TDDFT, PBEO, benzazoles

Organic molecules exhibiting an excited-state intramolecular proton transfer mechanism (ESIPT) have been continuously investigated in the past decades, for their potential applications as fluorescent labels and sensing probes for a variety of properties. ${ }^{\text {i }}$ This mechanism consists of a fourlevel phototautomerization, where the excited state of the enol form (E) undergoes an ultrafast proton transfer (femtoscale) to an adjacent electronegative atom, generating a keto tautomer which relaxes to the ground state, with a much shorter energy emission. Spontaneous reverse proton transfer recovers the more stable enol structure in the ground state.
Many theoretical studies have been reported on ESIPT-exhibiting compounds, with special attention on the proton transfer process. ${ }^{\text {ii }}$ Nevertheless, the simulation of electronic transitions, especially in solution, has not been sufficiently explored, mostly on account of the poor results obtained so far.
In this way, this work presents a theoretical investigation focused on the electronic spectra of a series of recently synthesized diallylaminobenzazoles (Figure 1), employing a TDDFT-PCM approach. ${ }^{\text {iii }}$

Figure 1. Diallylamino-benzazole structures.

Geometry optimization of the compounds was performed at B3LYP/6-31G(d,p) level, for the enol
tautomers, and CIS/6-31G(d) for the keto forms. Electronic transitions were calculated, employing
two different hybrid functionals: B3LYP and PBE0, both at $6-31+G(d)$ level. The solvatochromic behaviour was investigated employing the TDPCM scheme, with three non-protic solvents for which experimental data are available (benzene, dichloromethane and acetonitrile). The results show an excellent agreement between the calculated and experimental absorption bands, with slightly better results for the PBEO functional (a mean absolute error of 0.05 eV was obtained, versus 0.09 eV for the B3LYP functional). The keto emission wavelength maxima were also quite well reproduced, although not as much as in the absorption case. Both functionals present similar errors (0.13 eV), however, the PBE0 fails to simulate the observed positive solvatochromic effect.

Colnc les 01 LS

The TDDFT-PCM approach allowed to obtain very good results in the simulation of absorption and fluorescence spectra of ESIPT-exhibiting benzazole derivatives. Further studies are in progress with different substituents and calculation parameters in order to establish the ideal conditions for the accurate prediction of electronic spectra for this class of compounds.

Achowrocement

[^193]
CÁLCULOS TEÓRICOS DAS REAÇÕES DE ABSTRACÃO DE H DO ETANOL COM BASE AUG-CC-PVTZ E CORRELACÃO ElETRÔNICA MP2.

Leonardo Uhimann Soares ${ }^{1,2}$ (PG), Paolo Roberto Livotto ${ }^{2 *}$ (PQ)
${ }^{1}$ Departamento de Química e Física, Universidade de Santa Cruz do Sul.
${ }^{2}$ Instituto de Química, Universidade Federal do Rio Grande do Sul.* livotto@iq.ufrgs.br

Palavras Chave: etanol, abstração de hidrogênio, correlação eletrônica, aug-cc-pVTZ.

/hirodurad

A reação do átomo de hidrogênio com o etanol, um processo radicalar de propagação da cadeia da oxidação do etanol, leva a três isômeros descritos pelas equações abaixo ${ }^{1-4}$:

$$
\begin{align*}
& \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+\mathrm{H} \rightarrow \mathrm{CH}_{3} \mathrm{CHOH}+\mathrm{H}_{2} \tag{1}\\
& \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+\mathrm{H} \rightarrow \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}+\mathrm{H}_{2} \tag{2}\\
& \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+\mathrm{H} \rightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}+\mathrm{H}_{2} \tag{3}
\end{align*}
$$

Neste trabalho apresentamos uma caracterização teórica dos três canais desta reação. As energias, geometrias e frequências vibracionais dos reagentes, produtos e estados de transição foram calculados com o conjunto de base aug-cc-pVTZ e inclusão de efeitos de correlação eletrônica por Teoria de Perturbação de Møller-Plesset até a segunda ordem (MP2).

Na Figura 1 é apresentado um diagrama dos principais resultados energéticos obtidos através dos cálculos teóricos realizados neste trabalho. Neste diagrama podemos verificar que os produtos resultantes do canal 1 são $2,45 \mathrm{kcal} / \mathrm{mol}$ mais estáveis que os reagentes, enquanto que os produtos dos canais 2 e 3 estão, respectivamente, 5,69 e $13,46 \mathrm{kcal} / \mathrm{mol}$ acima do nivel dos reagentes.

Figura 1. Diagrama dos canais da reação do átomo de hidrogênio com o etanol (em hartree).

Os estados de transição seguem a mesma tendência com energias de $12,38 \mathrm{kcal} / \mathrm{mol}$ (canal 1), $18,05 \mathrm{kcal} / \mathrm{mol}$ (canal 2) e $24,87 \mathrm{kcal} / \mathrm{mol}$ (canal 3) maiores que a energia dos reagentes.

Na Figura 2 estão representadas as geometrias do estado de transição e do isômero resultante do canal 1, o mais provável da reação estudada.

Figura 2. Estrutura do estado de transição e do isồmero resultante do canal (1).

Os cálculos realizados mostram que o canal mais provável da reação do átomo de hidrogênio com a molécula de etanol é aquele em que o hidrogênio é abstraído do metileno. Os demais canais levam a produtos e estados de transição de alta energia. Os resultados obtidos estão em concordância com cálculos de menor nível realizados anteriormente. A obtenção de resultados mais definitivos implica na inclusão de efeitos de correlação eletrônica de mais alta ordem e de um conjunto de base mais extenso.

[^194]
Espectroscopia e Simulação por Dinâmica Molecular de Compostos Fluorescentes em Alta Pressão Hidrostática.

Reinaldo Oliveira Jr. ${ }^{1 *}(\mathrm{PG})$, Marcelo Takara ${ }^{1}(\mathrm{PQ})$, Amando S. Ito ${ }^{2}(\mathrm{PQ})$, Pedro G. Pascutti ${ }^{1}(\mathrm{PQ})$. *reijrbio@biof.ufrj.br
1- LMDM - IBCCF ${ }^{\circ} /$ UFRJ. 2 -DFM-FFCLRP / USP
Palavras Chave: Dinâmica Molecular, Alta Pressão Hidrostática, Abz, Fluorescência.

Th40 micalo

O Ácido orto-Aminobenzóico (o-Abz), também conhecido como Acido Antranílico, tem sido estudado e utilizado como sonda fluorescente em trabalhos experimentais de biologia estrutural. Nesse estudo foi utilizado um derivado metilado onde o foco foi à análise da anisotropia de fluorescência do $\mathbf{A b z - N (C H 3})_{2}$ em experimentos de "bancada" em alta pressão hidrostática, sendo que, para a compreensão dos resultados em escala atômico-molecular, realizamos simulações em solvente explicito por Dinâmica Molecular (DM) com o programa Gromacs 3.3.1, em um cluster de 18 moléculas de $\boldsymbol{A b z}$ em alta pressão hidrostática.

[Resmirabe engevissio

Simulação: Foram realizadas 8 simulações de DM em diferentes pressões de maneira crescente (entre 1 atm e 12 kbar) de 5 ns (nanosegundo) cada, totalizando 40 ns de simulação. Empregamos 18 moléculas de $\boldsymbol{A b z}$ e 4083 moléculas de água, dando um total de 12267 átomos. Durante a $D M$ foi observada a formação de agregados de Abz que em pressões superiores (5 e 12kbar) foram dissociados, como pode ser observado nas imagens das estruturas nos finais de cada simulação (fig. 1) e no aumento no tempo de decaimento da RCF (função de correlação rotacional) (fig 2).

	$0,5 \mathrm{kbar}$ T	$\left[\begin{array}{cc} 1,0 \text { kbar } \\ & \\ r & \\ r & \end{array}\right.$	$2,0 \mathrm{kbar}$ -x, r
$3,0 \mathrm{kbar}$		5,0 kbar ro	12,0 kbar

Figura 1. Imagens das estruturas finais das $D M$.

Figura 2. Correlação Rotacional Vs. Pressão (DM).

Experimental: Nos experimentos de fluorescência foram obtidas medidas da anisotropia (fig. 3) onde se observou o comportamento da agregação. Uma vez que a anisotropia é inversamente correlacionada ao grau de mobilidade do fluoróforo, associamos o seu aumento à formação de agregados. Em comparação a outros compostos derivados do o-Abz $\mathbf{A b z}-\mathrm{NH}_{2}$ e $\mathrm{Abz}-\mathrm{NH}\left(\mathrm{CH}_{3}\right)$, verificou-se que o $\mathrm{Abz}-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$ já apresenta um estado de agregação em 1atm. Com o aumento da pressão, ocorre uma agregação máxima em 250 atm. depois observamos a sua desagregação constante até a pressão de 2000 atm . Ao atingir um mínimo aproximado de 2050 atm , houve uma tendência de aumento da agregação.

Figura 3. Anisotropia de Fluorescência para Abzs.

conclusors

A variação da anisotropia de fluorescência de oAbzs é devida à variação de mobilidade desses compostos com a formação de agregados. Características hidrofóbicas foram introduzidas no Abz- $\left(\mathrm{CH}_{3}\right)_{2}$ pelo acréscimo de grupos metilas levando à maior agregação, a qual sucumbe ao aumento da pressão hidrostática. A solubilização deste composto em função da pressão foi monitorada por simulação, possibilitando análises estruturais detalhados. Concluímos com essas análises que a água em condições críticas sofre mudanças estruturais aumentando sua fluidez e permitindo solubilizar compostos hidrofóbicos.

```
#|Wargmmentos
```

Pelo apoio financeiro: CNPq / MCT.

[^195]
COMBINED NMR AND GIAOIDFT STUDIES OF THE POLYKETIDES AURASPERONE A AND FONSECINONE A

Sergio de Lazaro ${ }^{1(\mathrm{PQ})_{*}}$, Francinete R. Campos ${ }^{2(\mathrm{PG})}$, Edson Rodrigues $-\mathrm{Fo}^{2(\mathrm{PQ})}$, Andersson Barison ${ }^{3(\mathrm{PQ})}$, Cristina Daolio ${ }^{3(P G)}$, Antonio G. Ferreira ${ }^{3(\mathrm{PQ})}$, Victor Polo ${ }^{4(\mathrm{PQ})}$, Elson Longo ${ }^{5(\mathrm{PQ})}$, Juan Andrés ${ }^{4(\mathrm{PQ})}$
*srlazaro@uepg.br
1 Department of Chemistry, UEPG, Campus Uvaranas, Avenida Carlos Cavalcanti, 4748 - CEP 84030-900, Ponta Grossa, PR, Brazil
2 Mass Spectrometry Laboratory, Chemistry Department, UFSCar, São Carlos, SP, Brazil.
3 Nuclear Magnetic Resonance Laboratory, Chemistry Department, Ufscar, São Carlos, SP, Brazil
4 Department de Ciències Experimentals, UJI, Castelló, Spain
5 LIEC, Institute of Chemistry, UNESP, Araraquara, SP, Brazil.

Keywords: GIAOIDFT; NMR chemical shifts, Polyketides, Aurasperone A, Fonsecinone A.

An important class of polyketides are the dimeric naphtho- γ-pyrones found especially as yellow pigments and may be present in food stuffs infected with Aspergillus species ${ }^{2}$. Their structures are formed by an angular flavasperone and a linear rubrofusarin B, both heptaketides. However, the study of isomeric structures like these polyketides is extremely difficult due to their molecular similarity. Because of this problem, the literature has demonstrated the usability of quantum modelling to successfully simulate ${ }^{13} \mathrm{C}$ NMR chemical shifts ${ }^{2}$ employing ab initio calculations.

Quantum chemical calculations have been carried out using the Gaussian 03 package. Aurasperone A and fonsecinone A compounds (Figure 1) were fully optimized using DFT/B3LYP methodology, solvent effect was simulated by PCM methodology. It were employed the set bases: $6-31 \mathrm{G}, 6-31 \mathrm{G}(\mathrm{d})$ and 6 $31 \mathrm{G}(\mathrm{d}, \mathrm{p})$. After the full optimization, the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR chemical shifts were calculated with the GIAO method, using the corresponding TMS shielding calculated at the same theoretical level as reference.

Figure 1: Structures of Aurasperone A (a) and Fonsecinone A (b).

Table 1: Dihedral Angle (degree) and μ (Debye) for aurasperone A and fonsecinone A.

According to Table 1 the dihedral angles between conjugated rings for aurasperone A and fonsecinone A molecules are predicted to be the same, 253.0° to the basis set $6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$, due to the stereochemical similarity among the molecules. Another difference is in the μ : 11.5 Db for aurasperone A while 1.0 Db for fonsecinone A. This change of the dipolar moment leads to a different salvation.

Comer ustoms

These results determinate the internal dihedral angles and dipolar moments of these molecules and explains their difference of solubility.

Parchomberomenis
The authors are grateful to FAPESP, CNPq for financial support and research fellowships. V.P. and J.A. thank the Project BQU2003-04168-C03-03, Project GRUPOS02-028 for financial support.

[^196]
INVESTIGAÇÃO DA BASICIDADE DE AMINAS VIA CÁLCULOS DFT E SIMULAÇÃO DO EFEITO DO SOLVENTE

Josemberto R. da Costa ${ }^{1, *}$ (PG), Josias A. R. dos Santos ${ }^{1}$ (IC), Danilo Sidney Ramos de Santana ${ }^{1}$ (PQ),
Regiane C. M. U. Araújo ${ }^{1}$ (PQ), Antônio B. Carvalho ${ }^{1}(\mathrm{PQ})$.

E-mail: josemberto.costa@bol.com.br
${ }^{1}$ Departamento de Química-CCEN-Universidade Federal da Paraiba, 58036-300-João Pessoa-PB-Brasil.

Palavras Chave: Aminas, Basicidade, DFT, PCM.

Nas aminas, a capacidade de aceitar prótons, também conhecida como basicidade, depende, dentre outros fatores, do meio em que essas substâncias se encontram. Quando o solvente é polar, sabe-se que a basicidade é influenciada tanto pelo efeito indutivo quanto pela solvatação. Caso esse meio seja apolar, a basicidade é influenciada principalmente pelo efeito indutivo dos grupos alquila. Uma maneira de quantificar a basicidade das aminas alifáticas pode ser pelo emprego do conceito ácido-base proposto por Broswted-Lowry realizando medidas de $\mathrm{pK}_{\mathrm{b}}{ }^{1}$.
Neste contexto, este trabalho propõe uma investigação da influência do solvente e da carga no nitrogênio de aminas alifáticas sobre os valores de pK_{b}. Para a simulação do efeito do solvente é usado o método PCM (Polarized Continuum Model) ${ }^{2}$, onde o solvente é descrito a partir de sua constante dielétrica e de uma cavidade arbitrária onde a molécula do soluto é inserida. O soluto empregado inicialmente é a água, cuja constante dielétrica é igual a 78,39 , correspondendo a um solvente polar. A distribuição de cargas nas aminas é obtida empregando o modelo CHELPG ${ }^{3}$. Os cálculos são realizados utilizando a DFT (Density Functional Theory) ${ }^{4}$ com os funcionais hibridos PBE1PBE 5 e B3LYP ${ }^{6}$ e o conjunto de base $6-31++G^{* *}$.

A simulação do efeito do solvente para o caso da amônia e das aminas investigadas, $\mathrm{NH}_{2} \mathrm{CH}_{3}$, $\mathrm{NH}\left(\mathrm{CH}_{3}\right)_{2}$ e $\mathrm{N}\left(\mathrm{CH}_{3}\right)_{3}$, utilizando o modelo PCM, mostrou que, em solução aquosa, a carga no átomo de nitrogênio se torna menos negativa à medida que aumenta do número de substituintes $-\mathrm{CH}_{3}$.
Supondo que a reação abaixo se encontra em equilibrio,
amina alifática+ $\mathrm{H}_{2} \mathrm{O} \leftrightarrow$ (amina alifática protonada) $)^{+}+\mathrm{OH}$ significa dizer que, o grupo $-\mathrm{CH}_{3}$, sendo um grupo de efeito indutivo positivo, vai contribuir para aumentar a atração entre o átomo de nitrogênio da amina e o átomo de hidrogênio das moléculas de
água. Com o aumento da solvatação do nitrogênio nas aminas, deve ocorrer um decréscimo da
formação do ácido conjugado, (amina alifática protonada) ${ }^{\dagger}$, ocasionando menores valores de pK_{b}. Na Tabela 1 são apresentados os resultados obtidos através dos dois métodos DFT/PBE1PBE e DFT/B3LYP.

Tabela 1. Valores da carga CHELPG no átomo de nitrogênio da amônia e das aminas, obtidos através dos cálculos DFT/PBE1PBE e DFT/B3LYP, com o conjunto de base $6-31++G^{* *}$ e o método PCM para simulação do efeito do solvente.

		Carga no Nitrogênio	
Molécula	pK_{b}	B3LYP	PBE1PBE
NH_{3}	4,75	$-1,198$	$-1,188$
$\mathrm{NH}_{2} \mathrm{CH}_{3}$	3,34	$-1,160$	$-1,163$
${\mathrm{NH}\left(\mathrm{CH}_{3}\right)_{2}}^{2,27}$	$-0,878$	$-0,971$	
$\mathrm{~N}\left(\mathrm{CH}_{3}\right)_{3}$	4,19	$-0,435$	$-0,482$

*valores experimentais obtidos da referência 1.
Os resultados mostrados na Tabela 1 indicam que a tendência observada para esse conjunto de aminas alifáticas, independe do tipo de funcional utilizado.

Comelresos

A metodologia empregada nessa investigação se mostrou adequada para explicar os resultados experimentais, considerando as aminas em meio aquoso. Porém, se faz necessário variar gradualmente a polaridade do solvente empregado para mensurar a ação da solvatação nos valores de pK_{b} das aminas investigadas.

Anombermemios

Os autores agradecem o suporte financeiro dos órgãos de fomento à pesquisa CAPES, CNPq e FAPESQ/PB

[^197]
ESTUDO DAS INTERAÇÕES E ALTERAÇÕES ESTRUTURAIS INDUZIDAS EM COMPLEXOS DNAIECTEINASCIDINA VIA DINÂMICA MOLECULAR.

Alex Sandro C. de Andrade ${ }^{1}$ (PG), Melina Mottin ${ }^{1}$ (IC), Hermes L. N. de Amorim ${ }^{2,}$ (PQ), Paulo A. Netz ${ }^{1 *}$ (PQ). netz@iq.ufros.br
(1) Instituto de Química, UFRGS; (2) Curso de Química, ULBRA.

Palavras Chave: Dinâmica Molecular, DNA, Ecteinascidina, Ligações de Hidrogênio.

Abstract

Hiliodlicato Neste trabalho estudamos a interação entre a Ecteinascidina (ET743) e fragmentos de DNA (oligonucleotídeos). A ET743 apresenta uma grande atividade no pré-tratamento de pacientes com sarcoma de tecidos moles e mostrou respostas satisfatórias em testes clínicos de fase III'. Sabe-se que a ET743 liga- 1. se à fenda menor do DNA, na posição N2 de guaninas, alquilando-as e provocando dobramento do DNA em direção à fenda maior${ }^{2}$, alterando a sua estrutura. Assim, é fundamental a caracterização dos parâmetros estruturais e suas flutuações nos complexos ET743oligonucleotídeo. Os principais parâmetros se referem aos ângulos de rolagem (roll), deslocamento no eixo x (X-displacement) e torção (twist) entre os pares de bases, bem como as curvaturas global e local. Realizamos também uma extensa análise das ligações de hidrogênio (HBs) entre a ET743 e diferentes seqüências de oligonucleotídeos, e de sua influência sobre as alterações estruturais induzidas, comparando com a literatura ${ }^{2}$, em complexos não covalentes e covalentes (com alquilação) entre a ET743 e diferentes oligonucleotídeos.

Realizamos simulações dos oligonucleotídeos: d(CGATAGTATCCG), d(CGATAGGATCCG), d (CGATCGGATCCG), com suas respectivas fitas complementares, que apresentam baixa, moderada e alta interação com a ET743, respectivamente. Fazendo-se o monitoramento das HBs, observou-se a formação de ligações entre ligantes diferentes dos descritos na literatura (Tabela 1). Utilizando o programa $\Varangle 3 D N A^{3}$, realizamos análises estruturais. Considerando-se a curvatura global, a seqüência AGT apiesentou-se fortemente curvada, enquanto que a seqliência AGG, embora curva, apresenta um relaxainento ao final da simulação e a seqüência CGG apresentcu uma curvatura mais suave, porém, mais estável.
Em relação às curvaturas locais, as seqüências AGT e CGG apresentaran estruturas flexíveis, e a CGG mantém sua curvatura estável. A seqüência AGG apresentou curvatura local mais rígida, mostrando-se pouco flexível. Observou-se que de modo geral um pequeno aumento do
roll, e nas sequâncias AGG e CGG a fenda menor aumenta levemente e o X-displ torna-se menos negativo.
Tabela 1: Ligações de hidrogênio alternativas dos complexos nẵo-covalentes entre ET743 e oligonucleotídeos.

Oligonucleotídeos	HB (literatura)	$\begin{gathered} \mathrm{HB} \\ \text { (alternativo) } \end{gathered}$
CGG (HB4)	$\begin{gathered} (6 \mathrm{GN} 2-\mathrm{ETO} 55) \\ 0,487 \mathrm{~nm} \end{gathered}$	$\begin{gathered} (20 G N 2-E T O 55) \\ 0,252 \mathrm{~nm} \end{gathered}$
AGG (HB3)	$\begin{gathered} \hline \text { (ETO47-20TO3') } \\ 0,789 \mathrm{~nm} \\ \hline \end{gathered}$	$\begin{gathered} \text { (ETO47-20TO1P) } \\ 0,283 \mathrm{~nm} \end{gathered}$
AGG (HB4)	$\begin{gathered} \text { (6GN2-ETO55) } \\ 0,722 \mathrm{~nm} \end{gathered}$	$\begin{gathered} \text { (7GN2-ETO55) } \\ 0,309 \mathrm{~nm} \\ \hline \end{gathered}$
AGT (HB4)	$\begin{gathered} \hline \text { (6GN2-ETO55) } \\ 0,438 \mathrm{~nm} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { (ETH55-20TO3') } \\ 0,310 \mathrm{~nm} \\ \hline \end{gathered}$
AGT (HB4)	$\begin{gathered} \hline \text { (6GN2-ETO55) } \\ 0,438 \mathrm{~nm} \end{gathered}$	$\begin{gathered} \hline \text { (ETH55-21AO2) } \\ 0,320 \mathrm{~nm} \\ \hline \end{gathered}$

Glicmeras

A interação da ET743 com oligonucleotídeos forma ligações de hidrogênio alternativas às da literatura ${ }^{2}$ muitas delas mais estáveis. Em todas as simulações, constata-se que há um dobramento do DNA no sentido da fenda maior devido à presença da ET743. Pela comparação dos parâmetros estruturais observamos que as seqüências CGG e AGT apresentaram maior flexibilidade, enquanto AGG mostra-se mais rígida. No caso das seqüências AGG e CGG, observamos que a ET743 causa o aumento da fenda menor, o que pode facilitar a interação desta com os sítios. A simulação dos complexos covalentes destes oligonucleotídeos com o ligante permite quantificar a permanência da ET743 nos sítios.

Figharegimenios

Os autores agradecem ao CNPq pela concessão de auxilio via Edital Universal 2004 (processo 477158/2004-8) e bolsa PIBIC/UFRGS.

[^198]
DOCKING DE UMA TELUROOXETANA EM CATEPSINA B.

Stella Hernandez Maganhi ${ }^{1}(\mathrm{PG})^{*}$, Mauricio Vega-Teijido ${ }^{1,4}(\mathrm{PQ})$, Julio Zukerman-Schpector(PQ) ${ }^{1}$, Rodrigo L.O.R. Cunha ${ }^{2}$, João V. Comasseto ${ }^{3}$, Ignez Caracelif ${ }^{4}$ (PQ)
stella_maganhi@yahoo.com.br
${ }^{1}$ LaCrEMM - Departamento de Química, UFSCar,São Carlos-SP.
${ }^{2}$ Departamento de Biofísica, UNIFESP, SP
${ }^{3}$ Instituto de Química-USP
${ }^{4}$ BioMat - Departamento de Física, Faculdade de Ciências, UNESP, Bauru-SP

Palavras Chave: composto de Te (IV), docking, catepsina B, difração de raio X.

ITHOCler

Compostos de $\mathrm{Te}(\mathrm{IV})$ tem sido recentemente estudados com finalidades terapêuticas ${ }^{1}$. Em particular esses compostos atuam como inibidores de cisteínoproteases, presentes em praticamente todas as classes de seres vivos. Uma das cisteíno-proteases mais amplamente investigada é a Catepsina B, uma enzima lisossomal presente em vários tipos de tecidos de mamíferos. Raramente é encontrada no meio extracelular, a não ser quando o tecido é tumoral. No meio extracelular, proteases podem participar da degradação de componentes da matriz extracelular, diminuindo a adesão intercelular e assim facilitando o processo de invasão tumoral. Por esse motivo, a procura por agentes inibidores de proteases se reveste de grande importância, uma vez que os mesmos podem ser aplicados no tratamento do câncer, retardando a invasão e o espalhamento das células tumorais ${ }^{1}$. Neste trabalho é apresentada a estrutura cristalográfica de uma telurooxetana e estudos de docking desse composto no sítio ativo da Catepsina B.

Resmindos 20 Belissab

A estrutura do composto de $\mathrm{Te}(\mathrm{IV})$ foi determinada por difração de raio X com métodos diretos e refinada por mínimos quadrados. O desenho da molécula é mostrado na Figura 1.

Figura 1 - Projeção da estrutura cristalográfica
As posições dos átomos de hidrogênio da molécula cristalográfica de telúrio (IV) foram então otimizadas utilizando os funcionais B3LYP com as funções de base de Ahlrichs e ECP de Hay \& Wadt para Te, 6-31G* para $\mathrm{Cl}, \mathrm{C}, \mathrm{O}$ e $6-311+\mathrm{G}^{*}$ para $\mathrm{H}^{2}{ }^{2}$ A estrutura tridimensional da Catepsina B selecionada foi a de código- PDB $^{3} 1 \mathrm{gmy}$, na qual a cisteíno-protease humana está complexada com um inibidor do tipo dipeptidilnitrila. O programa GOLD ${ }^{4}$, baseado em algoritmos genéticos, foi utilizado
nos cálculos de docking flexivel; para a validação da metodologia, foi realizado o redocking deste inibidor utilizando como centro do sítio a Cys29. O docking do composto em estudo foi feito utilizando a estrutura cristalográfica com os hidrogênios otimizados. Para a análise primaria dos resultados, utilizou-se como critério um elevado número de repetições da orientação global do ligante no sítio ativo (complexos equivalentes) e foi selecionado aquele de maior score; um novo cálculo de docking de ajuste foi realizado agora usando como orientação o resultado primario. ${ }^{5}$ Neste novo cálculo o resultado foi unânime e com scores otimizados. Os resultados de docking mostram um posicionamento favorável do ligante no sítio ativo, formando-se um complexo precursor da ligação covalente entre o átomo de Te e o S da Cys29. Adicionalmente, foram observadas outras interações entre o ligante e resíduos do sítio ativo, como a His199 (envolvida no mecanismo enzimático).

concusoes

Os resultados de docking mostram um posicionamento altamente favorável do composto em estudo no sítio ativo. Estes resultados permitirão o desenho de novos inibidores da família das telurooxetanas em função das interações encontradas com o resíduos do sitio ativo.

ADMarectimentos

CNPq, FAPESP, CAPES

[^199]
MIICELLIZATION OF N-DODECYLAMINO-1-DEOXYLACTITOL IN WATER: A MOLECULAR DYNAMICS SIMULATION STUDY

Fabiano E. S. Gomes ${ }^{1,2}$ (PG) ${ }^{*}$, Tereza N. de Castro Dantas ${ }^{1}$ (PQ), Maria Aparecida M. Maciel ${ }^{1}$ (PQ), Bruno A. C. Horta ${ }^{2}$ (PG), Ricardo Bicca de Alencastro ${ }^{2}$ (PQ) *feibi_natal@yahoo.com.br

1 Departamento de Química, UFRN, Natal-RN
2 Instituto de Química, UFRJ, Rio de Janeiro-RJ
Keywords: molecular dynamics simulation, micelle, sugar-based surfactant, hydration behavior, hydrogen bond.

Nonionic sugar-based amphiphiles like glycolipids have attracted attention due to their solubilization capacity and immunomodulatory activity ${ }^{1}$. However, naturally occurring glycolipids are often difficult to isolate. Recently, a new family of sugar-based amphiphiles derived from unprotected disaccharides has been introduced ${ }^{2}$. Their synthesis involves a short (two steps) and nonexpensive procedure, thus they are good candidates for several biochemical applications such as protein solubilization and sustained release devices.

In this work, we use atomistic molecular dynamics (MD) simulations to computationally evaluate the inter- and intrasurfactant interactions as well as the hydration behavior and stability of the aggregates formed by N -dodecylamino-1-deoxylactitol in water.

Resints and iblecission

MD simulations were performed using the AMBER 9.0 suite of programs over 4 ns at 298 K . The micelle was built using an in-house software with an aggregation number of 88 molecules, corresponding to the experimental data ${ }^{3}$. The system was solvated with 16,945 TIP3P water molecules, giving a formal surfactant concentration of 0.25 M , considerably above cmc $\left.\left(6 \times 10^{-4} \mathrm{M}\right)\right)^{3}$ Long-range electrostatics were treated by using a particle-mesh Ewald method for octahedral periodic boundary conditions. Nonbonded interactions were truncated at $9.0 \AA$. A time step of 2 fs was used, in conjunction with the SHAKE algorithm.

Over the course of the 4 ns simulation, the micelle remained intact and full escape events by surfactants were not observed (Figure 1). The radius of gyration, R_{g}, was cal'culated over 4 ns (Figure 1) and displays a strong down.»ard drift during the first ps of the trajectory followed by a consłant line, indicating stabilization of R_{g} near $47 \AA$.

b) 2.0 ns
c) 4.0 ns
d) Radius of gyration
Figure 1. MD snensshcte, and radius of gyration of N -Dodecylamino-1-jeoxylactitol micelle

In order to evaluate the intra- and inter-headgroup interactions, we defined hydrogen bonds based on the geometric criteria of $3.0 \AA$ maximum heavy atom distance and 120° or higher angle. We considered the O or N atoms as acceptors and, where appropriate, the
corresponding H atom as donor. The total number of interheadgroup hydrogen bonds per surfactant is 16.67 (Table 1). Analysis of the individual intra-headgroup hydrogen bonds showed strong interactions between O acceptors and OH donors from the galactose moiety.
Table 1. Inter-headgroup interactions and hydration number around each heavy atom per monomer

Atom (group*)	Inter-headgroup interactions		Hydration number**
	donor	acceptor	
N1	1.01	0.51	0.30 ± 0.05
O2 (glc)	1.67	1.78	1.37 ± 0.08
O3 (glc)	1.61	1.68	0.84 ± 0.06
O 4 (glc)		0.81	0.45 ± 0.05
O 5 (glc)	1.75	1.62	1.42 ± 0.08
O (glc)	2.76	2.41	2.08 ± 0.09
O2 (gal)	1.74	1.64	1.85 ± 0.10
O3 (gal)	1.65	1.64	2.32 ± 0.09
O4 (gal)	1.78	1.65	1.69 ± 0.08
O5 (gal)		0.58	0.49 ± 0.06
O6 (gal)	2.69	2.35	1.80 ± 0.08

* glc = glucose moiety, gal = galactose moiety
** Number of $\mathrm{H}_{2} \mathrm{O}$ molecules within a distance radius of $3 \AA$
The hydration behavior and radial distribution functions for O and N atoms show poor water density near N and O-ether atoms as expected (Table 1). O3 (glc) atoms has also shofilf low hydration number due to the conformation adopted by the monomers within the micelle.

4-ns MD simulations showed that N -dodecylamino-1-deoxylactitol forms stable micelles in water. In addition, intra- and interheadgroup interactions play a fundamental role on the conformational arrangement of the monomers within the micelle.

We thank CNPq and FAPERJ for financial support.

[^200]
HYDROGEN BONDS BETWEEN HYDROGEN FLUORIDE AND 1,1DIFLUOROETHYLENE

Victor H. Rusu* (IC), João Bosco P. da Silva (PQ), Mozart N. Ramos (PQ)

victorusu@gmail.com

Departamento de Química Fundamental, Universidade Federal de Pernambuco (UFPE), 50739-901, Recife (PE), Brazil.
Key-words: ab initio calculations; hydrogen bonds; binding energies; molecular properties.

R1TOGMCHO

In this work we have investigated six different possibilities of molecular complexation between fluoride hydrogen (HF) and 1,1-difluoroethylene $\left(1,1-C_{2} H_{2} F_{2}\right)$, which are shown in the figure 1.

(A)

(D)

(B)

(E)

(C)

(F)

Figure 1
This investigation has been performed through the MP2 and B3LYP theoretical calculations using the 6$31++G(d, p)$ basis set with the GAUSSIAN 98w Program.

R Resulishinmoiscussiom

Both calculations predicted the correct geometry for the 1,1-difluoroethylene monomer within an average error of $0.01 \AA$ for the bond lengths and average error of 0.5° for the angles [1].
Our calculations have also revealed that only the B, A and F structures do not present imaginary vibrational frequencies and as consequence, it is expected that they represent minimum points on the potential energy surface. Both MP2 and B3LYP calculations have indicated the following order to the
binding energies including to zero-point correction and BSSE: $B>A>F$, as well as the H-bond lengths as can be seen in the table 1.

The more pronounced effects due to complexation are verified to the H-F hydrogen fluoride. As expected, the HF stretching frequency is shifted downward, whereas its IR intensity is enhanced upon H -bond formation [3]. This latter can be adequately interpreted using the modified chargecharge flux-overlap (CCFO) model for infrared intensities [2]. Finally, we have also analyzed the new vibrational modes arising from complexation which show several interesting features, in particular those associated to the HF bending modes.

Cophe Mislons

The 1,1-difluoroethylene geometry obtained by the calculation represents the experimental geometry. Both MP2 and B3LYP predict the same order of stability for the complexes and reveal that not all possible sites of complexation are possible.

The authors gratefully acknowledge financial support from the Brazilian funding agency CNPq.

[^201]| Table 1 | | | | |
| :---: | :---: | :---: | :---: | :---: |
| Complex | $\begin{gathered} \Delta \mathrm{E}^{\mathrm{ZPE}, \mathrm{BSSE}, \mathrm{MP2}} \\ \left(\mathrm{~kJ} . \mathrm{mol}^{-1}\right) \end{gathered}$ | $\Delta \mathrm{E}^{\mathrm{ZPE}, \mathrm{BSSE}, \mathrm{B}} \mathrm{LYP}$
 $\left(\mathrm{kJ} . \mathrm{mol}^{-1}\right)$ | $\mathrm{R}_{\mathrm{H} \ldots \mathrm{F}}$
 (A) | $\mathrm{R}_{\mathrm{H} . . . \mathrm{F}}{ }^{\text {B3LY }}$
 (A) |
| A | -4.75 | -4.76 | 1.988 | 1.955 |
| B | -5.17 | -5.12 | 1.992 | 1.945 |
| F | -1.64 | -4.38 | 2.235 | 2.154 |

ANÁLISE TOPOLÓGICA DE REDES DE LIGAÇÕES DE HIDROGÊNIO EM UM SISTEMA MODELO.

Juliana Angeiras B. da Silva ${ }^{1 *}(\mathbb{P G})$, Vivianni M.L. dos Santos ${ }^{2}(\mathbb{P Q})$, Francisco G.B. Moreira ${ }^{3}(\mathbb{P Q})$, Ricardo L. Longo ${ }^{1}$ (PQ). *juangeiras@yahoo.com.br
${ }^{1}$ Laboratório de Química Teórica e Computacional, Departamento de Química Fundamental, Universidade Federal de Pernambuco, Cidade Universitária, 50.740-540 Recife - PE, Brasil.
${ }^{2}$ Laboratório de Química Geral e Analítica, Colegiado de Medicina Veterinária, Universidade Federal do Vale do São Francisco, 56.304-440 Petrolina - PE, Brasil.
${ }^{3}$ Laboratório de Física Computacional, Departamento de Física, Universidade Federal de Pernambuco, 50.670-901 Recife - PE, Brasil.

Palavras - Chave: Mecânica estatística, redes complexas, transição de fase, método de Monte Carlo.

1 Tho 0 THe:0

Análises das propriedades topológicas locais e globais das redes de ligações de hidrogênio entre as moléculas de água em condições próximas da supercrítica indicam o aparecimento de padrões típicos de pequenos-mundos (small-word), isto é, alto grau de aglomeração local e pequenos tamanhos de ilhas. Em condições normais de temperatura e pressão, estas redes não apresentam tais padrões, pois se observa um alto grau de agregação e a percolação do sistema.

Neste trabalho, realizamos simulações computacionais com o método de Monte Carlo (MC-NPT) nas condições normais (298 K e 1 atm) para a água modelada com o potencial TIP4P. Neste potencial, introduzimos na contribuição eletrostática um fator de amortecimento que modifica as cargas dos sítios (H e L), permitindo assim, de forma controlada, reduzir a formação das ligações de hidrogênio.

Esperamos que a análise das propriedades topológicas das redes de ligação de hidrogênio em função deste fator de amortecimento forneça informações importantes sobre os regimes de percolação, de pequenos-mundos e aleatório, bem como a transição entre estes regimes.

Os resultados para o coeficiente de agrupamento (C), a conectividade média ($<k>$) e a distância química (L), em função do fator de amortecimento $\lambda(0,7 \leq \lambda \leq 1)$, indicam que o sistema exibe uma transição de fase topológica em $\lambda_{c}=0,75$, separando as regiões de pequenos e grandes valores de $\mathrm{Ce}<k>$, para $\lambda<\lambda_{c}$ e $\lambda>$ λ_{c}, respectivamente.
A análise de estatística de ilhas mostra que na região $\lambda>\lambda_{c}$ tem-se a formação de um agregado com cerca de 99% dos componentes, enquanto que para $\lambda<\lambda_{c}$ ocorre um grande número de monômeros, dímeros e trímeros e não há mais a percolação do sistema. O grau de distribuição de ligações para estas redes mostra que, para a
região $\lambda>\lambda_{c}$, a distribuição é muito similar a uma distribuição de Poisson, mostrando que a rede se comporta como uma rede aleatória, mas para valores de $\lambda<\lambda_{c}$, a distribuição passa a ser assimétrica e bastante diferente da distribuição de Poisson. Cálculos das propriedades termodinâmicas, como densidade, entalpia, e entalpia de vaporização (figura 1), também são indicativos da ocorrência de uma transição de fase topológica em $\lambda_{c}=0,75$, sugerindo uma relação entre transição de fases topológica e termodinâmica.

Figura 1. Entalpia de vaporização, em $\mathrm{kcal} \mathrm{mol}^{-1}$, em função do parâmetro λ para a caixa de simulação com 640 moléculas.

Análise topológica mostra que para o amortecimento das interações eletrostáticas leva ao aparecimento de padrões típicos de pequenos-mundos (small-word) através de uma transição de fase que pode ser observada tanto pela análise topológica quanto pelo cálculo de propriedades termodinâmicas, mesmo nas condições normais de temperatura e pressão. Isto leva a propor a existência de uma relação entre a topologia e a termodinâmica do sistema.

CNPq, CAPES, FINEP, PADCT, RENAMI.

ESTRUTURAS MOLECULARES, ESPECTROS DE RMN $-{ }^{17}$ O E VIBRACIONAIS E ESTADOS DE TRANSIÇÃO ENVOLVENDO COMPLEXOS [MOO($\left.\mathrm{O}_{2}\right)_{2} \mathrm{~L}_{1} \mathrm{~L}_{2}$].

Juliana Angeiras B. da Silva ${ }^{1 *}$ (PG), Ricardo L. Longo ${ }^{1}$ (PQ), *juangeiras@yahoo.com.br
${ }^{1}$ Laboratório de Química Teórica e Computacional, Departamento de Química Fundamental, Universidade Federal de Pernambuco, Cidade Universitária, 50.740-540 Recife - PE, Brasil.

Palavras - Chave: ab initio, espectroscopia, complexos oxo-diperoxo, oxidação seletiva.

Abstract

Fincoricalo Complexos oxo-diperoxo de metais de transição do tipo $\left[\mathrm{MO}\left(\mathrm{O}_{2}\right)_{2} \mathrm{~L}_{1} \mathrm{~L}_{2}\right], \mathrm{M}=\mathrm{Mo}$ e $\mathrm{W}, \mathrm{L}_{1}=$ pirazol, piridina- N -óxido, $\mathrm{L}_{2}=\mathrm{H}_{2} \mathrm{O}$, sílica, são utilizados em várias reações de oxidação seletiva de, por exemplo, olefinas e sulfetos, nas quais a espécie ativa transfere oxigênio e podem, posteriormente, ser regeneradas. As espécies ativas envolvidas nestes tipos de reações ainda não estão bem estabelecidas. A aplicação de métodos ab initio e DFT na determinação das estruturas moleculares e eletrônicas destes complexos e de estados de transição, bem em espectroscopias de ressonância magnética nuclear (RMN) e vibracional são importantes para a determinação dessas espécies ativas e também podem auxiliar na proposição do mecanismo da reação, que explique, inclusive, a estereosseletividade observada na formação de sulfóxidos quirais quando L_{1} é quiral.

Cálculos ab initio e DFT das estruturas moleculares e eletrônicas destes complexos foram realizados com os métodos RHF, MP2 e B3LYP. A estrutura mais estável da espécie pentacoordenada $\left[\mathrm{MoO}\left(\mathrm{O}_{2}\right)_{2}\right]$ corresponde à pirâmide quadrada distorcida (C_{s}-assimétrica), a única observada em complexos heptacoordenados por cristalografia, e é inerente a estes complexos e não à presença dos ligantes L_{1} e/ou L_{2}. Para as espécies hexacoordenadas $\left[\mathrm{MoO}\left(\mathrm{O}_{2}\right)_{2} \mathrm{~L}\right]$, observa-se a seguinte tendência nas energias de complexação: $\mathrm{H}_{2} \mathrm{O}<$ $\mathrm{CH}_{3} \mathrm{SCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$ < pirazol < OP $\left(\mathrm{NH}_{2}\right)_{3}<\mathrm{HMPA}$, que apresenta boa correlação com a análise de decomposição de cargas. Para o complexo $\left[\mathrm{MoO}\left(\mathrm{O}_{2}\right)_{2}(\mathrm{~N}, \mathrm{~N}-\mathrm{DMLA})\right]$ foram estudados vários modos de coordenação do ligante N,N-DMLA quiral (ambas configurações R e S). A estrutura mais estável foi a mesma obtida por difração de raios-X, contudo, a estrutura mono-dentada com uma ligação de hidrogênio intramolecular também é muito estável e pode levar à formação de diastereoisômeros. Para as espécies hepta-coordenadas $\left[\mathrm{MoO}\left(\mathrm{O}_{2}\right)_{2} \mathrm{~L}_{1} \mathrm{~L}_{2}\right]$ com $\mathrm{L}_{1}=$ pirazol na posição equatorial é $24 \mathrm{~kJ} / \mathrm{mol}$ mais estável que na posição axial, quando $L_{2}=$ $\mathrm{CH}_{3} \mathrm{SCH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$, já quando $\mathrm{L}_{2}=\mathrm{H}_{2} \mathrm{O}$, somente a estrutura com L_{1} em
equatorial é um mínimo na superfície de energia potencial, em que a distância de ligação $\mathrm{Mo}-\mathrm{OH}_{2}$ é 2,59 A. A posição axial é muito lábil, como pode ser demonstrada pela pequena energia de ativação (3,2 $\mathrm{kJ} / \mathrm{mol}$) para a dissociação do ligante $\mathrm{H}_{2} \mathrm{O}$ no complexo $\left[\mathrm{MoO}\left(\mathrm{O}_{2}\right)_{2}\right.$ (pirazol)($\left.\mathrm{H}_{2} \mathrm{O}\right)$]. Também foi determinada a estrutura do estado de transição para reação do complexo $\left[\mathrm{MoO}\left(\mathrm{O}_{2}\right)_{2}(\mathrm{~N}, \mathrm{~N}-\mathrm{DMLA})\right]$ com o dimetilsulfeto (Figura 1).

Figura 1. Estrutura do estado de transição obtida com o método B3LYP/LanL2DZ/6-31G*.
Cálculos permitiram a atribuição dos espectros experimentais, e ainda a correlação dos deslocamentos químicos e das frequaências vibracionais com as forças dos ligantes e as reatividades dos complexos. Cálculos dos deslocamentos químicos (B3LYP/LANL2DZ/IGLO3/ $6-31 \mathrm{G}^{*}$) para ${ }^{17} \mathrm{O}$ destes complexos indicam que o oxigênio do grupo oxo é menos sensível à presença de diferentes ligantes que os oxigênios peroxo. Há uma diminuição significativa dos valores dos deslocamentos químicos dos oxigênios peroxo do mesmo lado (syn) do ligante, resultado de uma diminuição da densidade eletrônica devido a complexação do ligante. As diferenças dos deslocamentos químicos nos diastereoisômeros do complexo $\left[\mathrm{MoO}\left(\mathrm{O}_{2}\right)_{2}(\mathrm{~N}, \mathrm{~N}-\mathrm{DMLA})\right]$ são muito pequenas para poderem ser utilizadas na caracterização destes isômeros. As atribuições dos espectros vibracionais são consistentes com as observações experimentais, e há correlação entre as freqüências de estiramento e as energias de complexação calculadas.

A metodologia utilizada permite a previsão da reatividade de complexos $\left[\mathrm{MoO}\left(\mathrm{O}_{2}\right)_{2} \mathrm{~L}_{1} \mathrm{~L}_{2}\right]$ na transferência de oxigênio. Entretanto, a estereo- seletividade ainda não está quantificada.

CNPq, CAPES, FINEP, PADCT, RENAMI.

DETERMINAÇÃO TEÓRICA DE ESPECTROS DE RMN EM COMPOSTOS ISOLADOS DO ÓLEO DE COPAÍBA.

Patrícia Gabrielle B. H. van Rij^{1} (IC)*, Madson S. do Nascimento ${ }^{1}$ (PG), Jamal S. Chaar ${ }^{1}$ (PQ), Kelson M. T. de Oliveira ${ }^{1}$ (PQ), Saulo L. da Silva ${ }^{1}$ (PQ), Moacyr Comar Júnior ${ }^{1}$ (PQ).
* patty_vanrij@hotmail.com
${ }^{1}$ Universidade Federal do Amazonas, Laboratório de Química Teórica e Computacional, Av. Gal. Rodrigo Octávio Jordão Ramos, 3000 - Coroado, Setor Sul - Campus Universitário, 69077-000 Manaus, AM.

Palavras Chave: Óleo de Copaiba, RMN, DFT

HINOCHEO

A região amazônica é mundialmente conhecida, além de sua beleza, pelas riquezas naturais sobre e sob o solo, de forma que se faz necessário um constante e aprimorado estudo dos produtos naturais existentes na região, tal como o gênero Copaifera, que possui 72 espécies [1] distribuídas por vários países [2-6], sendo que 16 delas são encontradas somente no Brasil [2]. Esse trabalho tenta fazer a descrição teórica do espectro de RMN e a comparação destes com os experimentais, o que é duplamente benéfico, pois, se por um lado se confirmam os resultados experimentais, por outro se confirma que o procedimento teórico está correto, garantindo, assim, a confiabilidade em futuros resultados obtidos para outras propriedades. Os métodos ab initio de cálculo de propriedades magnéticas, como por exemplo das constantes magnéticas de blindagem, têm se tornado de mais fácil realização nos últimos anos devido ao aumento da capacidade de computação e à introdução de métodos de cálculo. Segundo Cheeseman [7], o modelo teórico mínimo para que se possa obter resultados confiáveis, no caso da previsão de espectros de RMN é a união de um conjunto de base, no mínimo, de qualidade do conjunto 6311G [8] e o funcional B3LYP [9].

2 Resultacose Dherubsere

Dos métodos usados para calcular as constantes de blindagem, são usados nesse trabalho os métodos GIAO, CGST e IGAIM. Para expansão da função de onda são usados os funcionais, B3LYP, SVNW5, PW91PW91, juntamente com o conjunto de base
6-311G (2df, 2pd). Até o momento, a combinação que fornece resultados mais próximos dos experimentais é aquele que une o método B3LYP e o método GIAO, embora os resultados obtidos com o método CGST têm se
apresentado com uma alternativa a ser

Figura 1 - Estrutura do dinorlabdano usado.

Os resultados apresentados até o momento, mostram que escolher combinações entre métodos de para calcular as constantes de blindagem e funcionais podem ser dificeis, pois deve-se levar em conta fatores como convergência com relação aos valores experimentais e tempo computacional, por exemplo.

FAPEAM (Fundo de amparo à Pesquisa do Estado do Amazonas).

[^202]
ESTUDO TEÓRICO DA ESTRUTURA E REATIVIDADE DO IMIDAZOL E DA IMIDAZOLINA E SEUS DERIVADOS.

Juliana de Oliveira Mendes (PG) ${ }^{1, *}$, Edílson Clemente da Silva ${ }^{1}(\mathbb{P Q})$.
Departamento de Físico-Química, Universidade Federal do Rio de Janeiro, Instituto de Química, CT Bloco A sala 408, Ilha do Fundão, Rio de Janeiro 21945-900
*e-mail: mendesjuliana@iq.ufrj.br
Palavras Chave: imidazol, imidazolina, DFT, reatividade, Fukui.

Mimovoro

A corrosão das tubulações é um problema severo na indústria petroquímica. Imidazóis e imidazolinas e seus diferentes derivados têm sido usados com sucesso como inibidores de corrosão nas tubulações de petróleo, sendo ainda escassos os estudos teóricos sobre os possíveis mecanismos de inibição destes compostos ${ }^{1,2}$.

Este trabalho visa determinar, na etapa inicial, a estrutura, e os parâmetros geométricos do imidazol e da imidazolina e alguns de seus derivados. As geometrias das moléculas de interesse foram otimizadas nos níveis RHF e B3LYP com as bases $6-31+G^{* *}$ e $6-311+G^{* *}$. Os indices de Fukui sobre cada átomo foram determinados considerando-se as espécies carregadas positivamente e negativamente nas geometrias otimizadas das espécies neutras.

A etapa final destina-se à investigação da ligação do imidazol e da imidazolina e suas espécies protonadas a um átomo de ferro em fase gasosa.

Embora a descrição completa do processo deva ser feita simulando a superfície do metal puro (não oxidado), pode-se ter uma idéia das interações locais usando este tipo de procedimento.

Com a análise dos dados obtidos nas etapas descritas, podemos predizer qualitativamente os sítios de maior reatividade, e um possível mecanismo de inibição das espécies de interesse.

Os cálculos realizados mostram que as espécies neutras do imidazol e da imidazolina só podem sofrer ataque lateral pelo átomo de Fe , como ilustrado na Figura 1.
A Tabela 1 lista as distâncias de equilíbrio e as energias de interação ($\mathrm{E}_{\text {int }}=\mathrm{E}_{\text {complexo }}-\left(\mathrm{E}_{\text {molécula }}+\right.$ E_{Fe})) dos compostos neutros estudados com ataque lateral do átomo de Fe , tanto quinteto quanto tripleto.

Observa-se que os complexos formados com o Fe tripleto são energeticamente mais estáveis que os formados com o quinteto, embora, isoladamente, o metal seja mais estável no estado de maior multiplicidade.

Figura 1. Ataque lateral do átomo de Fe ao imidazol neutro.

Tabela 1. Distâncias de equilíbrio e energias de adsorção dos complexos formados pelo ataque lateral do Fe às espécies neutras imidazol e imidazolina*.

Complexo	Distância Fe-N (\AA)	$\mathrm{E}_{\text {ads }}$ (kcal/mol)
Imidazol - Fe5	2,130	$-15,069$
Imidazol - Fe3	1,966	$-25,389$
Imidazolina - Fe5	2,090	$-19,895$
Imidazolina - Fe3	1,956	$-29,323$

Os valores de energia de interação e a estabilidade dos complexos de menor multiplicidade sugerem um processo de formação de ligação entre as espécies neutras e o átomo de ferro, levando à interação química das espécies ao metal.

Agradechnomios

À CAPES pela bolsa concedida e ao professor Oscar Rosa Mattos pelos recursos computacionais.

[^203]
estudo químico-quântico das interações dos aminoácidos DO SÍTIO ATIVO DA CORISMATO SINTASE COM O EPSP E A FMNH 2 .

Madson S. do Nascimento ${ }^{1}(\mathbb{P G})^{*}$, Jamal S. Chaar ${ }^{1}(\mathbb{P Q})$, Patrícia Gabrielle B. H. van Rij ${ }^{1}(\mathbb{I C})$, Kelson M. T. Oliveira ${ }^{1}(\mathbb{P Q})$, Saulo L. da Silva ${ }^{1}(\mathbb{P Q})$, Moacyr C. Júnior ${ }^{1}(\mathbb{P Q})$.

Departamento de Química, ICE, Universidade Federal do Amazonas (UFAM), Manaus, AM., Brasil. madsonsn@hotmail.com
Corismato sintase, EPSP, FMNH_{2}, Corismato, Estudo teórico.

A enzima corismato sintase catalisa a sétima e última etapa da via do chiquimato, a qual leva a formação do corismato a partir do 5-enolpiruvil chikimato-3-fostato (EPSP). O corismato é um importante precursor para a biossíntese de ácido fólico, vitamina K, ubiquinona e três aminoácidos aromáticos: triptofano, fenilalanina e tirosina. A enzima está presente em plantas, bactérias, fungos, e parasitas do filo apicomplexa - porém está ausente em mamíferos. A reação da corismato sintase é uma rota sintética considerada única na natureza, pois envolve uma eliminação anti-1,4 do grupo 3-fosfato e requer a presença de flavina mononucleotídeo na forma reduzida $\left(\mathrm{FMNH}_{2}\right)$. Existem várias propostas para o mecanismo dessa reação ${ }^{1-4}$, mas elas não são unânimes nem quanto ao mecanismo, quanto ao papel dos aminoácidos e da FMNH_{2}. Isto sugere novos estudos, pois a compreensão dessa reação bem como o papel dos aminoácidos envolvidos tanto com o substrato, como com a FMNH ${ }_{2}$ é um importante alvo terapêutico para o desenho de novas drogas antibacterianas, antifúngicas, antiprotozoárias e herbicidas ${ }^{2,3}$.

Os cálculos realizados até momento, usando o funcional B3LYP ${ }^{5}$ e a base 6-311++G** permitiram identificar quais aminoácidos interagem efetivamente com a FMNH_{2} e com o substrato, assim como natureza dessas interações - ligações de hidrogênio. Evidenciouse que os aminoácidos que interagiram com o EPSP são distintos daqueles que o fizeram com a FMNH_{2}. Tais cálculos referem-se ao estado fundamental do EPSP. No momento, estão em fase de cálculos as interações entre o estado de transição do EPSP e os aminoácidos, bem como as interações entre o EPSP e a FMNH2.

Figura 1. Ligações de hidrogênio entre os aminoácidos do sítio ativo da corismato sintase e EPSP e FMNH2.

Como são mostrados pelos cálculos iniciais, alguns aminoácidos interagem de maneira efetiva com a FMNH_{2} e outros interagem com o EPSP. Os estudos que continuam sendo realizados tentarão mostrar qual o nível de interações entre a FMNH_{2} e o EPSP e outros aminoácidos do sítio ativo da corismato sintase.

FAPEAM / CAPES.

[^204]
ESTUDO CONFORMACIONAL DE AMIDAS DERIVADAS DE ÁCIDOS GRAXOS COMO LARVICIDAS FRENTE AO AEDES AEGYPTI.

João B. P. da Silva (PQ), Iris R. M. Tébéka (IC)*, Daniela M. A. F. Navarro (PQ), Clécia B. da Silva (IC),
Universidade Federal de Pernambuco, Depto. de Química Fundamental. Cid. Universitária 50670-901 Recife - PE, Brasil.
* escrevapramim@gmail.com

Palavras Chave: Aedes aegypti, SAR, Monte Carlo.

HT 0 U 6 ero

Transmissor de doenças como a dengue e a febre amarela, o mosquito Aedes aegypti encontra-se amplamente disseminado mundialmente. No Brasil, a dengue tornou-se um problema de saúde pública, e o único meio de prevenção atualmente disponível é o controle do vetor. Relatam-se casos de populações resistentes ao inseticida Temephós, utilizado a 1% em 9 de 22 municípios dos estados do Rio de Janeiro e de São Paulo desde dezembro de 1999 [1], o que motiva a busca por larvicidas alternativos no combate ao Aedes aegypti. Neste trabalho, estuda-se a relação estrutura atividade (SAR) de quatro amidas derivadas de ácidos carboxílicos: dodecanamida, tetradecanamida, hexadecanamida e octadecanamida. A partir de uma busca conformacional com o programa Spartan 04 através do método Monte Carlo, selecionaram-se as conformações mais estáveis de cada uma das quatro amidas. Calculou-se o coeficiente de partição (Log P) das amidas com o programa EPI Suite v3.20, e avaliou-se a relação da torção da cadeia carbônica com a atividade larvicida.

As quatro amidas em estudo tiveram suas atividades larvicidas testadas no nosso laboratório, obtendo-se os seguintes percentuais de mortalidade larval na concentração de 100ppm: 70, 4, 33 e 10\%, para a dodecanamida (1), tetradecanamida (2), hexadecanamida (3) e octadecanamida (4), respectivamente. Verifica-se que o aumento gradativo da cadeia carbônica promove a diminuição da mortalidade larval para as amidas 1, 3 e 4. O resultado aparentemente anômalo para a molécula 2 já foi relatado [2]. Os valores calculados de Log P para as amidas 1-4 foram $3,45,4,29,5,12$ e 5,96 , evidenciando, como esperado, o aumento da lipofilicidade com o crescimento da cadeia carbônica, o que explica a queda da atividade com o aumento da cadeia alquílica para as amidas 1 , 3 e 4. A possibilidade de enovelamento com o crescimento da cadeia alquílica foi investigada através da busca conformacional. Observou-se que as 10 conformações mais estáveis de todas as moléculas apresentavam torções na cadeia carbônica. Algumas dessas conformações podem ser
vislumbradas na Figura 1. Sugerimos então que a diminuição da atividade larvicida com o crescimento da cadeia alquílica seja decorrente do aumento da lipofilicidade e do enovelamento da cadeia carbônica dos compostos quando em meio aquoso. De fato, a energia relativa entre a primeira e a décima conformação de menor energia, para as quatro amidas manteve-se entre 0,03 e $2,98 \mathrm{kcal} / \mathrm{mol}$, sugerindo que conformações com a cadeia alquílica torcida são energeticamente acessíveis e, portanto, um grande número de moléculas poderá assumir esse tipo de conformação.
(a)

(b)

(c)

(d)

Figura 1. Algumas conformações de menor energia para a octadecanamida: (a) primeira; (b) segunda; (c) sétima e (d) décima conformação. As últimas três conformações apresentam torções na cadeia principal.

Comicuroes

A redução da atividade larvicida em função do aumento do numero de carbonos na cadeia principal nos compostos 1, 3 e 4 pode ser associada ao enovelamento da cadeia alquílica. Quando em meio aquoso, as amidas tendem a se enovelar, o que dificulta o acesso das moléculas a membranas celulares, reduzindo a atividade larvicida.

[^205]
DOCKING DE FENILPIRAZÓIS NAS FLAVOENZIMAS TRIPANOTIONA E GLUTATIONA REDUTASE.

Cristiane Cabral de Melo ${ }^{1}(\mathrm{PG})^{*}$, Mauricio Vega-Teijido ${ }^{1,2}(\mathrm{PQ})$, Ignez Caracelli${ }^{2}(\mathrm{PQ})$, Antônio C.C. Freitas ${ }^{3}(\mathrm{PQ})$, Julio Zukerman-Schpector ${ }^{1}(\mathrm{PQ})$
crisbrizoti@yahoo.com.br

Palavras Chave: Doença de Chagas, Fenilpirazóis, Difração de raio X, Docking. consideração todas as ligações realizadas nos complexos formados para ambas as enzimas TR e

GR, uma vez que esses compostos também apresentam afinidade com a correspondente enzima humana GR. No sitio da interface da GR, o ligante se posicionou entre as Phe78. No caso da $T R$, a orientação do ligante é mantida por

Figura 2. Orientação do ligante no sítio da interface da enzima Tripanotiona Redutase de T.cruzi.
interaçães dos grupos nitro com os aminoácidos Leu399, Asn433 e His400 (Figura 2).

A análise dos resultados mostrou que os fenilpirazóis possuem uma maior tendência de ligação no sítio de interface do que nos outros sítios, tanto nos complexos formados com a enzima GR como com a TR, o que sugere, portanto, que esses ligantes deverão atuar como inibidores não- competitivos.

FAPESP, CNPq e CAPES.

[^206]
DOCKING DE UMA SÉRIE DE QUINONAS NO SÍTIO DA INTERFACE DA TRIPANOTIONA REDUTASE DE TRIPANOSSOMA CRUZl.

Luciane B. Duarte Pivetta ${ }^{1}(I C)^{*}$, Julio Zukerman-Schpector ${ }^{1}(\mathrm{PQ})$, Antônio Carlos Trindade ${ }^{2}(\mathrm{PQ})$, Ignez Caracelli ${ }^{3}(\mathrm{PQ})$.

${ }^{1}$ Laboratório de Cristalografia, Estereodinâmica e Modelagem Molecular - DQ- UFSCar - S Carlos - SP
${ }^{2}$ Instituto de Química, USP; ${ }^{3}$ BioMat - Departamento de Física, Faculdade de Ciências, UNESP, Bauru-SP.

Keywords: docking, quinonas, tripanotiona redutase, Chagas

Thluod 1 ctalo

A doença de Chagas, causada pelo protozoário parasita Tripanossoma cruzi, é considerada um dos maiores problemas de saúde da América Latina. Com o intuito de desenvolver novos fármacos, menos tóxicos e mais seletivos ${ }^{1}$, a escolha das enzimas-alvo tem se baseado nas diferenças entre o metabolismo do hospedeiro e do parasita. A enzima tripanotiona redutase (TR) já foi validada como alvo e sua correspondente no metabolismo humano é a enzima glutationa redutase (GR) ${ }^{2}$. Baseado no fato de as enzimas apresentarem aspectos diferenciados em seus sítios de ligação, tem sido feita uma busca em ligantes que possam apresentar especificidade em seu mecanismo de ação. A atividade tripanossomicida das quinonas tem sido atribuída à formação de radicais oxigênio e conseqüentemente a um forte estresse oxidativo. Como resultados anteriores mostraram que o sítio da interface era o mais favorável para a ligação de este tipo de compostos ${ }^{2}$, neste trabalho é apresentado os estudos de docking de uma série de quinonas no sítio da interface da TR.

Mesurfgos a DIBMMSSab

As coordenadas dos ligantes foram determinadas por difração de raio X (Tabela 1).

Tabela 1. Quinonas estudadas				

Os estudos de docking foram realizados utilizando as coordenadas cristalográficas da TR depositada no PDB (1nda) no sítio da interface (TR-SI). Os cálculos de docking foram realizados empregando o programa Dock 4.0. ${ }^{3}$
Para análise e seleção dos resultados utilizaram-se como critérios o maior número de repetições das orientações dos ligantes nos sítios-alvo, as energias dos complexos e as interações realizadas entre ligantes e a proteina. Os ligantes se orientaram dentro do sítio da interface com energias favoráveis à formação de complexos (ca. $-30 \mathrm{kcal} / \mathrm{mol}$). Os resultados de docking mostraram que os compostos estudados formam complexos com a TR, sendo assim possíveis inibidores para esta proteína. As interações mais importantes ocorrem com resíduos carregados tais como His72, Glu75, Asp431 e Glu435

Figura 1. Complexo TR-SI- quinona 5
(Figura 1).

Os resultados de docking indicam que os compostos podem atuar como inibidores em um mecanismo de ação não-competitivo.

FAPESP, CNPq, CAPES.

[^207]
ESTUDO DA ESTABILIDADE DE BUCKYBALLS NA RETIRADA DE MOLÉCULAS DE H2 ARMAZENADAS EM SEU INTERIOR

Julio Rodolfo P. lank (PG) ${ }^{1 *}$, Moacyr Comar Júnior (PG) ${ }^{1}$, Jamal S. Chaar ${ }^{1}(\mathrm{PQ})$, Saulo L. Silva ${ }^{1}(\mathrm{PQ})$, Marcos Eberlin ${ }^{2}$ (PQ), Kelson M. T. de Oliveira (PQ)
*jrgt@click21.com.br
1- Universidade Federal do Amazonas, Laboratório de Química teórica e computacional, Av. Gal. Rodrigo Octávio Jordão Ramos, 3000 - Coroado, Setor Sul do Campus Universitário, 69077-000 Manaus, AM.

2- UNICAMPs, Instituto de Química, Departamento de Química Orgânica. CP 6154. 13083-970-Campinas, SP

Palavras Chave: Buckyballs, hidrogênio, B3lyp, DFT, espectroscopia de massa,

Hinourcar

O C_{60} (buckyminsterfulereno) e outras buckybolas (buckyballs) são estruturas que podem ser classificadas como a quarta forma alotrópica de carbono, com propriedades físicas e químicas interessantes. Entre estas, destaca-se sua capacidade de armazenamento e confinamento de diversas espécies moleculares como hidrogênio, fósforo, neônio, deutério, hélio. A incorporação de dessas espécies, em fulerenos endroédricos, especialmente gases nobres e nitrogênio, tem se dado pela inserção sob condições forçadas. Recentemente Komatsu e colaboradores conseguiram inserir uma única molécula de H_{2} por uma rota alternativa e comprovado os dados por espectroscopia de massa.

Este trabalho investiga a capacidade de confinamento do hidrogênio em sistemas $\mathrm{Cn} @ \mathrm{H}_{2}$, a partir do C_{60}, com a redução gradual da buckyball pela retirada de fragmentos de C_{2} e a estabilidade decorrente da inserção de uma molécula de H_{2} em seu interior. A metodologia aplicada consistiu em abordagem em nível DFT, base $6-31 \mathrm{~g}^{*}$, com funcional híbrido B3lyp, tendo sido usado os pacotes Spartan 04® (Linux), e o Gaussian 03W.

O estudo consistiu em duas fases: 1. Estruturas recompostas após a retirada de fragmentos de $\mathrm{C}_{2} ; 2$. Estruturas sem recomposição da buckyball depois da retirada de um fragmento de C_{2}, a fim de avaliar a possibilidade de saída de hidrogênio e estabilidade da estrutura (Figura 01). Os cálculos realizados com a recomposição da buckyball após a retirada sucessiva de fragmentos de C_{2}, mostraram a impossibilidade da saída da molécula de hidrogênio mesmo pela retirada de 20 fragmentos. As energias potenciais calculadas para estes sistemas mostraram-se muito altas, quando comparadas com o sistema inicial $\mathrm{C} 60 @ \mathrm{H}_{2}$ (Graf. 01). Na análise de estruturas sem recomposição da nanoestrutura, os resultados mostraram a expulsão do hidrogênio só se torna possível no C_{56}, após a retirada de dois fragmentos
de C_{2}.

Gráfico 01. Energias de barreira potencial necessária para a retirada da molécula de H_{2} de dentro das moléculas C58 e C56, com e sem recomposição da buckyball.

Comicusoes

A molécula de H_{2} é facilmente expulsa do sistema $\mathrm{Cn@} \mathrm{H}_{2}$ quando são retirados dois fragmentos C_{2} sem que haja reestruturação da buckyball. Com a recom-posição da nanoestrutura, o H_{2} só é expulso quando atinge $\mathrm{C}_{14 .}$ A diferença na barreira de energia para a retirada de H_{2} na estrutura $\mathrm{C} 56 @ \mathrm{H}_{2}$ pode ser comparada às energias de barreira para a retirada do C58, com e sem recomposição da buckyball. Se houver apenas a retirada de um fragmento C_{2} a barreira potencial a ser vencida, mesmo sem recomposição da buckyball, é proibitiva. Caso seja fornecido energia em torno de 300 Kcal , além da energia necessária para retirar um fragmento C_{2}, é possível expulsar o H_{2} após a retirada de apenas dois átomos de carbono.

FAPEAM, CAPES.

[^208]
TABELA PERIÓDICA DOS ELEMENTOS NA PERSPECTIVA DE REDES NEURAIS ARTIFICIAIS.

Maurício Ruv Lemes ${ }^{1}(\mathrm{PQ})^{*}$, Arnaldo Dal Pino Júnior ${ }^{2}(\mathrm{PQ})$. ruvlemes@terra.com.br.

1 - Faculdade Comunitária de Taubaté - Anhanguera Educacional, 2 - Instituto Tecnológico de Aeronáutica.
Palavras Chave: Tabela Periódica, Redes Neurais, Redes Neurais de Kohonen.

Depois de mais de 100 anos do trabalho de classificação dos elementos químicos iniciado por Lavoisier, Mendeleev ${ }^{1}$ introduziu à comunidade científica a lei periódica dos elementos. Apesar de não conhecer a estrutura atômica, suas pesquisas previram existência e propriedades de elementos então desconhecidos como o germânio, com considerável precisão.
O principal objetivo deste trabalho é verificar se sistemas artificiais inteligentes são capazes de produzir classificações semelhantes. Utilizamos mapas auto-organizáveis conhecidos como redes de Kohonen (RK) para classificar os elementos químicos. Fornecemos à rede neural artificial apenas informações conhecidas no final do século XIX e analisamos como ela agrupa os elementos.
Foram utilizadas redes quadradas com arquiteturas $8 \times 8,10 \times 10$ e 12×12 e nossos resultados mostram que as RK's conseguem distinguir e formar aglomerados, compostos pelos alcalinos, alcalinoterrosos, metais de transição e halogênios. Em outras palavras, determinamos que um sistema artificial inteligente, caso estivesse na mesma situação que os químicos do final do século XIX, teria produzido um mapa que tem grande semelhança com a tabela periódica dos elementos.

A RK após o processo de treinamento produziu o mapa da tabela1.

Tabela 1. Mapa Encontrado

In	La	Sr	Rb	K	Na	-	Mg
Sn	Ce	Y	-	Ca	-	-	-
Te	-	Zr	-	Sc	Al	P	N
Ag	-	Mo	-	Ti	-	-	O
Pd	Ru	-	V	-	-	-	F
-	-	Cr	-	-	-	S	Cl
Ni	Mn	-	-	-	-	-	Br
Cu	-	-	Ag	Zn	Ga	As	Se

Estudamos 69 elementos conhecidos na época de Mendeleev. Para treinamento das RK, utilizamos as propriedades peso atômico, raio de ligação, raio atômico, ponto de fusão e reação com oxigênio (conhecidas por Mendeleev). Para predição utilizamos 41 elementos.

Observando a Tabela 1, temos:
(i) Reconheceu e agrupou elementos com alta eletronegatividade. Os elementos Flúor, Cloro, Bromo, Oxigênio e Nitrogênio ocupam células vizinhas entre si.
(ii) Os Metais de transição também foram agrupados. Prata e Paládio; Níquel e Cobre; Manganês (Mn), Cromo (Cr), Vanádio (V) e Titânio (Ti).
(iii) Tivemos agrupamento de metais alcalinos como: Rubídio (Rb), Potássio (K) e Estrôncio (Sr). Outro agrupamento em linha foi o Potássio (K), o Cálcio (Ca) e o Escândio (Sc). E ainda temos em linha o Estrôncio (Sr), Ítrio (Y) e Zircônio (Zr).
(iv) Na família 5A temos agrupados o Fósforo (P) e o Nitrogênio (N).
(v) Os resultados apresentados mostram 33 células ocupadas por um elemento e apenas 4 delas foram ocupadas por 2 elementos cada uma. Os átomos de Cádmio (Cd) e Índio (In), Cobre (Cu) e Prata (Ag), Ródio (Rh) e Paládio (Pd), Nióbio (Nb) e Molibdênio (Mo).

(RD) \cos (B)

Mostramos que as RK's ao mapear os elementos químicos foram capazes de organiza-los em várias propriedades treinadas e também não treinadas. As RK's organizaram metais alcalinos, metais de transição e até mesmo propriedades que não estavam presentes no treinamento, como por exemplo a eletronegatividade. No mapeamento podemos notar que alguns elementos químicos ocuparam a mesma célula, por se tratarem de elementos muito parecidos em relação às suas propriedades gerais. As arquiteturas diferentes mostraram uma maior separação dos elementos, mas continuaram organizando os elementos com relação as suas propriedades.

[^209]
Flexible molecular docking Studies between Fibroblast Growth FACTOR (FGF) AND HEPARIN USING GENERALIZED SIMULATED ANNEALING (GSA)

Samuel Silva da Rocha Pita ${ }^{1)^{*}}$ (PG), Ernesto Raul Caffarena ${ }^{2}$ and Pedro Geraldo Pascutti ${ }^{1)}$ (PQ)
* samuelpita@biof.ufrj.br
${ }^{11}$ Laboratório de Dinâmica e Modelagem Molecular (LMDM) - Instituto de Biofísica Carlos Chagas Filho Universidade Federal do Rio de Janeiro (UFRJ)
${ }^{2}$) Programa de Computação Científica (ProCC) - Fundação Oswaldo Cruz - Rio de Janeiro

Key words: Docking Molecular, Flexible docking, Generalized Simulated Annealing (GSA), Fibroblast Growth Factor (FGF), Heparin complexes

Although several crystal structures have been described for fibroblast growth factors molecules (FGF) in complexes with heparin-like-sugars, the nature of biologically active complex has been unknown until now ${ }^{1}$. The FGF family presently consists of 17 FGF proteins that share $30-70 \%$ sequence identity and which the ability to bind heparin is a feature shared by all family members ${ }^{2}$.

Molecular docking can be defined as the prediction of the structure of receptor-ligand complexes and, nowadays, different simplifications are used to make molecular docking tractable in different applications ${ }^{3}$. We are developing a flexible docking tool, the GSADOCK program based on the Generalized Simulated Annealing ${ }^{4,6}$ and to validate our method we are applying it to study some complexes among FGF-1 and heparin (PDB ${ }^{5}$ code: 1BFB).

Since the GSA methodology is highly dependent of the right choose of its parameters ${ }^{6}$ ($q \mathrm{~V}, \mathrm{qA}$ and $q T$) our group mapped the better ones ${ }^{7}$ for peptide folding and these was used at our docking studies in this work.
The results of GSADOCK have shown that GSA approach is computationally fast and accurate in determining the complexes between FGF-1 and heparin (Figure 1). The major number of polysaccharides was posed at the region near of active site as related by structural studies ${ }^{1,8}$ and encouraged us to extend at our observations including the heparin flexibility and, at a posterior step the protein flexibility.
Many studies ${ }^{1,2,8}$ related the importance of the basic residues at the FGF surface - mainly Lys and Arg aminoacids - in interaction with sulfate/carboxilate heparin atoms and our program represented this ionic bridges correctly despite our classical description (GROMOS96 force field) of the system.

Figure 1. Graphical representation of the docking results between FGF-1 (cartoons) and heparin (licorice) atoms.

Contchislors

Comparing all of the results, e. g. all atoms of the system treated as rigid-body, atoms of heparin flexible and all atoms of the system flexible, we noted that despite the computational time was increased for the last case - it was expected since the large increasing in the degrees of freedom to analyze - the accuracy of the results does not vary significantly and the best structures were showed at figure 2.
Figure 2. Graphical representation of the best docking results between FGF-1 (cartoons) and heparin (licorice). "Rigid" heparin (blue) and flexible (lime for FGF-1 rigid and mauve for FGF-1 flexible)

The authors are gratefully to the financial support of CNPq and CAPES. S.S.R.P. thanks Mauricio Costa (LMDM-UFRJ) for heparin topology adapted to GROMOS96 force fields and Tácio Fernandes (LMDM$U F R J$) for helpful discussions about GSA parameters.

[^210]
ESTUDO DE BASES E MÉTODOS PARA CÁLCULO DE INTENSIDADES NO INFRAVERMELHO DAS MOLÉCULAS $\mathrm{H}_{2} \mathrm{O}, \mathrm{HF}, \mathrm{HCN}, \mathrm{CH}_{4}, \mathrm{C}_{2} \mathrm{H}_{4}$

Helen Graci Coelho de Menezes ${ }^{1}(\mathrm{PG})^{*}$, João Viçozo S. Júnior ${ }^{2}(\mathrm{PG})$, Roy E. Bruns ${ }^{1}(\mathrm{PQ})$ *hmenezes@iqm.unicamp.br
${ }^{1}$ Instituto de Química, Universidade Estadual de Campinas, CP 6154, CEP: 13083-970, Campinas-SP, Brasil. .

Palavras Chave: CCFDF, QTAIM, intensidades vibracionais, bases, métodos.

Estudos recentes ${ }^{1,2}$ têm mostrado que o modelo Carga - Fluxo de Carga - Fluxo de Dipolo (CCFDF) é uma alternativa interessante para se reproduzir as intensidades no espectro infravermelho de moléculas e principalmente para se interpretar as alterações das estruturas eletrônicas durante vibrações moleculares. . Este modelo utiliza cargas e dipolos atômicos calculados através da Teoria Quântica Átomos em Moléculas (QTAIM) ${ }^{3}$ para decompor as derivadas do momento dipolar molecular em três contribuições que possuem interpretações físicas simples.
Nosso grupo de pesquisa vem realizando cálculos no nível MP2/6-311++G(3d,3p), obtendo intensidades CCFDF/QTAIM que concordam com aquelas obtidas diretamente desta função de onda por um erro rms de $4,0 \mathrm{Km} / \mathrm{mol} \mathrm{e}$ com as experimentais por um erro rms de $27,0 \mathrm{Km} / \mathrm{mol}$.
O objetivo deste trabalho foi investigar um nível de cálculo (método/base) que forneça melhor estimativa de intensidades no infravermelho para $\mathrm{H}_{2} \mathrm{O}, \mathrm{HF}$, $\mathrm{HCN}, \mathrm{CH}_{4}$ e $\mathrm{C}_{2} \mathrm{H}_{4}$.
Uma vez que as intensidades obtidas diretamente da função de onda apresentam excelente concordância com as CCFDF/QTAIM e que seu custo computacional é menor, essas foram as escolhidas para serem comparadas com as experimentais durante este estudo.

RGSUFGIGOS D Discyesto

Os métodos B3LYP, MP2, CISD e QCISD foram testados usando o conjunto de funções de base 6$311++G(3 d, 3 p)$. A análise dos resultados obtidos e dos erros rms mostra que o método QCISD fornece as melhores estimativas das intensidades no infravermelho para as moléculas estudadas.
Tabela 1. Erros rms entre as intensidades (B3LYP, MP2, CISD, QCISD)/6-311++G(3d,3p) e as experimentais.

Método/	Erro rms (km/mol)
$\mathbf{6 - 3 1 1 + + G (\mathbf { 3 d } , \mathbf { 3 p })}$	14,5
MP2	11,9
CISD	11,6
B3LYP	9,5
QCISD	

Por apresentar melhor resultado para a representação das intensidades no infravermelho, o método QCISD foi escolhido para analisar as bases $6-311++G(3 d, 3 p)$, aug-cc$p V D Z$, aug-cc-pVTZ, cc-pVDZ e cc-pVTZ. A análise dos dados obtidos e dos erros rms mostraram que a base cc-pVTZ é a que melhor representou os resultados experimentais para as intensidades no infravermelho.

Tabela 2. Erros rms entre as intensidades (QCISD/ (6-311++G(3d,3p), aug-cc-pVDZ, aug-cc-pVTZ, cc-pVDZ, cc-pVTZ) e as experimentais.

QCISD/base	Erro rms (Km/mol)
$6-311++\mathrm{G}(3 \mathrm{~d}, 3 \mathrm{p})$	9,5
Aug-cc-pVDZ	10,2
Aug-cc-PVTZ	10,6
cc-pVDZ	9,8
cc-pVTZ	8,8

1) Comichuchs

Entre os métodos e conjuntos de funções de base avaliados, o nível de cálculo QCISD/ccpVTZ forneceu as melhores estimativas para as intensidades no infravermelho.

WMr Mal exthichlos
À FAPESP (06/53260-6 e 06/51572-0) e ao CNPq.

[^211]
ESTUDO DA PLASMEPSINA 4 PROTEASE ASPÁRTICA (PMPM4) DO PARASITA PLAMODIUM MALARIAE COM OS MÉTODOS DE DINAMMICA MOLECULAR E QM/MM.

Natália de Farias Silva (PG)*, Davi do Socorro Barros Brasil (PG), Cláudio Nahum Alves (PQ)* email: natyflavonas@yahoo.com.br, nahum@ufpa.br

Laboratório de Planejamento de Fármacos, Programa de Pós-Graduação em Química, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, CEP 11101,66075-110 Belém, PA, Brasil.
Palavras Chave: malaria, PmPM4, QM/MM, Dinâmica Molecular.

Thlogloterlo

De acordo com a Organização Mundial de Saúde JMS), a malária é hoje, uma das maiores doenças arasitárias do mundo, apenas é superada em número de iortes pela AIDS ${ }^{1}$. Durante o estágio assexuado do ciclo e vida do parasita, há a invasão nos glóbulos vermelhos a degradação da hemoglobina. A enzima plasmepsina כM) é fundamental na degradação da hemoglobina se srnando alvo atrativo no combate a malária ${ }^{2}$. iecentemente, foi determinada a estrutura da enzima lasmepsina 4 protease aspártica (PmPM4) complexada om o inibidor alofenilnorstatina (KNI-764), neste estudo bservou-se que o inibidor foi encontrado em uma rientação diferente quando comparada com a reviamente modelada ${ }^{1}$. Portanto, neste trabalho, utilizoue a metodologia QM/MM combinada com Dinâmica Iolecular ${ }^{3}$ (DM) para estudar as interações itermoleculares específicas entre a enzima PmPM4 com
inibidor KNI-764. A metodologia QM/MM tem a antagem de incluir nos cálculos efeitos quânticos, tais omo efeito de polarização. Estes efeitos precisam ser em descritos quando grupos polarizáveis estão presentes o sistema ${ }^{3}$. A proteína com o inibidor foram colocados em ma caixa ortorrômbica de $100 \times 80 \times 80 \AA$, o sistema total é onstituído de 327 resíduos de aminoácidos, 19444 ıoléculas de água e 93 átomos do inibidor, perfazendo m total de 63586 átomos. Nos cálculos híbridos $\mathrm{QM} / \mathrm{MM}$ s átomos do inibidor foram tratados na parte QM , usando método semiempírico AM1. A proteína e as moléculas e água foram descritas usando os campos de força IPLS-AA e TIP3P no programa DYNAMO.

Na Figura 1 é mostrada a estrutura final obtida após 400 s de simulação de DM com método $\mathrm{QM} / \mathrm{MM}$, através esta podemos observar que os grupos carbonílicos do libidor formam ligações de hidrogênio com os resíduos hr217, Gly78 e Tyr77. O átomo de S do inibidor forma yação de hidrogênio com o resíduo Ser79, enquanto o rupo hidroxilico forma ponte de hidrogênio com os esíduos Asp214 e Asp34. Essas interações favorecem a stabilização do complexo proteína-
inibidor e podem ser observadas na Figura 2. Podemos também observar que algumas moléculas de água
interagem com o inibidor estabilizando o complexo (ver Figura 1 e 2). Recentemente, outros trabalhos experimentais têm mostrado que os resíduos Asp34, Asp214 e Tyr77 têm importância nos estudos da malária, em concordância com os nossos resultados ${ }^{1,4}$.

Figura 1. Visualização do inibidor KNI-764 com os principais resíduos de aminoácidos.

Figura 2. Contribuição dos resíduos de aminoácidos para a interação com o inibidor (em kJ•mol ${ }^{-1}$).

Coniclosers

Neste trabalho a metodologia QM/MM com DM foi utilizada para determinar a energia de interação entre proteína-inibidor. Como observado na análise individual de resíduo, aqueles que mostraram um papel importante na atividade antimalárica foram: Asp34, Asp214, Try77 juntamente com as moléculas de água. Estes resultados estão em concordância com os resultados experimentais e podem ser utilizadas para o desenho de novas moléculas, com bases em suas estruturas tridimensionais, com uma atividade antimalárica mais pronunciada.

UFPA, CNPq e FINEP.

[^212]
PERFORIANCE OF THE OM2 SEMIEMPIRICAL METHOD FOR CORIPUTING EXCITATION ENERGIES

Mario Ramos Silva Junior* $(P G)^{1}$, Axel Koslowski (PQ) ${ }^{1}$, and Walter Thiel (PQ) ${ }^{1}$
${ }^{1}$ Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 145470 Mülheim/Ruhr Germany mario@mpi-muelheim.mpg.de

Keywords: Benchmarking, Semiempirical methods, Orthogonalization, Excitation energies

hiroc erilon

Performing reliable excited state energy calculations for large systems is a challenging task. From a theoretical point of view, the CASPT2 method presents rather small errors (around 0.2 eV [1]) compared to experimental results. However, CASPT2 calculations are often no longer feasible for molecules of interest such as carotenoids and fluorescent proteins due to the excessive computational demands. Therefore an assessment of the recently developed semiempirical method (OM2) [2] as well as other diverse semiempirical methods was carried out for excited states.

Resulis anc Drscussion

235 excitation energies from 32 molecules were collected from the literature (CASPT2 results) [3], being classified as 163 singlets and 72 triplets of $\pi \rightarrow \pi^{*}, n \rightarrow \pi^{*}$ and $\sigma \rightarrow \pi^{*}$ nature. Ground state equilibrium geometries were collated from the literature (optimized at the MP2/6-31G* level of theory). Calculations using the semiempirical Hamiltonians MNDO, PM3, AM1 and OM2 were carried out using the GUGA-CI approach in a development version of the semiempirical MNDO program. INDO/S-CI [4] calculations were performed using the ZINDO program.
The computed transitions and states were assigned on the basis of the wavefunction composition and 1eproperties, which turned out to be the time-limiting step of this work.
It was observed that the problem from pre-NDDO semiempirical methods for description of excited states is overcome by OM2 method (tendence to favor $\mathbf{x} \rightarrow \mathbf{y}^{\prime}$ over $\mathbf{y} \rightarrow \mathbf{x}^{\prime}$ configuration state functions, for $\mathbf{y}>\mathbf{x}$).

Table 1. Statistical results with respect to CASPT2 results for some of the semiempirical methods studied including all singlet and triplet states (in eV).

	B3LYP	AM1	OM2	INDO/S
Mean	-0.223	-1.027	-0.121	0.113
MAD	0.315	1.096	0.479	0.528
Std. Dev.	0.401	1.231	0.612	0.720
Max.	0.658	1.070	2.070	2.763
Min.	-2.040	-2.790	-1.980	-1.805

Conchistoms

OM2 has an overall error around 0.48 eV and gives comparable results as TDDFT approach for singlereference dominant states. INDO/S performs well for singlet-states, but less for triplet states. Reliable assignments require analysis of the wavefunction and an assessment of all available properties including energies and oscillator strengths.

This work is supported by Deutscher Akademischer Austausch Dienst (DAAD) and . Deutsche Forschungsgemeinschaft (SFB 663).

[^213]
ESTUDO TEÓRICO DE RMN ${ }^{1} \mathrm{H}$ E ${ }^{13} \mathrm{C}$ DA CORDATINA, UM PRODUTO NATURAL COM AÇÃO ANTIULCEROGÊNICA.

Davi do Socorro Barros Brasil ${ }^{1,2^{*}}$ (PG), Helton Oliveira Monteiro ${ }^{1}$ (IC), Tatiane da Silva Damasceno ${ }^{1}$ (IC), Adolfo Henrique Müller ${ }^{1}$ (PQ), Giselle Maria Skelding Pinheiro Guilhon ${ }^{1}$ (PQ), Cláudio Nahum Alves ${ }^{1}$ (PQ). e-mail: davibb@ufpa.br, nahum@ufpa.br.
${ }^{1}$ Curso de Pós-Graduação em Química, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Av. Augusto Corrêa 01. 66075-110. Belém, PA, Brasil.
${ }^{2}$ Departamento de Engenharia Química e de Alimentos, Instituto de Tecnologia, Universidade Federal do Pará Av. Augusto Corrêa 01. 66075-110. Belém, PA, Brasil.
Palavras Chave: cordatina, RMN, B3PW91/DGDZVP, DFT.

H14010 10.0 0

Cordatina (figura 1) é um diterpeno clerodânico que apresenta expressiva atividade antiulcerogênica, comparada àquela da cimetidina (Tagamet ${ }^{\circledR}$), medicamento utilizado para combater úlceras provocadas por estresse. ${ }^{1}$

Figura 1. Estrutura da cordatina (fórmula plana e fórmula espacial).
Neste trabalho, utilizaram-se métodos teóricos para determinação de dados estruturais (geométricos), espectroscópicos (infravermelho) e espectrométricos ($\mathrm{RMN}{ }^{1} \mathrm{H}$ e ${ }^{13} \mathrm{C}$) desse produto natural.

Partindo de dados cristalográficos, inicialmente realizou-se a otimização estrutural com o método DFT tendo como funcional híbrido B3LYP e o conjunto de funções de base 6-31G**. Cálculos de freqüências dos modos normais de vibração aos níveis B3LYP/6-31G** e B3LYP/6-311G** foram realizados para caracterização do ponto estacionário. O método PCM também foi utilizado para modelar o efeito do solvente clorofórmio.

Cálculos de RMN $\left[\delta\left({ }^{1} \mathrm{H}\right), \delta\left({ }^{13} \mathrm{C}\right)\right.$ e $\left.{ }^{n} J(\mathrm{H}-\mathrm{H})\right]$ para as geometrias obtidas no vácuo e no solvente clorofórmio foram realizados com o método B3PW91/DGDZVP com e sem o efeito de solvente.

São apresentadas na tabela 1 as correlações e os parâmetros de ajuste das propriedades de RMN calculadas para cordatina. Na figura 2 observa-se a correlação entre os deslocamentos químicos experimentais e calculados no solvente clorofórmio para o espectro de RMN ${ }^{13} \mathrm{C}$ da cordatina.

Os resultados dos cálculos de RMN mostram boa concordância com os valores experimentais
conforme observado através dos dados apresentados na tabela 1 e na figura 2. Os resultados obtidos para os cálculos dos parâmetros geométricos e de infravermelho com e sem o efeito do solvente também são considerados satisfatórios.

Tabela 1. Correlações e parâmetros de ajuste das propriedades de RMN calculadas para a cordatina ${ }^{[a]}$.

parâmetro	a	b	r^{2}	EAM $^{[b]}$	EAMC $^{[\text {[] }}$
$\delta\left({ }^{1} \mathrm{H}\right)$ no vácuo	$-0,0814$	1,0225	0,9911	0,18	0,15
$\delta\left({ }^{1} \mathrm{H}\right)$ no solvente	$-0,1577$	1,0774	0,9967	0,12	0,08
$\delta\left({ }^{13} \mathrm{C}\right)$ no vácuo	3,7628	1,0293	0,9993	6,06	1,17
$\delta\left({ }^{13} \mathrm{C}\right)$ no solvente	3,3802	1,0425	0,9994	6,72	0,91
${ }^{\mathrm{n}} \mathrm{J}(\mathrm{H}-\mathrm{H})$ no vácuo	$-0,1617$	1,1335	0,9654	0,94	0,70
${ }^{\mathrm{n}} J(\mathrm{H}-\mathrm{H})$ no solvente	$-0,1720$	1,1393	0,9678	0,92	0,65

[a] Parâmetros de ajuste linear referentes a $\delta_{\text {calc }}=a+b \delta_{\text {exp. }}$. [b] erro absoluto médio: $\mathrm{EAM}=\Sigma_{\mathrm{n}}\left|\delta_{\text {calc }}-\delta_{\text {exp }}\right| / \mathrm{n}$. [c] erro absoluto médio corrigido: $\mathrm{EAMC}=\Sigma_{\mathrm{n}} \mid \delta_{\text {corr }}$ - $\delta_{\text {exp }} / / n$. para constante de acoplamento substituir δ por J.

Figura 2. Correlação entre os δ experimentais e calculados no solvente clorofórmio para o espectro de RMN ${ }^{13} \mathrm{C}$ da cordatina.

Conaluces

Os resultados obtidos mostram que a metodologia empregada pode ser utilizada no estudo de geometria, infravermelho e RMN de diterpenos similares à cordatina, cujas estruturas ainda não foram totalmente elucidadas.

Os autores são gratos ao FUNTEC-SECTAM, a FINEP e ao CNPq pelo suporte financeiro.

[^214]
SIMULAÇÃO COMPUTACIONAL PARA ESTUDO DA FORMAÇÃO DE COMPLEXOS ENTRE DNA E COMPOSTOS DE CRÔMIO.

Esther Camilo dos Reis ${ }^{1}(\mathrm{PG})^{*}$, Cristiane Cabral de Melo ${ }^{2}(\mathbb{P G})$, Mauricio Vega-Teijido ${ }^{2,3}(\mathrm{PQ})$, Ignez Caracelli ${ }^{3}$ (PQ)
esthercamilo@gmail.com
${ }^{1}$ Pós-Graduação em Ciência e Tecnologia de Materiais - POSMAT, Faculdade de Ciências, UNESP, Bauru-SP.
${ }^{2}$ LaCrEMM - Departamento de Química, UFSCar,São Carlos-SP.
${ }^{3}$ BioMat - Departamento de Física, Faculdade de Ciências, UNESP, Bauru-SP.
Palavras Chave: docking, experimento in silico, DNA, crômio, sulcos.

A investigação do mecanismo de interação de pequenos ligantes com macromoléculas tem papel fundamental no planejamento racional de fármacos. Nesse contexto, destacam-se moléculas contendo metais. Os compostos de crômio, dependendo do estado de oxidação podem ser carcinogênicos ou ter atividade terapêutica ${ }^{1}$. No presente trabalho foi investigado o modo de interação desses compostos em B-DNA por modelagem molecular (docking) e visualização em tela gráfica. No estado de oxidação VI, o crômio existe como um oxiânion, estruturalmente similar aos ânions fosfato e sulfato e pode penetrar na célula através do canal aniônico, levando a rápida acumulação intracelular ${ }^{2}$. No núcleo da célula, esses íons reagem com aminoácidos formando diversos compostos que podem interagir com DNA de três principais maneiras: ligação no sulco maior, sulco menor ou intercalação, desencadeando assim um processo carcinogênico. Neste trabalho investigou-se qual o modo de interação mais provável.

Foi selecionada a estrutura tridimensional de DNA de código- PDB^{3} 1vzk. Nessa estrutura o ligante está posicionado no sulco menor do DNA. Para a significância dos cálculos de docking, foi feito o redocking e o resultado obtido aparece na Figura 1, utilizando como centro do sitio de ligação T19.

Figura 1. Redocking do ligante na estrutura tridimensional do DNA de código 1vzk.

Após a validação dos cálculos feitos utilizando o programa GOLD ${ }^{4,5}$, baseado em algoritmos genéticos, foi feito o docking utilizando o composto tetrakis(tetratiafulvaleno)bis(μ_{2}-oxalato)tetrakis(oxala to)-dicrômio(III)-manganês(II) (Figura 2).

Figura 2. Um dos compostos de Crômio estudado como ligante do DNA.
A simulação realizada com o intuito de formar o complexo com o DNA foi planejada para o sulco menor, utilizando para isso a mesma timina usada para o redocking. Outros cálculos foram realizados, e observou-se que utilizando outros centros para os sítios de ligação, podem ser obtidos melhores scores. Quando o centro do sitio de ligação foi a citosina C9, embora o score obtido tenha sido menor, o numero de repetições das orientações obtidas foi maior.

TGULCTUSoins

Embora o experimento in silico tenha sido planejado para o sulco menor, observou-se que percorrendo as bases do DNA escolhido, existe a possibilidade de uma boa acomodação do composto avaliado no sulco maior, mesmo para esse composto que tem uma forma estendida, diferente dos demais compostos estudados, que ocupam um volume maior no espaço tridimensional.

Whaloccmenios

Secretaria da Educação do Estado de São Paulo, SEESP, Fundunesp, FAPESP

[^215]
DOCKING DOS COMPOSTOS NIFURTIMOX ${ }^{\circledR}$ E ANÁLOGO EM ENZIMAS RELACIONADAS COM ENFERMIDADES DE CHAGAS E LEISHMANIOSE.

Jonathan Resende de AImeida ${ }^{1}(I C)^{*}$, Ignez Caracelli ${ }^{2}(\mathrm{PQ})$
jonathan.resendedealmeida@gmail.com
${ }^{1}$ Licenciatura Plena em Ciências Biológicas - Depto. de Ciências Biológicas, Faculdade de Ciências, UNESP, Bauru,
${ }^{2}$ BioMat, Departamento de Física, Faculdade de Ciências, UNESP, Bauru - SP.

Palavras-chave: docking, nitrofuranos, glutationa redutase, tripanotiona redutase, Chagas

Os fármacos usados na fase aguda e na infecção congênita, tal como o Nifurtimox ${ }^{\circledR}$, da Doença de Chagas apresentaram indesejáveis efeitos colaterais associados com sua alta toxicidade. Estes inconvenientes conduziram a uma série nova de análogos do Nifurtimox ${ }^{\circledR}$ com atividade contra o parasita ${ }^{1}$. Estudando o método de ação de nitrofuranos no combate à Doença de Chagas, foi investigado através de realização de cálculos de docking e visualização do inibidor Nifurtimox ${ }^{\circledR}$ nas enzimas Glutationa Redutase humana (GRh) e Tripanotiona Redutase de Tripanossoma cruzi (TR), ambas as enzimas homodiméricas, NADPHdependentes e oxirredutases. Considerando as estruturas cristalográficas das enzimas TR e GRh, foram analisados dois sítios de ligação possíveis para o inibidor em cada uma delas, o sítio ativo (SA) e o sítio da interface $(\mathrm{SI})^{2,3}$. De acordo com as orientações obtidas dos cálculos de docking para os compostos Nifurtimox® (Nfx) e para o composto análogo do Nifurtimox ${ }^{\circledR}$ (Nf$)^{1}$, através das orientações mais favoráveis, foi possível prever se há ou não a formação dos complexos estudados e sugerir o modo de ligação dos inibidores Nfx (Figura 1A) e Nf (Figura 1B).

A

Figura 1. Inibidores. A) Nifurtimox ${ }^{\left({ }^{(}\right.} \mathrm{e}$ B) Análogo Nf.

Os cálculos de docking no SI da GRh, resultaram em 39 orientações possíveis para o composto Nf. Cálculos feitos no SA da GRh resultaram em 20 orientações. Com o docking feito no SI da TR obteve-se 36 orientações e finalmente, os cálculos feitos no SA da TR resultaram em 11 orientações.

Todas essas orientações foram obtidas para o composto Nf. O primeiro passo foi o de separar os grupos possíveis de orientações e seu índice de repetição. Isso foi realizado a partir da visualização gráfica. Como interações relevantes, podemos destacar entre as várias interações observadas, as que ocorrem com resíduos de aminoácidos carregados, como a His75 (A), His75 (B) e His82(A). É importante destacar novamente que este ligante se orienta entre o par Phe78 (A) - Phe78 (B) (Figura 2), o que ajuda a estabilizar esta orientacão do liaante.

Figura 2. Orientação do composto $\mathrm{Nf}-3$ no sítio da interface da enzima Glutationa Redutase humana.

O complexo formado entre o composto Nf e o SI da GRh é o mais estável, devido às energias obtidas, ao número de repetições das orientações nesse sítio e às interações que este composto faz com a enzima humana, mostrando que, entre os dois compostos testados, este é o que se liga preferencialmente e essa ligação é no SI da enzima humana, o que não é desejável uma vez que se deseja um inibidor específico para TR.

UNESP - PIBIC/Reitoria, Fundunesp.

[^216]
RM1 PARAMETERS FOR SELENIUM AND TELLURIUM: PRELIMINARY RESULTS

Caroline A. C. Lima ${ }^{1}$ (IC), Thiago F. S. Ferreira ${ }^{1}$ (IC), Agrinaldo J. Nascimento ${ }^{1}$ (PG), Gerd B. Rocha ${ }^{2}$ (PQ), Ricardo O. Freire ${ }^{1}$ (PG), Alfredo M. Simas*1 (PQ). simas@ufpe.br
${ }^{1}$ Departamento de Quimica Fundamental, UFPE, 50.670-901, Recife, Pernambuco, Brazil.
${ }^{2}$ Departamento de Química, UFPB, 58.059-970, João Pessoa, Paraiba, Brazil

Keywords: RM1, AM1, PM3, Selenium, Tellurium, Semiempirical

Thinomiction

The need for quantum chemical studies of supramolecular systems, enzymes, nanostructures, polymers, etc, provoked a reawakening of interest in semiempirical electronic structure methods. Indeed, it is nowadays possible to treat systems with hundreds of thousands of atoms with linear scaling semiempirical codes such as LocalSCF.
Recently, our research group advanced a new semiempirical molecular orbital model: RM1, or Recife Model 1^{1}. RM1 was introduced with the intent of significantly increasing the accuracy of the earlier AM1 and PM3 methods. RM1 also corrected a known error in nitrogen charges present in PM3, albeit retaining their analytical form. Thus, RM1 can be easily implemented in any software which already carries AM1, by simply replacing the parameters with the new ones. RM1 is slowly gaining acceptance, and is already available as a new feature in various molecular modeling softwares, such as MOPAC 2007, Spartan '06, and Hyperchem 8.
In this work, we extend RM1 to compounds containing selenium and tellurium. Selenium is an essential component of various enzymes, such as glutathione peroxidase, and is necessary for the functioning of most cells. Tellurium is chemically related to selenium and is frequently used as a semiconductor.

IResulf antamecursion

The parameterizations for Se and Te were carried out independently for each. For Se , we used a preliminary parameterization set of 99 molecules, and for Te , one of 150 molecules - not all properties are available for every molecule. Molecules in both sets could also contain $\mathrm{H}, \mathrm{C}, \mathrm{N}, \mathrm{O}, \mathrm{P}, \mathrm{S}, \mathrm{F}, \mathrm{Cl}, \mathrm{Br}$,
indicate that, whereas for tellurium compounds a large improvement was obtained for the prediction of ionization potentials, the preliminary $R M 1^{\dagger}$ parameterization for selenium is overall more accurate than the AM1 and PM3 ones.
and I only. One preliminary set of parameters, named
RM1 ${ }^{\dagger}$ was then obtained for Se , and another one for Te. As a measure of accuracy, we used the unsigned mean error between the experimental and calculated properties. The accuracies of each set are shown in Tables 1 and 2, where N is the number of experimental values available in each case.

Table 1: Average errors of properties for various models for molecules with selenium.

Properties	N	AM1	PM3	$\mathrm{RM1}^{\dagger}$
$\mathrm{a}_{\mathrm{f}} \mathrm{H}^{\circ}{ }_{\text {(gas) }}\left(\mathrm{kcal.mol}{ }^{-1}\right)$	22	39.87	53.86	16.73
Dipole moment (D)	8	0.66	0.73	0.60
I.P. (eV)	8	1.30	0.49	0.47
Bond length (\AA)	151	0.069	0.064	0.057
Angles (degrees)	202	3.84	6.99	3.47

Table 2: Average errors of properties for various models for molecules with tellurium.

Properties	N	AM1	PM3	$\mathrm{RM}{ }^{\dagger}$
$\mathrm{a}_{\mathrm{f}} \mathrm{H}^{\circ}$ (gas) $\left(\mathrm{kcal} . \mathrm{mol}^{-1}\right)$	46	24.11	47.86	22.62
Dipole moment (D)	9	1.54	2.44	2.18
I.P. (eV)	8	1.17	0.67	0.26
Bond length (\AA)	171	0.117	0.141	0.154
Angles (degrees)	203	5.28	8.31	5.78

Preliminary parameterization results.

- Maternombergementis

The authors acknowledge grants from the Instituto do Milênio de Materiais Complexos, CNPq, and CAPES.

[^217]
THEORETICAL STUDY OF ASCORBIC ACID INTERACTING WITH C_{60} AND $\mathrm{C}_{61}(\mathrm{COOH})_{2}$ MOLECULES

Ivana Zanella ${ }^{1 *}$ (PQ) Vólia Lemos ${ }^{1}$ (PQ), and Josué Mendes Filho ${ }^{1}$ (PQ)
${ }^{1}$ Departamento de Física, Universidade Federal do Ceará, Centro de Ciências, Caixa Postal 6030, Campus do Pici, 60455970 Fortaleza, CE, Brazil

Palavras Chave: fullerene, ascorbic acid, ab initio, adsorption

ITM00 M15 50

The emerging field of nano-biomedical and nanobiotechnology is booming due to the potential applications of nanoparticles, including drug delivery, enzyme immobilization and DNA transfection. ${ }^{1}$ Particles below 50 nm are able of translocation into cells relatively easily and to interact with channels, enzymes, and other cellular proteins. Fullerene-based compounds were tested for biological activity, including antiviral, antioxidant, and chemiostactic activities. ${ }^{2}$ A drawback found in fullerene applications was C_{60} being highly hydrophobic. However, changing the surface features this property can be substantially changed, as observed in the organic functionalization of C_{60} by covalent attachments of hydrophilic addends. ${ }^{3,4}$ One such C_{60} derivative, $\mathrm{C}_{61}(\mathrm{COOH})_{2}$ was demonstrated to cross the external cellular membrane and localize, preferentially, to the mitochondria. ${ }^{5}$ This makes the compound the ideal biological media for drug delivery through skin. The question arises as if ascorbic acid (vitamin C), a powerful antioxidant, would bind to it.

Hesmindor chisicusero

One way to elucidate this question is using quantum mechanics calculations to estimate the binding energy of this radical in function of its position. First principle density functional theory has been employed to investigate electronic and structural properties of the radicals $-(\mathrm{COOH})_{2}$ interacting with C_{60} molecule and the interacting of $\mathrm{C}_{61}(\mathrm{COOH})_{2}$ molecula with ascorbic acid. We used the Siesta code, wich performed full self consistent calculations solving the Kohn Sham equations. All geometry optimizations were performed without any symmetry constraints, and all atoms in the fullerene were allowed to relax, as well as the atoms in COOH groups and ascorbic acid. The binding energies were calculated by basis sets superposition error (BSSE) corrected by the counterpoise method.

The Figure 1 shows the minimal energy structure of the $\mathrm{C}_{61}(\mathrm{COOH})_{2}$ system. Research on the binding of foreign groups and induced modifications in its electronic properties is fundamental for further developments. Therefore,
we also analyze the electronic properties of each of these systems.

Figura 1 . Relaxed structure for the $\mathrm{C}_{61}(\mathrm{COOH})_{2}$ molecule

We have investigated, by using total energy $a b$ initio calculations, the interacting of the $\mathrm{C}_{61}(\mathrm{COOH})_{2}$ molecule interacting with ascorbic acid

Our results show that the interaction of the $\mathrm{C}_{61}(\mathrm{COOH})_{2}$ molecule with ascorbic acid is shown to occur in a physiosorption regime with binding energy around 0.2 eV .

Although our results suggest a weak interaction among $\mathrm{C}_{61}(\mathrm{COOH})_{2}$ molecule and ascorbic acid, the system could be a promising model for drug delivery

We thank CENAPAD--SP for computational facilities, Conselho Nacional de Desenvolvimento Científico e Tecnológico and Fundação Cearense de Apoio ao Desenvolvimento Científico e Tecnológico (Grant 350220/2006-9) for financial support.

[^218]
DOCKING DE INIBIDORES DERIVADOS DE BENZOFUROXANOS NAS ENZIMAS TRIPANOTIONA REDUTASE DE T. CRUZI E GLUTATIONA REDUTASE HUMANA.

Paulo Roberto Gabbai Armelin ${ }^{1}$ * (IC), Ignez Caracelli ${ }^{2}$ (PQ).
* armelin@fc.unesp.br
${ }^{1}$ Licenciatura Plena em Ciências Biológicas - Depto de Ciências Biológicas, Faculdade de Ciências, UNESP, Bauru-SP.
${ }^{2}$ BioMat-Departamento de Física, Faculdade de Ciências, UNESP, Bauru-SP.

Palavras Chave: glutationa redutase, tripanotiona redutase, benzofuroxanos, docking

TMH:acluabo

A doença de Chagas, causada pelo protozoário Trypanosoma cruzi, representa um sério problema de saúde pública, pois não há métodos eficazes de imunoprofilaxia. Neste trabalho, as enzimas Glutationa redutase humana (GRh) e a Tripanotiona redutase (TR) do T. cruzi foram utilizadas como alvo para os inibidores da família dos benzofuroxanos. Foram analisados nove compostos e os dois mais ativos estão na Tabela 1.

Tabela 1 Inibidores da familia dos benzofuroxanos

Composto	-R
(A)	-NO
(B)	-NOH

O objetivo deste trabalho é o de estudar o comportamento destes ligantes nos sítios ativo (SA) e interface (SI) da GRh e TR do T.cruzi, para o design computacional de compostos antitripanossômicos e baseou-se em cálculos de docking e análises das interações proteína-ligante.

Para os cálculos de docking no SA e SI da enzima humana foram utilizadas as proteínas 1 gre e 1xan no $\mathrm{PDB}^{[1]}$ e para a TR, considerou-se a proteina 1nda. Hidrogênios foram adicionados para os cálculos, as histidinas foram consideradas protonadas no átomo ND1; os resíduos de cisteínas dos SA das moléculas estudadas foram considerados no estado oxidado. A simulação de docking foi feita utilizando o programa DOCK $3.5^{[2,3]}$. No sítio ativo, foram considerados resíduos em um raio de 13 A ao redor de C58-C63 para GRh e ao redor de C52-C57 para a TR. Para o sítio da interface, na GR foram considerados resíduos em um raio de $10 \AA$ ao redor de H75-H82 e para a TR, resíduos em um raio de $12 \AA$ ao redor da $\mathrm{H} 72 .{ }^{[4]}$.
O composto (A) forma o melhor complexo no sítio ativo da GRh. Este ligante apresentou um índice de repetição (IR) (porcentagem de orientações do ligante dentro do sítio analisado) de $77,4 \%$ e
interação com a Arg347. No sítio da interface da GRh, os complexos formados com os compostos benzofuroxanos (A) e (B) mostraram-se mais promissores como inibidores da enzima humana, sendo que o complexo (B)-SI-GRh-(B) apresentou uma energia total igual a $-27,2 \mathrm{kcal} / \mathrm{mol}$. Os dois ligantes se orientam entre o "sanduíche" formado pelo par Phe78 e Phe78'.
Para o sítio ativo da TR, o melhor complexo obtido foi com o benzofuroxano (B) que realiza várias interações com o Glu18 e com a Cys52 catalítica. No entanto, os complexos formados entre os compostos e o TR-SA não se mostram favoráveis. Os compostos (A) e (B) formam complexos no sítio da interface da TR, sendo que o ligante (B) mostrou-se mais favorável apresentando uma energia total igual a -19,6 kcal/mol, IR de $66,7 \%$ e interações com o Asp431(Figura 1).

Figura 1. Composto (B) no TR-SI. Estão representados alguns aminoácidos e interações que compōem tal sítio e a energia total.

Comiclusoes

Todos os benzofuroxanos estudados se ligam melhor à GRh do que a TR. Os compostos (A) e (B) foram os que melhor se ligaram, tanto no SA e SI da GRh quanto no sítio da interface da TR. Os complexos GRh-SI-(A) e GRh-SI-(B) são os mais estáveis e tais compostos se ligam preferencialmente à enzima humana.

AOMrecememios

UNESP-PIBIC/Reitoria, Fundunesp.

[^219]
Algoritmo Genético para Encontrar múltiplas Conformações de PROTEÍNAS POR PRIMEIROS PRINCÍPIOS: ESTUDO EM POLI-ALANINAS

Fábio Lima Custódio* (PG)¹, Hélio J.C. Barbosa (PQ)¹, Laurent E. Dardenne (PQ)¹
${ }^{1}$ Laboratório Nacional de Computação Cientifica, Av. Getúlio Vargas, 333, 25651-070, Petrópolis, RJ, Brasil. ${ }^{1}$ flc@/ncc.br

Palavras Chave: AG, ab initio, estrutura, proteína

Pran mirolichoo
O desenvolvimento de algoritmos capazes de determinar a estrutura de proteínas por primeiros princípios, um dos problemas mais desafiadores da ciência moderna, é de grande importância no desenvolvimento de projetos associados à engenharia de proteínas e na exploração de informações geradas por projetos genomas. A dificuldade em se tratar o problema de predição $a b$ initio de estrutura de proteínas, de forma computacionalmente viável, leva à introdução de simplificações para reduzir tanto o número de graus de liberdade do sistema quanto à complexidade e custo computacional da função energia. Na prática, as simplificações introduzidas na função de energia não garantem que a estrutura nativa de uma proteína corresponda ao mínimo global da hipersuperfície investigada.
Neste trabalho, foi desenvolvido um algoritmo para predição de estrutura de proteínas por primeiros princípios cuja função de aptidão é o campo de forças clássico GROMOS96. O objetivo foi desenvolver um algoritmo genético (AG) capaz de encontrar múltiplas conformações de baixa energia. Uma estratégia de substituição parental baseada em crowding foi utilizada no AG com o objetivo de manter diversidade útil na população e, ao mesmo tempo, encontrar múltiplas conformações ótimas em uma execução. Para testar o desempenho do AG utilizamos um conjunto modelo para testes composto de poli-alaninas.

O desempenho do AG foi avaliado em duas abordagens distintas para o valor da permissividade dielétrica utilizada no potencial de Coulomb. Na primeira foi utilizado um valor constante igual a dois, dessa forma modelando os efeitos de um solvente apolar. Nessa configuração a estrutura de menor energia (mínimo global) para as poli-alaninas, com os terminais neutralizados, é uma estrutura em alfahélice (Figura 1, A). Nessa abordagem o AG foi capaz de encontrar a estrutura nativa, isto é, a estrutura em alfa-hélice com uma taxa de sucesso de 100% (em 50 rodadas), utilizando 500.000 avaliações de energia. Na segunda foi utilizada uma função dielétrica sigmoidal dependente da
distância ${ }^{2}$. Nessa abordagem a estrutura de menor energia, com os terminais carregados, é uma estrutura compacta (Figura 1, B). Esse foi um teste excelente para avaliar a capacidade do AG em encontrar mais de uma estrutura ótima, quando a estrutura nativa não corresponde ao mínimo global de energia. Em todas as execuções, a população final continha: (i) estruturas similares à compacta (RMSD < 2,0 A, Figura 1, B); (ii) estruturas em alfahélice com $\sim 9 \mathrm{Kcal} / \mathrm{mol}$ de energia a mais do que a estrutura compacta.

Figura 1. Estruturas encontradas para 23-ALA.

Os resultados obtidos mostram que as estratégias de otimização envolvendo a busca por múltiplos mínimos possuem duas grandes vantagens. A primeira delas está em uma investigação mais efetiva de uma hipersuperfície complexa aumentando a probabilidade de se encontrar soluções ótimas (de mais baixa energia); a segunda delas está no aumento na probabilidade de se obter estruturas próximas daquelas determinadas experimentalmente mesmo quando estas não são o mínimo global da hipersuperfície de energia investigada.

O trabalho recebeu apoio financeiro do CNPq e da FAPERJ. Contratos de auxílio: E26/171.199/2003, E26/171.401/01, E26/170.648/2004.

[^220]
ESTUDO CONFORMACIONAL DE LIGANTES AOS RECEPTORES CEREBRAIS DE SEROTONINA ($5-\mathrm{HT} 2 \mathrm{C}$).

Felipe T. D. de Lima (IC)*, Fabiana G. O. Almeida (IC), Madson S. do Nascimento(PG), Patrícia G. B. H. van Rij (IC), Elizabete Rocha Mendes Bezerra (IC), Jamal S. Chaar (PQ), Kelson M. T. Oliveira (PQ), Moacyr C. Júnior (PQ), Saulo L. da Silva (PQ).
*ftd_lima@hotmaill.com
Departamento de Química, ICE, Universidade Federal do Amazonas (UFAM), Manaus, AM., Brasil.
Palavras Chave: Serotonina,compostos agonistas, compostos antagonistas, DFT

Os receptores cerebrais de serotonina ($5-\mathrm{HT} 2 \mathrm{C}$) estão envolvidos em diversos processos fisiológicos como o controle da ansiedade, depressão, alteração no apetite e outros. O entendimento das interações moleculares dos compostos agonistas (YM348) e antagonista (SB242084) com os receptores 5-HT2C irão fornecer novos conhecimentos para ajudar no desenvolvimento de novos compostos com melhores, e mais específicas, interações para uma ação farmacológica mais efetiva.

Resuftiors ellicursar

As estruturas de ambos compostos foram inicialmente modeladas pelo método de mecânica molecular $\mathrm{MM}+$. As estruturas finais usadas nas análises eletrônicas, moleculares e energéticas foram otimizadas através da Teoria de Densidade Funcional (DFT) com a base funcional B3LYP implementada no pacote Gaussian 98 usando o grupo de bases $6-311 \mathrm{G}^{*}$ até um gradiente de energia de $0,001 \mathrm{kcal} / \mathrm{mol}$. Foram analisadas as seguintes propriedades (descriptores): Energias de HOMO e LUMO, Eletronegatividade de Mullikan, Energias Total e Eletrônica, Polarizabilidade, Refratividade, Momento de Dipolo, Log P, Área e Volume. Os resultados são mostrados na tabela abaixo:

PROPRIEDADES	YM348	SB242084
Energia Total (eV)	-416480.59	-897511.81
Energia Eletrônica (eV)	-1123814.38	-2302992.25
HOMO (eV)	-8.9993	-8.3668
LUMO (eV)	-0.2787	-0.4858
Eletroneg. Mullikan (eV)	4.3603	3.9405
Momento de Dipolo (D)	2.32	3.53
Refratividade (A3)	74.10	107.62
Polarizabilidade (A3)	27.65	42.09
Log P	1.16	4.85
Área Molecular (A2)	549.44	749.39
Volume Molecular (A3)	919.22	1316.03

Tabela 1. Valores das propriedades calculadas para o YM348 e SB242084.

A análise das estruturas mostrou que os dois compostos têm regiões planares que podem ocupar o mesmo espaço no receptor (RMS 0,7977 Á). O composto SB242084 tem: 1) menor energia total e eletrônica; 2) bom caráter eletrodoador; 3) maiores valores de refratividade, polarizabilidade, momento de dipolo e de Log P.

Figura 1. Sobreposição das moléculas YM348 e SB242084.

Cominiveros

A compreensão das propriedades das espécies envolvidas serve para elucidar os mecanismos reacionais mais prováveis para a reação de síntese do corismato. A abordagem químico-quântica é uma poderosa ferramenta de auxilio à química medicinal e permite prevê com acuracidade já reconhecida reações e sistemas ainda não conhecidos plenamente.

Acricdeamentos

FAPEAM / CAPES.

[^221]
resolução de Estruturas de Proteínas utilizando-se dados de RMN a partir de um Algoritmo genético de múltiplos mínimos

Marx Gomes Van der Linden ${ }^{1 *}$ (PG), Fábio Lima Custódio ${ }^{1}$ (PG), Helio José Correa Barbosa ${ }^{1}$ (PQ), Laurent Emmanuel Dardenne ${ }^{1}$ (PQ)
${ }^{1}$ Laboratório Nacional de Computação Científica (LNCC)
* marxgomes@lncc.br

Palavras Chave: NMR, Enovelamento de Proteínas

Thiter IVT:00

A espectroscopia por Ressonância Magnética Nuclear (RMN) é, ao lado da cristalografia por difração de Raios-X, uma das principais técnicas experimentais capazes de permitir a elucidação da estrutura de proteínas em resolução atômica.

Duas categorias principais de informações estruturais são obtidas a partir de experimentos de RMN para resolução de estruturas protéicas ${ }^{1}$:
(1) Restrições de distância entre pares de átomos, obtidas através do experimento NOESY (Nuclear Overhauser Effect Spectroscopy).
(2) Restrições de variação de ângulos diedrais, tipicamente referentes aos ângulos φ e χ^{2}, medidas a partir da constante de acoplamento ${ }^{3} \mathcal{J}$ entre núcleos ligados entre si por até 3 ligações covalentes.

As restrições obtidas por experimentos de RMN não são suficientes para, isoladamente, determinar a posição de todos os átomos em uma proteína; é necessário também o conhecimento de características estruturais (e.g., comprimento e ângulos das ligações, quiralidades, grupos planares e informações sobre repulsão estérica) e da seqüência de aminoácidos ${ }^{1}$.

A resolução de estruturas protéicas por RMN é geralmente descrita como um problema de minimização de um conjunto de equações provenientes de um campo de força empírico, sob a atuação das restrições derivadas de dados experimentais de RMN. Os programas atualmente mais utilizados para esse fim implementam alguma variação do método de Dinâmica Molecular. Neste trabalho, foi desenvolvido um algoritmo genético para predição de estruturas de proteínas utilizando-se dados oriundos de experimentos de RMN. Este desenvolvimento baseouse em um algoritmo genético de múltiplos mínimos com uma abordagem ab initio para predição de estruturas de proteínas.

O algoritmo genético utiliza o campo de força GROMOS ${ }^{2}$ e é do tipo steady state, com adaptação da probabilidade dos operadores a cada iteração. Cada novo indivíduo gerado substitui aquele que lhe é mais parecido na população existente, de acordo com o
critério do desvio quadrático médio da posição de seus resíduos hidrofóbicos, ou, na versão adaptada ao uso com dados de RMN, com o critério do melhor subconjunto de restrições atendidas. Desse modo, múltiplas soluções de baixa energia podem ser encontradas em apenas uma rodada.

As restrições de ângulos diedrais são implementadas através do uso de operadores inteligentes que só geram indivíduos dentro do espaço permitido pelas restrições; as restrições de distância são implementadas em um termo de penalidade proporcional à média das violações, o qual é adicionado aos termos do campo de força.

Em testes realizados com pequenos peptídeos, o algoritmo foi capaz de encontrar estruturas com RMSD de até $1,51 \AA$ em relação às encontradas utilizando-se outros métodos conhecidos e depositadas no Protein Data Bank.

Tenlerisoras

A abordagem de se incorporarem restrições de RMN ao algoritmo ab initio diferencia-se das demais por possibilitar que se utilize um número muito maior de informações empíricas estruturais para auxiliar a busca da estrutura nativa. Nas etapas iniciais de um experimento de RMN, o uso de um algoritmo como o apresentado, pode, com o uso de poucas restrições experimentais, auxiliar e acelerar o próprio processo experimental de obtenção das restrições.

Um algoritmo com essas características também pode se mostrar superior às abordagens tradicionais em situações em que as restrições experimentais são oriundas não de uma conformação estrutural específica, mas de uma média temporal de duas ou mais conformações protéicas intercambiáveis.

O trabalho recebeu apoio financeiro do CNPq e da FAPERJ. Contratos de auxílio: E26/171.199/2003, E26/171.401/01, E26/170.648/2004.

[^222]
ASPECTOS ESTRUTURAIS DE OLIGONUCLEOTÍDEOS: APLICAÇÃO DE METODOLOGIAS TEORICAS
 Bruna Luana Marcial ${ }^{1 *}$ (IC), Juliana Fedoce Lopes ${ }^{2}$ (PG), Wagner B. De Almeida ${ }^{2}(\mathrm{PQ})$,

 Hélio F. Dos Santos ${ }^{1}(\mathrm{PQ})$*blmarcial@yahoo.com.br

${ }^{1}$ Núcleo de Estudo em Química Computacional - NEQC, Departamento de Química - ICE, Universidade Federal de Juiz de Fora, Juiz de Fora - MG, 36036-330.
${ }^{2}$ Laboratório de Química Computacional e Modelagem Molecular - LQC-MM, Departamento de Química - ICEx, Universidade Federal de Minas Gerais, Belo Horizonte - MG, 31270-901

Palavras Chave: DNA, ONIOM,

Thiraducao

A descoberta da estrutura do DNA nos anos cinqüenta foi um divisor de águas na história da ciência. Marcando o surgimento e posterior desenvolvimento da chamada biologia molecular, possibilitou um entendimento de inúmeros processos biológicos no nível molecular. A molécula de DNA possui a capacidade de duplicação ("hereditariedade") e de transcrição ("síntese protéica"), sendo por isso chamada de "molécula da vida". É também alvo de diversos fármacos com ação biológica como antitumorais, em que o modo de ação está diretamente relacionado à coordenação com o DNA, tornando relevante o estudo da sua estrutura. Entretanto, trata-se de uma macromolécula estruturalmente complexa ${ }^{1}$, o que limita a aplicação de métodos teóricos no estudo da mesma. Neste trabalho propomos uma investigação estrutural de oligonucleotídeos aplicando diferentes métodos teóricos, objetivando estabelecer uma metodologia que descreva bem a estrutura e que seja viável computacionalmente.

Cálculos de otimização de geometria usando diferentes níveis de teoria foram realizados nos níveis de mecânica molecular (UFF), semi-empírico (PM3MM), Hartree-Fock (HF/LANL2MB, HF/ LANL2DZ) e híbrido QM:MM ONIOM (HF/LANL2DZ: UFF, B3LYP/LANL2DZ:UFF). Uma seqüência nucleotídica variando de dois a doze pares de bases nitrogenadas foi considerada, sendo a geometria obtida no estado sólido (PDB $330 \mathrm{D})^{2}$ utilizada como referência. (Figura 1),

(a)

(b)

Figura 1. $D N A\left(5^{\prime}-D\left(C P^{*} C P^{*} G P^{*} G\right)-3^{\prime}\right)$: (a) estrutura de raios- X^{2}; (b) estrutura otimizada (HF/LANL2DZ:UFF). (Ball and stick é high layer e stick é low layer).

As moléculas de água foram eliminadas da estrutura e prótons adicionados aos grupos fosfatos para neutralizar o sistema. A Tabela 1 apresenta as distâncias interatômicas entre os átomos envolvidos em ligações de hidrogênio nos pares de base da seqüência ($\left.5^{\prime}-\mathrm{D}\left(\mathrm{CP}^{*} \mathrm{CP}{ }^{*} G P^{*} G\right)-3^{\prime}\right)$ (Figura 1). Valores para as estruturas de raios- X e otimizada no nível ONIOM(HF/LANL2DZ:UFF) são apresentados. Essas interações são muito importantes para a estabilização da dupla hélice, e são melhores descritas quando tratadas em um nível alto de teoria (H ou high layer) e distorcidas no nível baixo (L ou low layer).

Tabela 1. Distâncias de ligações de hidrogênio (em A) entre bases opostas.

Pares de bases		Raios-X	ONIOM	layer
	$\mathrm{HNH} \cdots \mathrm{O} 6$	2,43	1,89	
$\mathrm{C} \cdots \mathrm{G}$	$\mathrm{N} \cdots \mathrm{H}$	2,23	1,95	H
	$\mathrm{O} \cdots \mathrm{HNH}$	2,06	1,82	
	$\mathrm{HNH} \cdots \mathrm{O} 6$	2,05	2,59	
$\mathrm{C} \cdots \mathrm{G}$	$\mathrm{N} \cdots \mathrm{H}$	2,04	2,84	L
	$\mathrm{O} \cdots \mathrm{HNH}$	1,81	3,42	
	$\mathrm{O} 6 \cdots \mathrm{HNH}$	1,70	1,79	
$\mathrm{G} \cdots \mathrm{C}$	$\mathrm{H} \cdots \mathrm{N}$	1,69	1,93	H
	$\mathrm{HNH} \cdots \mathrm{O}$	1,59	1,84	
	$\mathrm{O} 6 \cdots \mathrm{HNH}$	2,12	-	
$\mathrm{G} \cdots \mathrm{C}$	$\mathrm{H} \cdots \mathrm{N}$	2,28	-	L
	$\mathrm{HNH} \cdots \mathrm{O}$	2,42	-	

Os resultados obtidos até momento sugerem a eficácia da metodologia híbrida ONIOM para tratar macromoléculas, sendo que os melhores resultados em termos de estrutura e tempo computacional são para os cálculos ONIOM alternando as camadas high layer e low layer. No entanto estão sendo realizados testes usando outros níveis de teoria, para uma avaliação mais refinada da metodologia, que pode representar uma alternativa para cálculos com sistemas que envolvam DNA.

CNPq, FAPEMIG, CAPES, FINEP
${ }^{1}$ Xiang-Jun Lu and Wilma K. Olson, Nucleic Acids Research, 2003, 31, 17
${ }^{2}$ Timsit. Y. ; Vilbois. E. ; Moras, Nature 1991, 354,167

ESTUDO TEÓRICO DO AGLOMERADO SI3

Luiz R. Marim ${ }^{1}$ (PQ)*, Valéria O. Kiohara ${ }^{1}$ (PG), Francisco B. C. Machado ${ }^{1}$ (PQ). marim@ita.br

1 - Departamento de Química - Instituto Tecnológico de Aeronáutica.
Palavras Chave: DFT, ab-initio, silício, otimização, aglomerados
conjunto cc-pVQZ. Nota-se que com a utilização de métodos baseados no funcional da densidade, o estado encontrado como sendo do estado fundamental corresponde ao tripleto para todos os conjuntos de bases estudadas. No entanto, como afirmado, o estado fundamental do Si_{3} é singleto. Os resultados obtidos utilizando os vários métodos ab initio levam ao estado singleto em concordância com os resultados experimentais. No entanto, quando utiliza-se a base split-valence ($6-31 \mathrm{G}^{*}$), os métodos de uma referência (MP2 e CCSD(T)) também levam ao estado tripleto.
Os parâmetros geométrico estão em excelente concordância com o resultado experimental recente ${ }^{4}$, como mostrado na Figura 1 para o caso $\operatorname{CCSD}(\mathrm{T}) / \mathrm{cc}-$ pVQZ.

Tabela 1. As energias estão apresentadas em u.a. As energias em negrito representam o estado fundamental para cada método. Esses resultados foram obtidos utilizando-se o conjunto de bases cc-pVQZ.

Si_{3}	Singleto	Tripleto
B3LYP	$-868,4539452$	$-868,4562398$
BPW91	$-868,4270365$	$-868,4310214$
BP86	$-868,4901323$	$-868,4929134$
HF	$-866,7017055$	$-866,7183694$
CCSD(T)	$-867,0809459$	$-867,0804202$
MP2	$-867,0329010$	$-867,0305896$
CASSCF	$-866,8354665$	$-866,8281294$
MRCI	$-867,0527952$	$-867,0498936$

	Utilizando métodos ab initio altamen correlacionados, tanto aqueles com uma única referência $(\operatorname{CcsD}(T))$ e multireferên (CASSCF/MRCI) e contribuição da correlação carroço valência e conjuntos de bases estendidos mostrouque o estado fundamental é ${ }^{1} A_{1} e$ os parâmetr

P- Frecemalios
Os autores agradecem o apoio do CNPq e FAPESP.

[^223]
molecular Properties Calculation using the q-integrals method in the HARTREE-FOCK APPROACH

Heibbe C. B. de Oliveira ${ }^{1,2^{*}}$ (PG), Cristiano de S. Esteves ${ }^{1}$ (PG), Ricardo Gargano ${ }^{3}$ (PQ), Marcos A. C. Nascimento (PQ) ${ }^{4}$, Luiz A. C. Malbouisson ${ }^{5}$ (PQ), Kleber C. Mundim ${ }^{11}$ (PQ). *heibbe@ueg.br.
${ }^{1}$ Instituto de Química, Universidade de Brasilia, 70919-970 Brasilia (DF) Brazil.
${ }^{2}$ Unidade de Ciências Exatas e Tecnológicas, Universidade Estadual de Goiás, 75001-970, Anápolis (GO), Brazil.
${ }^{3}$ Instituto de Física, Universidade de Brasilia, 70919-970 Brasilia (DF) Brazil.
${ }^{4}$ Instituto de Química, Universidade Federal do Rio de Janeiro, 21949-900, Rio de Janeiro (RJ), Brazil.
${ }^{5}$ Instituto de Física, Universidade Federal da Bahia, 40210-340, Salvador (Ba), Brazil.
Palavras Chave: Hartree-Fock, spectroscopic constants, rovibrational spectra, CPU time.

The goal of this work is to evaluate the applicability of an alternative approach ${ }^{1}$ to solve twoelectron integrals in ab initio quantum mechanics calculation, which is based on the q-Exponential function ${ }^{2-4}$. To validate this methodology it was employed the Hartree-Fock approach to determine the molecular properties of the H_{2} system as following: i) to build up the potential energy curve and, ii) to evaluate the rovibrational spectra and spectroscopic constants using different basis sets. The obtained results are in a good agreement with those known in literature. The advantage of this procedure, when compared with the usual one, is that the CPU time for calculation of two-electron integrals is drastically reduced

We determined all rovibrational transitions obtained combining the $0,1,2,3,4$ vibrational quantum numbers with the $0,1,2,3$ rotational one using both the PEC and q-PEC and considering all basis sets (STO-3G, STO-6G, Slater and DZV basis sets). The maximum (minimum) difference among the PECs and q-PECs spectra $(\triangle E=E(C E P)-E(q C E P))$ considering the all rovibrational spectra described above were: $\Delta E_{(1-5, J=3)}=6.316 \mathrm{~cm}^{-1} \quad\left(\Delta E_{(1-2, J=0)}=1.233 \mathrm{~cm}^{-1}\right)$ at STO-3G basis, $\Delta E_{(1-5, J=0)}=0.786 \mathrm{~cm}^{-1}\left(\Delta E_{(1-2, J=3)}=0.223 \mathrm{~cm}^{-1}\right)$ at STO-6G \quad basis, $\quad \Delta E_{(1-3, J=0)}=0.311 \mathrm{~cm}^{-1}$ $\left(\Delta E_{(1-5, J=2)}=0.128 \mathrm{~cm}^{-1}\right)$ at Slater ${ }^{(1-3, J=0)}$ basis and $\Delta E_{(1-5, J=0)}=1,212 \mathrm{~cm}^{-1}\left(\Delta E_{(1-3, J=3)}=0.109 \mathrm{~cm}^{-1}\right)$ at DZV one. These results show that when more extensive is the basis used a better agreement between the conventional and q-integrals is obtained.

The differences found to PEC and q-PEC we, using Dunham method, were $0.515 \mathrm{~cm}^{-1}$ at STO-3G basis, $1.334 \mathrm{~cm}^{-1}$ at STO-6G basis, $0.221 \mathrm{~cm}^{-1}$ at Slater basis, and $0.713 \mathrm{~cm}^{-1}$ at DZV one. To the $\omega_{\mathrm{e}} \mathrm{x}_{\mathrm{e}}$ and α_{e} spectroscopic constant these deviation were 2.797 and $0.053 \mathrm{~cm}^{-1}$ at STO-3G basis, 0.112 and $0.000 \mathrm{~cm}^{-1}$ at STO-6G basis, 0.130 and $0.003 \mathrm{~cm}^{-1}$ at Slater basis, and 0.130 and $0.003 \mathrm{~cm}^{-1}$ at DZV
one. When we use the DVR method we obtained the following deviation for the $\omega_{\mathrm{e}}, \omega_{\mathrm{e}} \mathrm{x}_{\mathrm{e}}, \omega_{\mathrm{e}} \mathrm{y}_{\mathrm{e}}, \alpha_{\mathrm{e}}$ PECs and q-PECs spectroscopic constants: 2.321, 0.74 , $0.132,0.018 \mathrm{~cm}^{-1}$ at STO-3G basis, $0.106,0.089$, $0.016,0.099 \mathrm{~cm}^{-1}$ at STO-6G basis , 0.432, 0.116, $0.008,0.003 \mathrm{~cm}^{-1}$ at Slater basis and $1.074,0.417$, $0.031,0.007 \mathrm{~cm}^{-1}$ at DZV basis.

Figure 1 shows a comparison of the STO3G, STO-6G and DZV PECs with the q-PEC obtained using q-DZV integral. From this figure, one can see that both DZV and qDZV PECs are the best basis set to describe the H_{2} electronic energy.

In this new approach the Slater and STO-nG two-electron integral calculation are equally performed where the CPU time is drastically reduced. All these calculation were performed using an ab initio computational code built by our group of research.

Conchushon

- In the q-Integral method the Slater-type atomic orbital as well as the contracted Gaussian function two-electron integral calculations are equally well performed, while the CPU time is drastically reduced.
- Deviations between the PECs and q-PECs rovibrational spectra decrease when high-quality basis set functions are used. The same behavior is also observed in the calculation of rovibrational spectroscopic constants.

AEMOME Romphis

This work has been supported by Brazilian Agency Foundations CNPq and CAPES through grants and the authors are grateful.

[^224]
CÁlculo das propriedades dinâmicas da reação Na+hF Via SUPERFÍCie de Energia potencial Ajustada por Uma q-Função.

Cristiano de S. Esteves ${ }^{1}(P G)^{*}$, Heibbe C. B. de Oliveira ${ }^{13}$ (PG), Luciano Ribeiro ${ }^{13}$ (PG), Ricardo Gargano $^{2}(\mathbb{P Q})$, Kleber C. Mundim ${ }^{1}$ (PQ). csesteves@unb.br
${ }^{1}$ Instituto de Química - UnB
${ }^{2}$ Instituto de Física - UnB
${ }^{3}$ UnuCET - UEG
Palavras Chave: Superfície de Energia Potencial, Função Exponencial Generalizada, Método Quase-clássico.

O estudo teórico de processos colisionais reativos tem sido de grande interesse para os químicos teóricos e experimentais. Tal estudo tem início com a determinação de uma superfície de energia potencial (SEP) do sistema reativo. A SEP é uma função que cobre todo o espaço de configurações dos átomos.

Neste trabalho propomos uma forma analítica alternativa para o ajuste de uma SEP, baseada na metodologia MBE (do inglês ManyBody Expansion) e nas exponenciais generalizadas[1]. Aplicamos estas funções no ajuste da SEP do sistema reativo $\mathrm{Na}+\mathrm{HF}$. Através da comparação de um estudo topológico e de algumas propriedades dinâmicas obtidas pelas SEPs BO5[4], GSA[5] e qBO, foi possível verificar que a qualidade da nova SEP qBO é comparável às melhores SEPs disponíveis na literatura.

Para iniciar o estudo teórico do processo reativo $\mathrm{Na}+\mathrm{HF}$, via SEPs BO5, GSA e qBO, primeiramente fizemos um estudo das propriedades topológicas das mesmas. As curvas de contornos isoenergéticos para ambas as SEPs apresentam uma grande concordância. Esta mesma concordância pode ser observada na figura 1.

Figura 1: Caminhos de Mínima Energia para a reação $\mathrm{Na}+\mathrm{HF}$ calculados para as SEP's BO5, GSA, qBO; com o ângulo $\theta=77,2^{\circ}$.

Para $\theta=77,2^{\circ}$, temos que a barreira de potencial BO5 é mínima. O mesmo é observado para a SEP qBO. O ângulo, para o qual barreira é mínima, é igual a $\theta=78,06^{\circ}$ para a SEP GSA.

O estudo topológico é necessário, mas não suficiente para testar a qualidade de uma nova SEP. Desta forma, determinamos a seção de choque reativa do sistema $\mathrm{Na}+\mathrm{HF}$, via método das trajetórias, para as SEPs BO5 e qBO. Calculamos a seção de choque reativa, considerando o reagente HF nos estados vibracionais $v=1,2,3$ e 4 e variando a energia translacional de 1,12 a $28,12 \mathrm{kcal} / \mathrm{mol}$, com passo de $9 \mathrm{kcal} / \mathrm{mol}$. O reagente HF foi fixado no estado rotacional $j=2$.
Os resultados obtidos mostram uma grande concordância entre as seções de choque das SEPs BO5 e qBO. Este revela que a nova SEP qBO possui a mesma qualidade da SEP benchmark da literatura BO5.

Gonicirisoes

A SEP qBO mostrou muito eficiente no ajuste da SEP do sistema reativo $N a+H F$. O caminho de mínima energia da SEP qBO concordou muito bem com o obtido para a SEP BO5, o mesmo acontecendo para o cálculo da seção de choque reativa em função da energia de translação do reagente HF. Todos estes fatos indicam que a nova forma analítica, aqui apresentada, pode ser usada como mais uma ferramenta alternativa para ajustes de processos reativos.
Parmbedmenros.
Este trabalho foi financiado pelo CNPq e pelo Instituto de Química da Unb.

[^225]
ESTUDO DE AGLOMERADOS DE $B_{N} S \lim _{M}(\mathbb{N}+\mathbb{M}=2=4)$

Valéria O. Kiohara ${ }^{1}(\mathrm{PG})^{*}$; Orlando Roberto Neto ${ }^{2}$ (PQ), Luiz R. Marim ${ }^{1}$ (PQ), Francisco B. C. Machado ${ }^{1}$ (PQ). kiohara@ita.br

1 - Departamento de Química - Instituto Tecnológico de Aeronáutica.
2 - Instituto de Estudos Avançados - Comando Geral de Tecnologia Aeroespacial
Palavras Chave: boro, silício, otimização, aglomerados

HMMHOCUCom

Os materiais compostos de silício e boro são de grande importância tecnológica devido ao seu uso na construção de dispositivos microeletrônicos semicondutores ${ }^{1}$ como diodos e transistores, por exemplo. A deposição de vapor químico ${ }^{2,3}$ é um dos métodos utilizados para o processo de dopagem onde quantidades rigorosamente controladas de materiais selecionados (átomos de boro, por exemplo) são introduzidos para transformar a estrutura eletrônica do silício.
O estudo detalhado das propriedades físicoquímicas destes compostos, desde o nível molecular pode fornecer informações importantes para a fabricação dos dispositivos semicondutores. Para entender melhor estes processos dados termodinâmicos e cinéticos dos aglomerados de silício e boro são de grande importância. A geometria do estado fundamental das moléculas $\mathrm{B}_{\mathrm{n}} \mathrm{Si}_{\mathrm{m}}(\mathrm{n}+\mathrm{m}=2-4)$ foram investigadas utilizando os métodos B3LYP e MP2 com o conjunto de bases cc-pVTZ desenvolvido por Dunning ${ }^{4}$.

Resultados C Discusse

Neste trabalho, investigou-se estruturas de aglomerados de Be Si , com até quatro átomos. Para cada tamanho ($n+m$), os cálculos de otimização de geometria foram iniciados utilizando as geometrias dos aglomerados de boro puro, encontrados na literatura ${ }^{5,6}$. Análise vibracional foi realizada para garantir que o sistema encontrado correspondesse a um estado de mínimo. Para cada tamanho ($\mathrm{n}+\mathrm{m}$), cada átomo de boro não equivalente foi substituído por um átomo de silício e nova otimização foi realizada. Em seguida, dois átomos de boro foram substituídos por dois de silício, em todas as possíveis combinações. Esse procedimento é repetido até que um aglomerado de silício puro fosse obtido, conforme exemplificado na Figura 1, para o aglomerado $n+m=3$.
A otimização das geometrias foram realizadas utilizando os métodos B3LYP e MP2. Os resultados obtidos para os estados fundamentais foram muito próximos, com exceção do Si_{3}, onde o método B3LYP apresenta o estado tripleto como sendo o do estado fundamental. Evidências experimentais mostram que o estado fundamental do Si_{3} é singleto ${ }^{7}$.
Para o tamanho $n+m=3$ a estrutura de boro puro apresenta simetria $D_{3 H}$ com geometria semelhante a um triângulo eqüilátero de lado 1,544 ângstrons
(Figura 1a). Ao ser incluído o primeiro átomo de silicio, essa simetria se altera para uma $\mathrm{C}_{2 \mathrm{~V}}$ (Figura 1b) que será mantida até a obtenção do Si_{3} (Figura 1d).
Para o tamanho $n+m=4$, o boro puro tem simetria $D_{2 H}$, com a inclusão de um átomo de silício a simetria passa a ser $\mathrm{C}_{2 \mathrm{v}}$. Com a entrada do segundo silício essa simetria é quebrada, e retorna a $\mathrm{C}_{2 \mathrm{~V}}$ com a inclusão do terceiro átomo de silício. A geometria do Si_{4} tem simetria $D_{2 H}$.

Figura 1. Aglomerados de $\mathrm{B}_{n} \mathrm{Si}_{\mathrm{m}}\left(\mathrm{n}+\mathrm{m}=3\right.$). (a) geometria do B_{3} com simetria $\mathrm{D}_{3 \mathrm{H}}$; (b) geometria do $\mathrm{B}_{2} \mathrm{Si}$ com simetria $\mathrm{C}_{2 \mathrm{~V}}$; (c) geometria do BSi_{2} com simetria $\mathrm{C}_{2 \mathrm{v}}$; (d) geometria do Si_{3} com simetria $\mathrm{C}_{2 \mathrm{v}}$.

genchuser

A geometria do estado fundamental das moléculas $\mathrm{B}_{\mathrm{n}} \mathrm{Si}_{\mathrm{m}}(\mathrm{n}+\mathrm{m}=2-4)$ foram investigadas utilizando os métodos B3LYP e MP2 e o conjunto de base cc-pVTZ com resultados semelhantes. Os resultados obtidos estão em concordância com outros resultados existentes para os aglomerados de silício e boro puros ${ }^{5-}$ ${ }^{7}$. As freqüências vibracionais calculadas mostram que os estados encontrados correspondem a mínimos.

Achracmmonios

Os autores agradecem ao CNPq e FAPESP.

[^226]
THE ZEEMAN EFFECT FOR THE HYDROGEN ATOM BY THE HAMILTON-JACOBI EQUATION

Fernando S. Vicente ${ }^{1} \underset{*^{*}}{ }(P)$, Daniel L. Nascimento ${ }^{1}(P Q)$, Davi F. Miranda ${ }^{2}(P Q)$, Marco A. Amato ${ }^{1}$ (PQ), Antonio L. A. Fonseca (PQ) alaf20@gmail.com
${ }^{1}$ Institute of Physics
University of Brasilia P. O. Box 04455
70919-970, Brasília, DF
Brazil
${ }^{2}$ NTNU - Institutt for Fysikk N-7491 Trondheim, Norway
Palavras Chave: Hamilton-Jacobi equation, Zeeman effect, hydrogen atom, ground state

InITOM Hieale

In spite of the progress brought by Quantum Mechanics, classical and semiclassical methods are still important in the study of the atoms and molecules. In special, the Hamilton-Jacobi equation (HJE) has been recently used to describe chemical reaction dynamics, band edge for periodic potential and bound state of wave functions.
In the last decade several methods have been developed in order to solve the Schrodinger's equation for atom in the presence of external fields. These methods generated a diverse variety of techniques, such as variational methods, pertubations, and also analytical approaches.
Along the lines of reference [1] we propose to extend the methods in the context of the Hamilton-Jacobi Equations.

RCsulfados G Discusesto

In order study this problem in this framework, we make use of the solution of an algebraic [1,2] system of linear equations in conjunction to the solution of the differential HJE obtained in [3]. We explore the solutions in the presence of magnetic fields with different intensities and the results are very compelling for the study of such systems. In the proper limit we have obtained
the solutions of [1]. Also, these results are in good agreement with those found in the literature. We have also shown that the method works very well for the limit of weak and strong fields.

Conclusones

In this work we have obtained the exact solution of the Hamilton-Jacobi equation through eigenvalue equations for the Zeeman effect in the hydrogen atom.

FSV acknowledges CNPq for the scholarship, DLN acknowledges FUBRA and ALAF acknowledges CNPq for a research grant.
${ }^{1}$ Silva Filho O. L. and Fonseca A. L. A., Phys. Rev A 1994 50, 4383.
${ }^{2}$ Silva Filho O. L., Vianna J. D. M., Fonseca A. L. A., Phys. Rev. A 1991 44, 4747.
${ }^{3}$ Nascimento D. L., Fonseca A. L. A., Inter. J. Quant. Chem. 2006 106, 2779.

DISSOCIAÇÃO DO H2 ${ }^{+}$POR MONTE CARLO QUÂNTICO COM MATRIZ DENSIDADE

Paulo Henrique G. da Silva ${ }^{1}(\mathrm{PG})^{*}$, José Roberto dos Santos Politi ${ }^{1}(\mathrm{PQ})$. * phquim@hotmail.com
1-Laboratório de Química Computacional, Instituto de Química, Universidade de Brasília, Brasília, DF, Brasil. Palavras Chave: Ab initio, Monte Carlo Quântico, Matriz densidade

Thiroolicao

O método Monte Carlo (MC) é um método estocástico que utiliza uma seqüência randômica de eventos para calcular integrais numericamente. O MC utilizado em sistemas quânticos é conhecido como Monte Carlo Quântico (MCQ) ${ }^{1}$.
O MCQ mais simples é o Monte Carlo Variacional (MCV), onde aplica-se o MC no princípio variacional,

$$
E_{0} \leq \frac{\int \psi * H \hat{\psi} d R}{\int \psi * \psi d R}=E_{(\psi)}=\frac{\int \psi * \psi E_{L} d R}{\int \psi * \psi d R}
$$

O termo E_{L} é a energia local de cada configuração. A energia total (E) é obtida como uma média aritmética da E_{L} :

$$
\mathrm{E}_{(\mathrm{R})}=\left\langle\mathrm{E}_{\mathrm{L}}\right\rangle_{\psi^{2}}=\lim _{\mathrm{N} \rightarrow \infty}\left(\frac{1}{\mathrm{M}_{\mathrm{i}}} \sum_{\mathrm{N}}^{\mathrm{N}} \mathrm{E}_{\mathrm{L}}\left(\mathrm{R}_{\mathrm{i}}\right)\right)_{\psi^{2}}
$$

No Monte Carlo de Difusão (MCD), a equação de Schrödinger dependente do tempo é empregada para calcular a energia do sistema.

$$
-\frac{\partial \psi_{(x, \tau)}}{\partial \tau}=-\frac{\hbar}{2 m} \frac{\partial^{2} \psi_{(x, \tau)}}{\partial x^{2}}+V_{(x)} \psi_{(x, \tau)}
$$

A solução da equação de Schrödinger é dada por uma função de Green composta de duas partes:

$$
\begin{gathered}
\quad G_{d(x, y, \Delta t)}=(2 \pi \tau)^{-3 N / 2} e^{-\left[y-x-\frac{1}{2} F_{(r)} \Delta t\right]^{2} /(2 \Delta t)} \text { cinétic } \\
\quad G_{v(x, y, \tau)}=e^{-\left[\frac{1}{2}\left(E_{L(x)}+E_{L(y)}-E_{T}\right] \tau\right.} \\
\text { No MCD, a energia total é obtida também potencial }
\end{gathered}
$$ média das energias locais, porém mais próxima da energia exata. Para viabilizar a implantação do MCQ, utiliza-se tradicionalmente uma função de onda fatorada em spins α e β. Essa função de onda ignora dois postulados da teoria quântica: a anti-simetria e a indistinguibilidade eletrônica. A utilização do conceito de matriz densidade no $M C Q^{2}$ resgata o formalismo quântico ignorado no MCQ tradicional. O uso da matriz densidade no MCQ (d-MCQ) será avaliado no estudo do íon $\mathrm{H}_{2}{ }^{+} \mathrm{e}$ os resultados obtidos comparados com resultados provenientes do método Hartree-Fock Restrito de camada aberta (ROHF) e o MCQ tradicional.

As funções de onda utilizadas nos cálculos MCQ(variacional ou difusão) realizados nesse trabalho, foram obtidas a partir de cálculos ROHF.
Tabela I. Energias na distância de equilibrio (Re).

Método	Energia(Hartree)	$\operatorname{Re}(\AA)$
ROHF/STO-6G	-0.586391	1,058474
d-MCV	-0.586548	1,058474
d-MCD	$-0,611465$	1,058474
MCV 3	-0.602634202	1,058354

A tabela I indica uma consistência entre as metodologias ROHF e d-MCV. O d-MCD apresentou uma energia menor que o MCV. A figura abaixo mostra as curvas de energia potencial (CEP) obtidas pela metodologia ROHF e d-MCV mostra uma boa concordância, o que revela a compatibilidade do d-MCV com o ROHF, uma vez que foi empregada a mesma função de onda em ambos.

Figura I - CEP utilizando d-MCV e ROHF-STO-6G.

comeruges

Os resultados obtidos pelo d-MCV apresentaram boa concordância com os valores ROHF ao longo de toda a curva para o sistema $\mathrm{H}_{2}{ }^{+}$. O d-MCD apresentou uma energia menor que o d-MCV, ficando até mesmo menor que o MCV, mesmo empregando uma função de onda bem menor. Os cálculos para levantamento de toda a CEP do $\mathrm{H}_{2}{ }^{+}$utilizando d-MCD estão sendo executados.

Aoprobemmentos

CNPq, FAPDF, FUNPE-UnB

[^227]
ESTUDO SAR, DE DERIVADOS ANTIMALÁRICOS DA DIIDROARTEMISININA SOLÚVEIS EM ÁGUA

Maycon da S. Lobato ${ }^{1}(\mathrm{PG})^{*}$, Helieverton G. Brito ${ }^{1}(\mathrm{IC})$, Ruth C. O. de Almeida ${ }^{1}($ IC $)$, Elierge C. Barros $^{1}($ IC $)$, Fábio M. Rosa $^{1}\left(\right.$ IC), Antonio F. de Figueiredo ${ }^{1}$ (IC), Alexandre de A. Maciel ${ }^{1}$ (IC), Cleydson B. R. dos Santos ${ }^{1}(\mathrm{PG})$ Williams J. da C. Macêdo ${ }^{1}(\mathrm{PG})$, José C. Pinheiro ${ }^{1}(\mathrm{PQ})$. e-mail: mlobato@ufpa.br
${ }^{1}$ Laboratório de Química Teórica e Computacional, Programa de Pós-Graduação em Química, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, CP 101101, 66075-110, Belém-PA, Amazônia, Brasil.

Palavras Chave: Diidroartemisinina. Mapas Mep, Orbitais HOMO
Na figura 2, podemos observar a descrição dos orbitais moleculares HOMO da artemisinina (a) e de seu derivado (b). Pode-se notar que na artemisinina os lóbulos dos orbitais estão situados em torno dos átomos do anel 1, 2, 4-trioxano e estendem-se pelo restante da molécula, enquanto que no seu derivado mais ativo, os lóbulos do HOMO situam-se unicamente no seu substituinte.

Fig. 2. Orbitais moleculares HOMO construídos para a artemisinina (a) e um dos seus derivados ativos (b). $A R=I C_{5 n}$ do derivado/IC C_{50} da artemisinina.

1. Foram construídos mapas MEP para artemisinina e seus derivados.

2. As características dos MEPs na região responsável pela atividade antimalárica foram úteis no planejamento de novos derivados hidrossolúveis.
3. A descrição dos orbitais HOMO nos serviu como uma boa estratégia para relacionarmos, de forma qualitativa, a relação estrutura-atividade dos compostos estudados.

CAPES, CNPq e LQTC

[^228]Fig. 1. Mapas MEP da artemisinina (a) e de um dos seus derivados (b)

Enterramentos atômicos em proteínas globulares compactas usando o método generalized Simulated Annealing-GSA

Lourdes Martins de Morais (IC)*, Luana Quirino de Souza (IC) e Kleber C. Mundim (DR). Instituto de Química - UnB.
lourdesmmorais@gmail.com

Palavras Chave: hidrofobicidade, proteinas, generalized simulated annealing.

Abstract

Existe um interesse considerável em entender o processo de organização tridimensional nativo de proteínas, ou seja, de seu mecanismo de enovelamento, graças a grande variedade de funções celulares que elas podem desempenhar.

Essa estrutura tridimensional é mantida pelos diversos tipos de interações entre os resíduos da cadeia e deles com o solvente, que em geral, é água. Entre todos os tipos de interações possíveis, as ligações hidrofóbicas são consideradas como dominantes no efeito estabilizador da estrutura protéica. Sugerindo que um potencial hidrofóbico não específico pode produzir muitos aspectos do procedimento de enovelamento da estrutura nativa.

Estudos [1] e simulações teóricas indicam que as proteínas globulares compactas são consistentes com sistemas termodinâmicos governados por funções hidrofóbicas da energia, com distâncias reduzidas do centro geométrico, refletindo os enterramentos atômicos e fornecendo uma estrutura conceitual para a predição eventual da seqüência de alguns parâmetros com os quais todas as distribuições atômicas de probabilidade e os potenciais atômicos da força média podem reconstruídos.

O objetivo principal deste trabalho é o de propor uma metodologia alternativa para o estudo do enovelamento de proteínas globulares usando um procedimento estocástico (GSA [2]) acoplado ao método de enterramento atômico. Mostra-se que essa técnica permite alcançar o mínimo global de energia de um sistema, assim como a sua geometria de equilíbrio, utilizando um número de passos muito menor que em métodos
estocásticos convencionais, como, por exemplo, o método Monte Carlo.

Com o procedimento GSA - Generalized Simulated Annealing pode-se alcançar configurações com energias cada vez mais baixas sendo que, dependendo do número de graus de liberdade do sistema, é possível alcançar o mínimo global, a configuração com energia mais baixa, em um elevado número de passos. Tem sido proposto que proteínas, dentre um grande número de conformações possíveis, desempenhem sua função biológica quando sua estrutura está próxima à configuração com o mínimo global de energia. Em seguida, pretendemos investigar a estabilidade desses sistemas por dinâmica molecular. Para tanto, propõe-se um campo de força baseado no princípio de enterramento atômico em proteínas globulares compactas, cujo potencial dependerá das distâncias R de cada aminoácido ao centro geométrico molecular. Neste procedimento os aminoácidos serão classificados em dois grupos, os hidrofóbicos e os hidrofílicos, os quais contribuirão negativamente e positivamente para o potencial total, respectivamente.

[^229]
ESTUDO SEMI-EMPÍRICO DA INTERAĢÃO AchEl-RECEPTOR

Érica Cristina Moreno Nascimento ${ }^{1}(I C)^{*}$, João Batista Lopes Martins ${ }^{1}(\mathrm{PQ})$, Maria Lucília dos Santos ${ }^{1}(\mathrm{PQ})$.
* erica@chemist.com
1-Laboratório de Química Computacional, Instituto de Química, Universidade de Brasilia, Brasilia, DF, Brasil.
Palavras Chave: AchEl, semi-empírico, modelagem

Inh rodlieato

A doença de Alzheimer (DA) é a forma mais comum de demência e acomete especialmente pessoas na terceira idade. É um distúrbio degenerativo caracterizado pela presença de acúmulos esféricos da proteína β-amiloide nos neurônios e caracterizado clinicamente pela supressão na quantidade do neurotransmissor Acetilcolina (Ach) nas regiões sinápticas. Uma estratégia para combater o avanço da DA é o uso de drogas que atuam inibindo a ação da AchE. A AchE é uma enzima, alostérica, que hidrolisa a Ach, em acetil e colina [1] no sítio catalítico SER200-GLU327-HIS440 (SEH), localizado no fundo do sēu sítio ativo [2]. As drogas: Tacrina (THA), Donepezil (E2020), Galantamina (GALA)[3], Fisostigmina (FISO) e o Dímero da Tacrina (DIMTHA) são fármacos que respondem de forma satisfatória à condição de inibidor da AchE (AchEI).

Foram realizados cálculos para otimização de geometria e obtenção de parâmetros eletrônicos das estruturas das interações Ser200-GLU327-HIS440-AchEI (Figura 1), linha de maior interação fármaco-receptor, nos níveis semi-empíricos AM1 e PM3.

Resulitios chlecussac

As estruturas obtidas a partir da otimização da interação entre o sítio ativo da AchE e as AchEl's mostram que há mudanças conformacionais significativas na SEH, já nas AchEl's estas mudanças são percebidas principalmente na distância entre os dois hidrogênios mais ácidos [4]. Na figura 1, observa-se as modificações conformacionais sofridas na SEH, onde as interações a, b, c e d são as mais freqüentes.

Figura 1. Interação SEH-GALA / PM3
Há uma redução na energia do orbital HOMO das AchEl's na interação entre as drogas e a linha catalítica. O gráfico 1, mostra um aumento no módulo do HOMO da SEH-FISO em relação a FISO.

O GAP, também, mostra queda acentuada entre as AchEl's e a interação SEH-AchEl's. Para a E2020 e a interação SEH-E2020 temos a maior queda no GAP.

As interações a, b, ced entre os resíduos do sítio catalítico quando uma AchEI está presente, indicam quais átomos podem estar envolvidos nesta interação, para inibir a ação da enzima.

Podemos observar um aumento na reatividade quando acontece a interação SEH-AchEl's pelo decréscimo no valor do GAP observados para estes casos.

CNPq, Funpe/UnB, FINATEC.

[^230]
ESTUDO DFT E HF DA INTERAÇÃO BTEX-CAULINITA.

Elton A. S. Castro ${ }^{1}$ (PG)*, João B. L. Martins ${ }^{1}$ (PQ)
Universidade de Brasília, Instituto de Química, CP 4478, CEP 70919-970
eltoncastro@unb.br

Palavras Chave: BTEX, DFT, ab initio, caulinita.

O benzeno, tolueno, etilbenzeno e os isômeros do xileno são hidrocarbonetos monoaromáticos (HMA's), conhecidos como BTEX. Estes são solventes importantes nos processos industriais, sendo produzidos em grande quantidade nas operações de refinamento de petróleo ${ }^{1}$. Esses compostos colocam em posição delicada a saúde humana e o meio ambiente devido às suas propriedades tóxicas, carcinogênicas e mutagênicas ${ }^{2}$.

Um candidato natural à remoção de BTEX é o argilomineral caulinita, o principal constituinte do caulim. A adsorção de espécies químicas móveis, encontradas nos solos, na superfície do mineral é um processo muito importante. Em muitas investigações um foco especial é dado às espécies toxicamente ativas por causa de seus potenciais efeitos adversos sobre o ecossistema.

Este trabalho teve como objetivo verificar as interações do complexo BTEX/Caulinita, bem como fazer uma análise dos espectros vibracionais, mapas de potencial eletrostático e análise dos orbitais, para a possível utilização deste argilomineral na remediação de vazamentos de tanques de armazenamento em postos de gasolina.

Os compostos monoaromáticos benzeno, tolueno, etilbenzeno, o-xileno e p-xileno foram otimizados nas superfícies hidroxilada (Figura 3a) e dos oxigênios (Figura 3b) da caulinita. As otimizações foram feitas usando os métodos RHF/3-21G* e B3LYP/3-21G*. A superfície hidroxilada da caulinita, mostra que o ângulo de interação formado pelos hidrocarbonetos e a caulinita tem o valor médio de $57,90^{\circ}$, e a distância de interação obtida é em média de 1,76 \AA.
As energias com o método ab initio RHF/3-21G* encontram-se na Tabela 1. Os resultados mostram que, as moléculas monosubstituídas tolueno ($73,90 \mathrm{~kJ} \cdot \mathrm{~mol}-1$) e etilbenzeno ($70,54 \mathrm{~kJ} \cdot \mathrm{~mol}-1$) e o benzeno $(56,64$ $\mathrm{kJ} \cdot \mathrm{mol}-1$) possuem energias de interação razoáveis. O erro de superposição de base, calculado através do método de Morokuma, implementado para a função HF no programa Gamess, para o complexo benzeno/caulinita mostra um valor corrigido de 21,6
$\mathrm{kJ} \cdot \mathrm{mol}-1$. Enquanto que o valor encontrado com o método B3LYP/3-21G* foi de $19,1 \mathrm{~kJ} \cdot \mathrm{~mol}-1$.

Tabela 1. Energias de interação ($\mathrm{kJ} / \mathrm{mol}$) obtidas com o método RHF/3-21G* e B3LYP/3-21G* para o complexo BTEX/Caulinita.

Energias de Interação	RHF	B3LYP
Tolueno	73,90	20,50
Etilbenzeno	70,54	1,10
Benzeno	56,64	22,80
o-Xileno	39,93	17,60
p-Xileno	39,94	5,50

* tk, ek, bk, ok e pk correspondem aos complexos toluenocaulinita, etilbenzeno-caulinita, benzeno-caulinita, o-xilenocaulinita e p-xileno-caulinita, respectivamente.

Uma análise das cargas (Tabela 2) do benzeno livre e adsorvido e da caulinita mostra que há um aumento de carga no carbono mais próximo da caulinita e uma diminuição de carga no carbono mais distante da caulinita, gerando um dipolo que provavelmente contribui para a formação do ângulo de adsorção do complexo.

Tabela 2 - Valores das cargas para C-H
 do benzene livre e adsorvido, e para $\mathrm{O}-\mathrm{H}$

 da caulinita| | Livre | Adsorvido |
| :--- | :--- | :--- |
| $\mathrm{C}-\mathrm{H}^{-}$ | 0,00 | $-0,18$ |
| $\mathrm{C}-\mathrm{H}^{+}$ | 0,00 | 0,04 |
| $\mathrm{O}-\mathrm{H}$ | $-0,44$ | 0,40 |

O argilomineral caulinita apresentou energia de adsorção em torno de $20 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$, indicando que este mineral poderia ser usado para retardar a difusão dos monoaromáticos no solo.

Agloorcmentes

CNPq, IQ, CENAPAD

[^231]
SILVER DIFFUSION AND CLUSTERING IN OXYFLUORIDE GLASSES INVESTIGATED BY MOLECULAR DYNAMICS SIMULATION

Sidney Ramos de Santana ${ }^{1}(\mathrm{PQ})^{*}$, Ricardo Luiz Longo ${ }^{2}$ (PQ)
1 Departamento de Química - CCEN - Universidade Federal da Paraíba
2 Departamento de Química Fundamental - CCEN - Universidade Federal de Pernambuco
* santanasidney@quimica.ufpb.lor

Keywords: Metallic film, Molecular dynamics, Nanoparticles, Silver clustering, Silver diffusion

Several approaches for parameterization of the Buckingham potential and a SHort Range Effective Potential (SHREP) for describing the interactions between ions in glasses have been proposed and tested for applications in molecular dynamics (MD) simulations. We described the structural and dynamical properties of the glass matrix
$56.4 \mathrm{PbF}_{2}-37.6 \mathrm{GeO}_{2}-3 \mathrm{Al}_{2} \mathrm{O}_{3}-3 \mathrm{Ag}_{2} \mathrm{O}$, which has the peculiar behavior of forming a non-conducting silver thin film during a thermal treatment

From the six models proposed and tested, based upon empirical relations, experimental data, and quantum chemical calculations, only the Glass Empirical Model was adequate for these MD simulations for yielding equilibrated microscopic and macroscopic properties similar to the experimental ones. The cations presented a selective coordination towards the oxide or the fluoride ions. The fluoride and silver ions presented the largest diffusion coefficients, which are consistent with the use of this type of glass matrices for fast ion conductors. The thermal treatment has been simulated by transforming some silver ions into silver atoms and the removal of an equivalent number of fluoride ions. This is
equivalent to the following redox process: $\mathrm{Ag}^{+}+$ $\mathrm{F}^{-} \rightarrow \mathrm{Ag}+1 / 2 \mathrm{~F}_{2}(g)$. The silver atom diffusion coefficient is at least 10 times larger than that of fluoride ions, which are the largest amongst the ions. It was observed that most silver atoms remain as atoms or dimmers, which is consistent with their fast migration towards the surface, since polyatomic clusters remain basically within the matrix where they are formed.
Simulations of this glass matrix considering the surface effects (2-D periodicity or slab geometry) have been performed and showed a larger concentration of silver atoms near the surface.

The large diffusion coefficient and the distribution in the slab geometry explains their facile migration of silver particles to the surface followed by the thin film formation as observed experimentally.

CNPQ, CAPES

[^232]
STRUCTURAL ANALYSIS OF THE CATALYTIC SITE OF GRUZIPAN ISOFORMS BY MOLECULAR DYNAMICS SIMULATIONS AT DIFFERENT TEMPERATURES.

Priscila V. S. Z. Capriles (PG)* and Laurent E. Dardenne (PQ).
Grupo de Modelagem Molecular de Sistemas Biológicos, Laboratório Nacional de Computação Científica, LNCCIMCT, Av. Getúlic Vargas, 333 - 25.651-075 - Petrópolis, Rio de Janeiro, RJ - Brasil. *capriles@/ncc.br.

Key words: Molecular Dynamics Simulations, Trypanosoma cruzi, Cruzipains 1 and 2 and Cysteine Proteases.

Abstract

W\% Minoluctron Nearly 100 years after the discovery of Chagas' disease, caused by the protozoa Trypanosoma cruzi, there are no appropriate therapies that lead to cure this illness in the acute or the chronic phases. The cruzipain, a cysteine protease from the papain family, is considered a molecular target for the development of drugs against Chagas' disease. The analysis of electrostatic properties ${ }^{1}$, showed that its catalytic activity is linked to the existence of a particular electrostatic environment, that is responsible for the formation and stabilisation of the ionic pair CYS25 \cdots HIS162 ${ }^{+}$. Moreover, it has been proposed that their catalytic activity would be modulated by structural alterations in the catalytic site, as well as by the presence of a possible allosteric site. The regulation of this allosteric site is temperature dependent. At $25^{\circ} \mathrm{C}$ the enzyme is inhibited by substrate excess, what it does not occur at $37^{\circ} \mathrm{C}^{2}$. In this work, we investigated by molecular dynamics simulations, at different temperatures, the structural variations of the catalytic site of the cysteine proteases papain (used as control) and isoforms 1 and 2 of cruzipain.

Weynodroog

A. Structures: (i) Crystallographic Structure of Cruzipain 1 (PDB: 1ME4) ${ }^{3}$; (ii) Structural model of cruzipain 2 (1ME4m) obtained by comparative modelling, using the sequence M90067 ${ }^{4}$ from GenBank and the PDB: 1ME4 as template; (iii) Crystallographic Structure of Papain (PDB: 9PAP) ${ }^{5}$.
B. Molecular Dynamics Simulations (MD): The structures were simulated at $25^{\circ} \mathrm{C}$ and at $37^{\circ} \mathrm{C}$ during 10 ns of MD, after 1.5 ns of equilibration, by the GROMACS program (double precision and GROMACS force field). The systems were immersed in water cubic boxes (edges with at least 75A), considering a solvation shell with at least $10 \AA$ in each dimension of the macromolecule, using the SPC water model. For the treatment of the Coulomb potential, it was used the Reaction Field method with an $R_{c}=16 \AA$ cut-off and an $\varepsilon_{f f}$ $=54$ dielectric constant. For the Lennard-Jones potential it was used an $R_{c}=14 \AA$ cut-off.

In papain, the imidazole ring of HIS159 suffered a "bend", when simulated at $37^{\circ} \mathrm{C}$. Probably, this occurrec due the lost of the hydrogen bond (HB) betweer HIS159:NE2 and ASN175:OD1, favouring the electrostatic interaction between HIS159:NE2 anc ASP158:OD2. In cruzipain 1, this "bend" phenomenor occurred at both temperatures. At $37^{\circ} \mathrm{C}$, we alsc observed an 180° rotation of the HIS162 imidazole ring with the formation of the HB's CYS25:SG‥HIS162:NE2 and HIS162:ND1… ASP161:OD2. The structure of the ionic pair in cruzipain 2 remained stable along the simulation, at both temperatures. It is important notice that in cruzipain 2 occurs the substitution of the negatively charged amino acid ASP161 by a neutral on SER161, what would provide a stabilisation of the usua HB interactions CYS25:SG…HIS162:ND1 anc HIS162:NE2 \cdots ASN182:OD1.

The molecular dynamics studies presented in this work, showed that the presence of an acidic residue ir position 158 (papain numbering), can induces a catalytic site structural reorganization, susceptible to temperature variations, in cysteine proteases pertaining to the papair family. This reorganisation generates a catalytic triac conformation similar to the one found in serine proteases (SER-HIS-ASP), and also similar to serine proteases with the mutation $S E R \rightarrow C Y S$, as presented in the PDB $1 \mathrm{GNS}^{6}$.

Ach mompermants

The Brazilian National Council of Research (CNPq) and the FAPERJ Foundation have supported this work. Contract grants no. E26/171.199/2003, E26/171.401/01, E 26/170.648/2004 anc CNPq/IM-INOFAR 420.015/2005-1.

[^233]
CONSTRUÇÃO DE UM MODELO PLS UTILIZANDO PROPRIEDADES TEÓRICAS PARA DESCREVER A TOXICIDADE DE DIVERSOS FENÓIS.

Aline Barbizan ${ }^{1}(I C)$, Aline Thaís Bruni*2 ${ }^{2}(\mathrm{PQ})$ e Vitor Barbanti Pereira Leite ${ }^{3}(\mathrm{PQ})$.
*atbruni@gmail.com
${ }^{I}$ Departamento de Química e Ciências Ambientais, ${ }^{2}$ Centro Universitário de Rio Preto (UNIRP). Rua Yvette Gabriel Atique, 45, Boa Vista, São José do Rio Preto, SP. ${ }^{3}$ Departamento de Física, IBILCE-UNESP. Rua Cristóvão Colombo, 2265. Jardim Nazareth São José do Rio Preto, SP.

Palavras Chave: PLS, Fenóis, Toxicidade.

Thiodricalo

Os fenóis são substâncias ubíquas e sua inserção no meio ambiente é feita por fontes antropogênicas. O destino e o transporte de contaminantes é influenciado por sua absorção na matéria orgânica dissolvida. Os valores das constantes de absorção foram experimentalmente medidos em trabalho apresentado na literatura ${ }^{1}$ e são representativos da toxicidade. Neste trabalho, um conjunto de 22 fenóis foi estudado. O objetivo é determinar quais descritores teóricos estão associados às constantes de absorção supramencionadas. Para o estudo, todos os compostos foram otimizados utilizando o método semi-empírico AM1 implementado no programa Gaussian 98 (CENAPAD-SP). Para as estruturas de menor energia o método ab-initio HF/6-31G** implementado no programa Spartan foi utilizado para o cálculo dos seguintes descritores: valor da entalpia, dipolo, $\log _{-} \mathrm{P}$, cargas parciais de Mülliken e eletrostáticas, energias de HOMO e LUMO, volume, área, ovalidade, eletronegatividade, massa molar. Para a análise quimiométrica foram utilizados os programas de Matlab e Pirouette; os dados foram autoescalados e submetidos às sub-rotinas correspondentes implementadas de PCA, HCA e PLS.

Resinhrobe e giscurseto

A HCA e a PCA mostraram que os compostos foram discriminados em três níveis de toxicidade: alto, médio e baixo. A Figura 1 apresenta o gráfico de "scores" e mostra a separação nesses diferentes níveis. As equações posicionadas abaixo da figura 1 apresentam o resultado referente aos "Loadings", que mostra a influência de cada descritor para as PC's 1 e 2 (Fatores). Um dos 22 fenóis apresentou comportamento anômalo ("outlier") e foi retirado da análise. Para o modelos PLS foi utilizado, como variável dependente, o coeficiente de partição octanolágua, que, neste caso, é intimamente correlacionado com os coeficientes de absorção e conseqüentemente com a toxicidade. ${ }^{1}$ O modelo PLS apresentou boa capacidade de previsão ($Q^{2}=0,90$ e $R^{2}=0,93$) e os descritores HOMO^{-1} e a energia do HOMO apresentaram maior e menor influência, respectivamente, no vetor de regressão ($Y=0,3172$
massa molar $+0,4750 \mathrm{E}_{\mathbf{-}} \mathrm{HOMO}^{-1}+0,0795 \mathrm{E}_{2} \mathrm{HOMO}-$ 0,2196 E_LUMO $+0,1040$ eletronegatividade).

Figura 1. Gráfico de "Scores" dos fenóis estudados.
Fator $1=0,4709$ massa molar $+0,3502 \mathrm{E}_{-} \mathrm{HOMO}^{-1}-$ 0,3966 E_HOMO - 0.5012 E_LUMO + 0.4971 eletronegatividade.
Fator $2=0,121741$ massa molar $+0,621144$ E_HOMO ${ }^{-1}+0,660737$ E_HOMO 0.132365 E_LUMO 0.381137 eletronegatividade.

Conclusoes

Em relação aos baixos valores de logKow as variáveis E_LUMO e E_HOMO foram importantes, enquanto que massa molar, $\mathrm{E}_{2} \mathrm{HOMO}^{-1}$ e eletronegatividade são utilizadas para descrever os altos níveis. O modelo PLS encontrou uma boa correlação com as variáveis teóricas estudadas, uma vez que apresentou boa força de previsão ($Q^{2}=0,90$ e $R^{2}=0,93$). Por fim, conclui-se que todas as ferramentas utilizadas (HCA, PCA e PLS) foram utilizadas com sucesso para a descrição do modelos SPR/QSPR. Dessa maneira, novos compostos com menor toxicidade estão sendo estudados.

Arinedecmenios

Ao CENAPAD-SP pelos equipamentos e programas utilizados nos cálculos envolvidos nesse trabalho.

[^234]
PERFORMANCE OF DFT FUNCTIONALS IN THE CALCULATION OF MOLECULAR PROPERTIES OF SMALL MAGNITUDE.

${ }^{1}$ José R. Mohallem(PQ), ${ }^{1}$ Thiago de O. Coura* (IC), ${ }^{1}$ Gustavo de Castro (IC), ${ }^{2}$ Thomas Heine (PQ)
${ }^{1}$ Laboratório de Átomos e Moléculas Especiais, Departamento de Fisica, ICEx Universidade Federal de Minas
${ }^{2}$ Technical University of Dresden, Fachbereich Chem, D-01062 Dresden, Germany tcoura@física.ufmg.br, rachid@fisica.ufmg.br

DFT, adiabatic correction, isotopic dipole moment

Ihliod Iichion

DFT methods are rapidly becoming an important tool for quantum chemical calculations of static and dynamical properties of molecules. However, to the best of our knowledge, there is no previous work assessing the performance of the various DFT functionals in the evaluation of small molecular quantities. Testing this performance permits a comparison of the various functionals in extreme situations.

We use an updated version of the deMon program [1] that includes the finite nuclear mass correction already reported for MO type calculations [2], to evaluate the available DFT functionals in calculations of adiabatic corrections to equilibrium energies of various molecules and of the isotopic dipole moment of the monodeuterated water molecule. Results are compared to MP2 calculations, taken as our standards, for adiabatic corrections [3] and for the isotopic dipole moment of HDO [4].

AESUIGiulose DIGcussaio

Non-GGA functionals works quite well for adiabatic corrections of many-electron atoms, but not for molecules, mainly when the measurable energy differences are considered. Among the GGA functionals, PBE stands out showing the best uniform performance, followed then by BLYP. This feature contradicts the common preference for BLYP in molecular calculations. Tables will be shown in the poster.

In the study of the HDO isotopic dipole moment for various bond angles, all functionals (except PW86) present correct qualitative behaviour and smooth variation with the bond angle around 104°. Curiously, the best coincidence at 104° is shown by PW86. However, all of them differ significantly from MP2 for angles larger than 120° (Figure 1).

Figure 1. Isotopic Dipole Momento f HDO versus bond angle for various DFT functionals.

M Monciuslons

DFT functionals evaluate reasonably the absolute adiabatic corrections. However, for calculating measurable differences, a GGA functional must be careful chosen. PBE shows the best overall performance. For a property calculation, namely the isotopic dipole moment of HDO, the results are not so stimulating and the failure for large bond angles must be further investigated.

AHI Howloclocmenis

Supported by Fapemig and CNPq.

[^235]
BENEFÍCIOS DA ARQUITETURA DE MÚLTIPLOS NÚCLEOS EM PROGRAMAS DE QUÍMICA COMPUTACIONAL

Marcus Vinícius Pereira dos Santos ${ }^{1}$ (PG)*, Sidney Ramos Santana ${ }^{2}$ (PQ). marcus.santo@ufpe.br
${ }^{1}$ Departamento de Química Fundamental, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco, 50740-540, Recife - PE.
${ }^{2}$ Departamento de Química, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraiba, 58059-900, João Pessoa - PB.

Palavras Chave: Benchmarking, Gaussian, NWChem, PCA, Bibliotecas.

Abstract

 A partir de 2005^{1}, a arquitetura multi-core (múltiplos núcleos) foi introduzida no mercado de desktops e servidores. Nesses chips, mais de um núcleo aritmético é encapsulado dentro da mesma CPU. Esta mudança em princípio traz ganhos de desempenho consideráveis já que execução da tarefa será dividida entre os núcleos que foram encapsulados. Isso o torna interessante no que diz respeito à relação custo-benefício em Química Computacional já que é possível realizar processos em paralelo numa única máquina apenas compartilhando os núcleos existentes e, por conseguinte economizando espaço físico. Por isso o objetivo deste trabalho é avaliar o comportamento dessa arquitetura frente aos cálculos Química Computacional em particular utilizando os Programas Gaussian ${ }^{2}$ e NWChem ${ }^{3}$.

Rerillolos eligcucsaly
Avaliou-se o desempenho desse tipo de arquitetura na execução do Programa Gaussian. O sistema utilizado foi: Intel Pentium D 945 (2 x $3,4 \mathrm{GHz}$), $\mathrm{FSB} 800 \mathrm{MHz}, 4,0 \mathrm{~GB}$ RAM e disco rígido de 160GB SATA-2 7200 rpm . Os sistemas operacionais foram Windows XP SP2 e Linux Centos 4.4 (kernel 2.6.9-42.ELsmp). Os compiladores utilizados foram Intel Fortran Compiler (IFC), GNU 77 (G77) e Portland Group Fortran (PGF); com as bibliotecas matemáticas Basic Linear Algebra Subprograms (BLAS), Automatically Tuned Linear Algebra Software (ATLAS) e GotoBLAS frente a 21 tipos de cálculos que incluem métodos como AM1, HF, DFT e MP2. Assim realizou-se uma Análise por Componentes Principais (PCA). As duas primeiras componentes (PC1 e PC2) retiveram 98\% da informação. O gráfico encontra-se na Figura 1.

Com 84% da informação, PC1 separa por bibliotecas, sendo GotoBLAS de melhor desempenho seguido pela BLAS que possui um desempenho ligeiramente superior que a ATLAS. Ao contrário daquilo que se esperava a biblioteca BLAS obteve um desempenho superior a ATLAS. Isso mostra que o código desta biblioteca ainda não
contém otimizações especificas para essa arquitetura. Já PC2 (14% da informação) separa por tipo de compilador: IFC, PGF e G77, sendo IFC o de melhor desempenho.

Figura 1. Gráfico de PC1 vs PC2 para os 21 cálculos realizados frente aos compiladores IFC, PGF77 e G77; e as bibliotecas BLAS, ATLAS e GotoBLAS

Avaliou-se o grau de paralelismo utilizando o Programa NWChem. Um cálculo de otimização de geometria da molécula de formamida pelo nível de teoria MP2/ $6-31 \mathrm{~g}(3 \mathrm{df}, 3 \mathrm{pd})$ foi executado de forma serial (1 núcleo) e paralelo (2 núcleos). As diminuições percentuais nos tempos de cálculo de serial para paralelo chegaram a 48% para um Athlon X2 $3800+(2 \times 2.0 \mathrm{GHz}$) e 60% para um Pentium D $820(2 \times 2.6 \mathrm{GHz})$, mostrando a alta eficiência que a arquitetura de múltiplos núcleos possui.

concluse

Os resultados mostraram que a opção de compilação mais eficiente para o Gaussian 98 ocorre com a combinação IFC + GotoBLAS. Além disso, um imenso grau de paralelismo foi observado. Isso coloca essa arquitetura como a grande escolha no que diz respeito à relação custo beneficio.

FINEP, PADCT, PRONEX, CAPES e CNPq.

[^236]
DINÂMICA DIRETA E MECANISMOS DAS REAÇÕES DE DIELS-ALLDER E DE DESIDRATAÇÃO DE ÁLCOOL.

Marcus Vinícius Pereira dos Santos ${ }^{1}$ (PG)*, Ricardo Luiz Longo ${ }^{2}$ (PQ). marcus.santo@ufpe.br
${ }^{1,2}$ Departamento de Química Fundamental, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco, 50740-540, Recife - PE.

Palavras Chave: Diels-Alder, álcool, TST, BOMD, Dinâmica Direta.

Thlex Mige

Apesar da teoria do estado de transição (TST) ser amplamente utilizada em química e biologia, ela apresenta falhas, principalmente em reações envolvendo mecanismos competitivos. Por exemplo, quando um mesmo estado de transição pode fornecer dois ou mais produtos, a aplicação da TST apresenta problemas. Além disso, existem casos em que o caminho de menor energia na superfície de energia potencial não é o escolhido quando efeitos dinâmicos são considerados. Por exemplo, a eliminação de água do pinacolil (3,3-dimetil-2-butanol) protonado ${ }^{2}$ $\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCH}\left(\mathrm{CH}_{3}\right) \mathrm{OH}_{2}\right]^{+}$não prevê a formação do intermediário carbocátion secundário $\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCH}\left(\mathrm{CH}_{3}\right)\right]^{+}$, de fato, o produto é formado de maneira concertada. Entretanto, a dinâmica molecular $a b$ initio sugere que inúmeras trajetórias envolvem este intermediário e o mecanismo é predominantemente em duas etapas. Com isso, os métodos de trajetórias clássicas e de dinâmica clássica ab initio ${ }^{1}$ estão ser tornando importantes no estudo e determinação dos mecanismos de reações. Sendo assim, decidimos estudar com métodos de dinâmica molecular de BornOppenheimer (BOMD), os mecanismos das reações de eliminação de água em $\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCH}\left(\mathrm{CH}_{3}\right) \mathrm{OH}_{2}\right]^{+}$ incluindo efeitos do solvente, e de cicloadição (eteno + 1,3-butadieno). Para a reação de Diels-Alder, ainda é um problema em aberto a sua sincronicidade, isto é, se o estado de transição é simétrico ou assimétrico ${ }^{3,4}$.
A metodologia empregada nesse estudo foi baseada em cálculos de 100 trajetórias a partir da estrutura de equilíbrio do álcool protonado e do estado de transição simétrico na reação de Diels-Alder. Foi utilizado programa Gaussian03, empregando-se: 2000 passos com 0,5 fs cada e temperatura 400 K . Os cálculos quânticos foram realizados com os métodos RHF/631G* e AM1.

Resurag es EDISGMEXIO

Para a reação de Diels-Alder em 400 K temos 14 $\mathrm{kcal} \cdot \mathrm{mol}^{-1}$ de energia cinética (princípio da equipartição de energia). Essa energia foi distribuída aleatoriamente nos 20 primeiros modos normais. Das 100 trajetórias, 76 permaneceram nos reagentes, 7 formaram o produto, em que o estado de transição permaneceu simétrico e 17 formaram o produto, mas o estado de
transição apresentou assimetria. Cabe notar que o estado de transição assimétrico não está presente na superfície de energia potencial AM1 para esta reação.
Para a eliminação de água do álcool protonado em 400 K temos $26 \mathrm{kcal} \cdot \mathrm{mol}^{-1}$ de energia cinética, que foi distribuída aleatoriamente nos 10 primeiros modos normais. Das 100 trajetórias, 95 permaneceram nos reagentes e 5 formaram e permaneceram na região correspondente ao intermediário carbocátion secundário. Não ocorreu formação do produto nem de maneira concertada nem em etapas. Essa tendência de permanecer nos reagentes também foi relatada por Dupuis e colaboradores ${ }^{2}$, em que, das 50 trajetórias calculadas (HF/6-31G*), 33 permaneceram nos reagentes, e apenas 2 formaram o produto de modo concertado. Além disso, 8 trajetórias formaram produtos com formação de intermediário. Isso mostra que o caminho da IRC é menos provável de ocorrer do que aquele por etapas. Estão em andamento e análise outras maneiras de distribuição da energia cinética, além da inclusão de moléculas de água, representando a microhidratação, bem como a simulação do solvente por meio dielétrico.

Goncurseas

Os resultados mostraram que a reação cicloadição entre eteno e 1,3-butadieno ocorre também via um mecanismo assimétrico, mesmo partindo-se de um estado de transição simétrico. A eliminação de água do $\left[\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCH}\left(\mathrm{CH}_{3}\right) \mathrm{OH}_{2}\right]^{+}$ocorre via a formação do intermediário (carbocátion secundário), em contradição com a previsão da teoria do estado de transição.

WoLGe ECDITERTIOS

CAPES, CNPq. FINEP, PADCT, PRONEX.

[^237]
QUANTUM CHEMICAL STUDY OF PEROXIDIC BONDS AND TORSIONAL LEVELS FOR ROOR' MOLECULES (R, $\left.\mathbb{R}^{\prime}=\mathrm{H}, \mathrm{CH}_{3}, \mathrm{C}_{2} \mathrm{H}_{5}, \mathrm{~F}, \mathrm{CL}, \mathrm{NO}, \mathrm{CN}\right)$.

Glauciete S. Maciel ${ }^{1}(P Q)^{*}$, Ana Carla P. Bitencourt ${ }^{1}(\mathbb{P G})$, Mirco Ragni ${ }^{1}(P G)$ e Vincenzo Aquilanti ${ }^{1}(P Q)$ ciete@dyn.unipg.it.

Dipartimento di Chimica, Università degli Studi di Perugia, Perugia 06123, Perugia-Italy
Palavras Chave: peroxides, torsional levels, chirality processes.

In recent decades several investigations have been dedicated towards the understanding and control of the reactions involved in phenomena of strong environmental impact, such as, for example, the so-called acid rains and the decrease of the ozone shell. In both processes the participation of peroxides and of the corresponding radicals have been observed. In a previous study [1], a systematic and detailed analysis on the effect of the choice of both theory level and basis set has been carried out for hydrogen peroxide with respect to the determination of equilibrium geometry, dipole moment, cis and trans barriers.

In this work we present a systematic study by quantum mechanical methods of a series of peroxides, corresponding to substitutions of one or both hydrogens in $\mathrm{H}_{2} \mathrm{O}_{2}[2,3]$. The emphasis is on structural and energetic properties and on the features of the internal modes, in particular the torsion around the $\mathrm{O}-\mathrm{O}$ bond, which leads to the chirality changing isomerisation. Torsional levels are calculated and their distribution as a function of temperature determined. This information is of interest for statistical approaches to equilibrium properties and to rates of processes where torsional anharmonicity is relevant, as required for recent atmospheric modelling studies [4] and also for prototypical chiral separation experiments, in view of a possible dynamical mechanism for chirality exchange by molecular collisions [5].

Figure 1 shows energy profiles along the dihedral angles for substitution of one of the H in $\mathrm{H}_{2} \mathrm{O}_{2}$ by F , Cl, CN and NO. Taking the case of $\mathrm{H}_{2} \mathrm{O}_{2}$ as reference, the trans barriers for $\mathrm{CN}, \mathrm{NO}, \mathrm{Cl}$ and F substitution are progressively larger in this order, while for alkyl substituents are lower[2], but increase with the group size. For all monosubstituted systems, except HOOF, the cis barriers are lower than the $\mathrm{H}_{2} \mathrm{O}_{2}$. For halogen groups[3], the cis and trans barriers are of similar height, so that the energy profile looks reasonably symmetric, and dihedral equilibrium angles are close to 90° for HOOX (where $\mathrm{X}=\mathrm{F}$ and Cl) and 100° for HOONO , Figure 1.

Profiles of the torsional potentials for the ROOR' peroxides for $C N$ we have an equilibrium dihedral angle of 111.9 degrees, perhaps fortuitously very close to the value 112.5 degrees for $\mathrm{H}_{2} \mathrm{O}_{2}$. In general, the larger the dihedral angle at equilibrium, the lower is the trans barriers. Regarding peroxides with double substitutions by halogens[3], both cis and trans barriers appear to increase consistently, the effect of F being larger than that of Cl , as just observed in the case of single substitution. The cis and trans barriers turn out to be of similar magnitudes in these cases. Equilibrium dihedral angles are only slightly less than 90 degrees while for double substitution by alkyl groups the trans barriers vanishes [2] and the equilibrium dihedral angle moves toward 180 degrees.

Yemomerom

For the $\mathrm{H}_{2} \mathrm{O}_{2}$ and its alkyl and halogen substituted derivatives the state-of-the-art quantum chemistry has been shown to provide accurate description of the structure and the dynamics of torsional modes. Regarding intermolecular interactions a study has been started on the $\mathrm{H}_{2} \mathrm{O}_{2}$-Rare gas systems.
${ }^{1}$ Maciel, G. S.; Bitencourt, A.C.P.; Ragni, M. and Aquilanti A. Chem.Phys. Lett. 2006, 432, 383.
${ }^{2}$ Maciel, G. S.; Bitencourt, A.C.P.; Ragni, M. and Aquilanti A. Int.J.Quant. Chem, in press.
${ }^{3}$ Maciel, G. S.; Bitencourt, A.C.P.; Ragni, M. and Aquilanti A. J.Phys. Chem.A, submitted;
${ }^{4}$ Maciel, G. S.; Cappelletti, D.; Pirani, F. and Aquilanti A. Adv.Quant.Chem. 2007, 55, in press.
${ }^{5}$ Aquilanti A. and Maciel, G. S. Orig.Life Evol. Biosph 2006, 36,435.

CÁLCULOS AB INITIO DA SUPERFÍCIE POLAR (110) DO BAZRO

Prescila G. C. Buzolin (PG) ${ }^{*}$, Naiara L. Marana (IC), Aguinaldo R. de Souza (PQ), Júlio R. Sambrano (PQ)

Grupo de Modelagem e Simulação Molecular, UNESP, Bauru, SP, CEP 17033-360, Brazil. prescila@fc.unesp.br

Palavras Chave: BaZrO_{3}, superficies, DFT, B3PW, CRYSTAL.

hriodurao

Zirconato de bário, BaZrO_{3}, é um importante material cerâmico com inúmeras aplicações tecnológicas. Devido ao seu alto ponto de fusão e estabilidade mecânica, é considerado um material crucial no crescimento de cristais de supercondutores à base de cobre ${ }^{1}$. Além disso, tem atraído a atenção por ser um próton condutor a altas temperaturas com possíveis aplicações em células combustíveis e sensores de hidrogênio ${ }^{2}$.
Neste trabalho, as simulações foram desenvolvidas com o programa CRYSTAL03, aplicando-se a teoria do funcional de densidade (DFT) com o funcional híbrido B3PW para investigar as propriedades eletrônicas e estruturais da superficie (110) do BaZrO_{3} com duas possíveis terminações, ZrO e Ba^{3}. O conjunto de funções de base utilizado foi $9763-$ 311(d631)G para os átomos de bário, 86-411(d31)G para os átomos de zircônio e $6-31 G^{*}$ para os átomos de oxigênio.

A escolha do número de camadas para os cálculos teóricos foi realizada considerando a Energia de Corte $\left(E_{C}\right)$ não otimizada. Define-se a Energia de Corte como $E_{C}=1 / 4\left[E_{\text {super }(\mathrm{Ba})}+E_{\text {super }(Z \mathrm{rO})}-\mathrm{n} \cdot \mathrm{E}_{\text {bulk }}\right]$, em que $E_{\text {super }(B a)}$ é a energia total do modelo terminado em Ba ; $\mathrm{E}_{\text {super(Zro) }}$ a energia total para o modelo terminado em ZrO; n o número de camadas e $E_{\text {bulk }}$ a energia total da célula unitária. Desta forma, avaliaram-se os modelos para $n=5,7,9,11,13$ e 15 camadas, obtendo-se o valor de E_{C} convergindo para $4.86 \mathrm{eV} /($ célula unitária), para todos os modelos. Optamos por trabalhar com o modelo de 7 camadas, assumindo um compromisso entre a relação de E_{C} e o esforço computacional no processo de otimização, sem afetar a qualidade dos resultados.
As figuras 2(a) e 2(b), mostram o DOS projetado para as superfícies terminadas em Ba e ZrO , respectivamente. Em ambas as superfícies, não há contribuição significativa dos átomos de Bário para as bandas de valência e condução. A banda de valência é composta, predominantemente, pelos orbitais $2 p_{x}$ dos átomos de Oxigênio e a banda de condução pelos orbitais $3 \mathrm{~d}_{2 z}{ }^{2}-x^{2}-y^{2}$ dos átomos de Zircônio.

(a)

(b)

Figura 1. Estrutura de bandas para a superfície terminada em (a) Ba e (b) superficie terminada em ZrO .

complusocs

As principais conclusões deste trabalho são:
i) A análise da estrutura de bandas para ambas as superfícies permite observar que o material é um semicondutor. Para a superficie terminada em Ba o band gap, $4,79 \mathrm{eV}$, é direto no ponto Γ, para a superficie terminada em ZrO , o band gap, 4.68 eV , é indireto entre os pontos $\Gamma-\mathbf{X}$.
ii) Os átomos que mais contribuem para a banda de valência são do O e para a banda de condução, os de $Z r$.
iii) O funcional B3PW tem um bom desempenho quando seus resultados são comparados com resultados teóricos e experimentais.

Parrocmmenios

FAPESP, CAPES, CNPq, e UNESP. Todos os cálculos foram realizados no Laboratório de Simulação Molecular da Unesp de Bauru.

Figura 2. DOS para as superficies terminadas em (a) Ba e (b) para a superficie terminada em ZrO .

[^238]
AB INITIO HIGHLY CORRELATED CONFORMATIONAL ANALYSIS STUDY OF 1,2-DIFLUORETHANE AND 1,2-DICHLOROETHANE:
 Mauro L. Franco (PG) ${ }^{\text {a,ct }}$, Dalva E. C.Ferreira, (PG) ${ }^{a}$, Hélio F. Dos Santos (PQ) ${ }^{b}$, Wagner B. De

Almeida (PQ) ${ }^{\text {a }}$
${ }^{\text {a }}$ LQC-MM: Laboratório de Química Computacional e Modelagem Molecular-Departamento de Química, ICEx, Universidade Federal de Minas Gerais (UFMG), Campus Pampulha, Belo Horizonte, MG, 31270-901, Brazil.
${ }^{b}$ NEQC: Núcleo de Estudos em Química Computacional- Departamento de Química, ICE, Universidade Federal de Juiz de Fora (UFJF), Campus Universitário, Martelos, Juiz de Fora, MG, 36036-900, Brazil.
${ }^{\text {c }}$ DCX: Diretoria de Ciências Exatas, Centro Universitário do Leste de Minas Gerais (UNILESTE-MG), Campus I Coronel Fabriciano, MG, 35170-056, Brazil.
*mauro@netuno.qui.ufmg.br

Keywords: Conformational population, ab initio, thermal energies, hindered rotation.

The standard statistical thermodynamic

 formalism can be applied in chemistry with the interest in the prediction of macroscopic properties which are obviously related to the properties of individual atoms and molecules. The total energy of the system depends on the energy of constituent molecules; here this energy is represented in the thermodynamic partition function Q in the equation 1,$$
\begin{equation*}
Q=\sum_{i} g_{i} \exp \left(-E_{i} / k T\right) \tag{1}
\end{equation*}
$$

where g_{i} represent the energy levels degeneracy and the energy E_{i} represent the translational, vibrational, rotational, and electronic energies at the temperature T. The vibrational contribution is very important in the analysis of the thermodynamic properties. Pitzer and Gwinn ${ }^{1,2}$ tabulated the thermodynamic functions used in the partition function for some molecules, utilizing the harmonic approximation and higher approximations by anharmonic and internal rotation where the torsional potential can be expressed in terms of Fourier series. ${ }^{3}$

Resuluros elisurseaio

We have success in the case of ethane and 1,2-dichloroethane. The cause of the disagreement with experiment is not the level $a b$ initio calculation employed, since we analyzed the behaviour of the methodology as a function of level of theory and size of the basis set and could guarantee that, by improving the level of calculation to a computational unreachable degree of sophistication, no significant variation of the conformational population would be observed. We may therefore conclude that the problem is with the treatment used for the vibrational low frequency modes. The theoretical model used in this work included anharmonicity corrections and a hindered rotation treatment which proved to be insufficient to describe the thermal energy correction for 1,2-difluorethane.

Figure 2- anti \rightarrow gauche relative energy ($\Delta \mathrm{E}_{\text {ele-nuc }}$) variation for 1,2-difluorethane as a function of the level of calculation.

(G.0) Cl LISTocs

An adequate treatment of the low frequency modes, which may not be described as true harmonic oscillators, is required. The inclusion of anharmonic corrections and a treatment of low frequency modes as hindered-rotor ($\Delta \mathrm{G}^{\text {Hindo-Rot }}$) proved to be insufficient to improve the agreement with experiment regarding conformational population values, in the case of the 1,2-difluorethane. Therefore, a distinct partition function to treat the low frequency modes that are not true vibrations or free rotations, which can be adequate to describe the conformational population of substituted ethane and other alkane species must be found.

CNPq e FAPEMIG

[^239]
SIMULAÇÃO MONTE CARLO DA MISTURA NMF-DMSO

João M. Marques Cordeiro* (PQ), Antônio R. S. Alves Bosso (PG)
Departamento de Física e Química - Unesp - Ilha Solteira, Av. Brasil, 56, 15385-000, Ilha Solteira (SP) Brasil. cordeiro@dfq.feis.unesp.br

Palavras Chave: Método Monte Carlo, peptídeos, meio não aquoso, NMF, DMSO.

17Trodrcher

Tem se verificado recentemente que significante atividade enzimática pode existir em meios outros que não aquosos. O estudo da enzimologia não-aquosa é de grande importância tanto por suas implicações em bioquímica de proteínas quanto pelo impacto em biotecnologia de moléculas biológicas como enzimas, por exemplo. É difícil começar investigando bio-moléculas reais, devido ao enorme esforço computacional que o estudo de tal sistema demanda. O sistema DMSO-NMF apresenta uma série de aspectos que o torna um ponto de partida natural para a investigação de sistemas peptídicos em solventes não aquosos. Neste trabalho apresentam-se resultados de propriedades termodinâmicas e estruturais da mistura de dimetilsulfóxido (DMSO) com N-metilformamida (NMF) e dos líquidos puros obtidos através de simulação computacional de Monte Carlo a 298 K no ensemble NpT.

O valor das propriedades termodinâmicas e estruturais obtidas concorda bastante bem com medidas experimentais para os líquidos puros. A partir dos resultados obtidos neste trabalho, pode se concluir que a mistura de DMSO-NMF comporta-se praticamente de forma ideal. Notase que o acréscimo ou decréscimo de DMSO ou NMF na solução não proporciona contração e nem expansão de forma notável no volume molar da solução. O número de coordenação por molécula na mistura é igual a 1 , o que indica a formação de dímeros NMF-DMSO na mistura. Um dos fatores mais notáveis que explica a idealidade da mistura é que na amida, NMF, existe formação de ponte de hidrogênio que desaparece com o aumento da concentração de DMSO na solução da mistura, surgindo outra ponte de hidrogênio entre o oxigênio do DMSO com o hidrogênio da NMF
de força similar. A partir da função de correlação radial de pares e da função do
número de vizinhos pode-se compreender que a NMF é mais organizada do que o DMSO, e que as interações intermoleculares são mais intensas na NMF, no entanto, o fato do DMSO ser mais polar explica também a idealidade da mistura desses solventes.

Conter lis oes

A mistura de DMSO-NMF comporta-se praticamente de forma ideal. Nota-se que o acréscimo ou decréscimo de DMSO ou NMF na solução não proporciona contração e nem expansão de forma notável no volume molar da solução. O número de vizinhos da mistura de DMSO-NMF é 1, o que leva a pensar na formação de dímeros. Um dos fatores mais notáveis que explica a idealidade da mistura é que na amida, NMF, existe formação de ponte de hidrogênio que desaparece com o aumento da concentração de DMSO na solução da mistura, surgindo outra ponte de hidrogênio entre o oxigênio do DMSO com o hidrogênio da NMF de força similar. A partir da função de correlação radial de pares e da função do número de vizinhos pode-se compreender que a NMF é mais organizada do que o DMSO, e que as interações intermoleculares são mais intensas na NMF, no entanto, o fato do DMSO ser mais polar explica também a idealidade da mistura desses solventes. A energia potencial calculada com a contribuição de cada energia potencial de pares, sendo uma soma dos potenciais de Lennard-Jones com o potencial de Coulomb, dá uma boa descrição da energética do sistema.

[^240]
MODELAGEM MECANÍSTICA DE REAÇÕES DE ADIÇÃO NUCLEOFÍLICA DE HFAR-CHO COM R $=\mathrm{H}, \mathrm{OH}, \mathrm{CH}_{3}, \mathrm{NH}_{2} \mathrm{ENO} \mathrm{N}_{2}$

Liana de S. Silva*(IC) ${ }^{1}$, Tarsila G. Castro(IC) ${ }^{1}$, Claudia F. Braga(PQ) ${ }^{1}$, Regiane C.M.U. Araújo(PQ) ${ }^{1}$, Otávio L. de Santana(PQ) ${ }^{2}$, Antonio B. Carvalho(PQ) ${ }^{1}$ and Mozart N. Ramos(PQ) ${ }^{3}$
${ }^{1}$ Departamento de Química - Universidade Federal da Paraiba-58036-300-João Pessoa-PB-Brasil. E-mail: ladyliana@gmail.com
${ }^{2}$ Unidade Acadêmica de Educação-Universidade Federal de Campina Grande-Campus de Cuité-PB-Brasil
${ }^{3}$ Departamento de Química Fundamental- Universidade Federal de Pernambuco-50739-901- Recife-PE-Brasil

Palavras-chave: Ligação de hidrogênio, DFT, mecanismos de reação.

A ligação dupla carbono-oxigênio, $\mathrm{C}=\mathrm{O}$, presente em moléculas do tipo R-CHO, por ser planar, está sujeita a um ataque favorável, direcionado perpendicularmente acima ou abaixo do plano desse grupo. Isso faz com que o átomo de carbono, deficiente de elétrons, seja facilmente atacado por reagentes que contêm uma região de alta densidade eletrônica, denominados nucleófilos. Dessa forma, o átomo de oxigênio adquire uma carga parcial positiva, resultando em uma adição nucleofilica suscetível à catálise ácida.
A reação geral de adição nucleofilica à ligação dupla carbono-oxigênio é mostrada no esquema abaixo.

Utilizou-se a Teoria do Funcional da Densidade com os funcionais hibridos B3LYP e PBE1PBE e o conjunto de base $6-311++G(d, p)$. Foram averiguadas as informações termodinâmicas e cinéticas necessárias à compreensão dos mecanismos investigados.

Os parâmetros estruturais das espécies livres são afetados pela formação da ligação de hidrogênio. Neste estudo, o valor do incremento do comprimento de ligação do grupo $\mathrm{C}=\mathrm{O}$ se mostrou menor para $\mathrm{R}=\mathrm{NH}_{2}, \delta \mathrm{r}_{\mathrm{Co}}=0,140 \AA$, e maior para $\mathrm{R}=\mathrm{H}, \quad \delta \mathrm{r}_{\mathrm{co}}=0,165 \mathrm{~A}$, considerando os cálculos DFT/PBE1PBE. O mesmo comportamento foi observado com o funcional B3LYP. Com respeito à espécie doadora de próton, HF, o menor incremento obtido correspondeu à espécie receptora de próton $\mathrm{O}_{2} \mathrm{~N}-\mathrm{CHO}, \delta \mathrm{r}_{\mathrm{HF}}=0,007 \AA$, considerando ambos os funcionais, e o maior incremento foi obtido para
$\mathrm{R}=\mathrm{NH}_{2}, \delta \mathrm{r}_{\mathrm{HF}}=0,039 \AA$ para DFT/PBE1PBE e $\delta r_{\mathrm{HF}}=$ 0,037 Å para DFT/B3LYP.
Os caminhos de reação obtidos considerando todas as espécies receptoras de próton mostraram-se semelhantes, alterando apenas os valores das energias envolvidas. Na Figura 1 pode ser visualizado o caminho de reação: $\mathrm{O}_{2} \mathrm{~N}-\mathrm{HCO}+\mathrm{HF} \rightarrow$ $\left[\mathrm{O}_{2} \mathrm{~N}-\mathrm{HCO} \cdots \mathrm{HF}\right] \rightarrow \mathrm{O}_{2} \mathrm{~N}-\mathrm{HCFOH}$.

Figura 1: Gráfico ilustrando o caminho de reação $\mathrm{O}_{2} \mathrm{~N}-\mathrm{CHO}+\mathrm{HF}$ obtido através do cálculo DFT/PBE1PBE. Unidade de energia em $\mathrm{kJ} \mathrm{mol}^{-1}$.
$\% \quad$ Na reação entre $\mathrm{H}_{2} \mathrm{~N}-\mathrm{CHO}$ e HF , o efeito de ressonância contribui para a diminuição da reatividade entre essas espécies, comprovado pelo valor da energia intermolecular do complexo $\mathrm{H}_{2} \mathrm{~N}$ $\mathrm{CHO} \cdots \mathrm{HF}$.
\% A reatividade dos compostos, do ponto de vista termodinâmico e cinético, depende de um conjunto de efeitos relativo a cada substituinte R considerado no estudo e, segue as respectivas ordens decrescentes:
Termodinâmico: $\mathrm{NO}_{2}>\mathrm{NH}_{2}>\mathrm{OH}>\mathrm{H}>\mathrm{CH}_{3}$.
Cinético: $\mathrm{OH}>\mathrm{NO}_{2}>\mathrm{H}>\mathrm{CH}_{3}>\mathrm{NH}_{2}$.

Achodecmentos

Os autores agradecem o suporte financeiro das agências CNPq, CAPES e FAPESQ/PB.

CURVAS DE ENERGIA POTENCIAL PARA O ESTADO FUNDAMENTAL DA MOlÉCula do cF3Cl NEUTRA E CARREGADA.

*Janaina de L. Pereira ${ }^{(1 C)}$, Vanessa C. de Medeiros ${ }^{(I C)}$, Silmar A. do Monte ${ }^{(P Q)}$, Regiane C. M. U. Araújo ${ }^{(P Q)}$, Elizete Ventura ${ }^{(P Q)}$
Departamento de Química, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba 58036-300, João Pessoa PB. E-mail: janainaufpb@yahoo.com.br

Palavras Chave: CFC, ozônio, DFT, MP2, dissociação.

A presença do ozônio na estratosfera é fundamental para a manutenção da vida na Terra, já que o mesmo bloqueia eficientemente a radiação UV mais perigosa para os seres vivos. Desde o início dos anos 80 foi-se observando uma diminuição alarmante da concentração de O_{3} na atmosfera, devido à ação de compostos orgânicos derivados de clorofluorcarbonetos (CFCs) ${ }^{1}$. O mecanismo pelo qual os CFCs degradam o O_{3} consiste simplesmente na transformação de O_{3} em oxigênio pela ação do Cl atômico ${ }^{2}$. O conhecimento da estrutura eletrônica dos CFCs pode levar a alternativas que visem diminuir seu poder destrutivo. Como exemplo, temos o importante resultado que a decomposição dos respectivos ânions dos CFCs envolvem barreiras de dissociação (térmica) bem menores, quando comparada às respectivas espécies neutras, pois resultam da ocupação de um orbital σ^{*} referente à ligação $\mathrm{C}-\mathrm{Cl}^{3}$. Além de a dissociação por bombardeamento de elétrons gerar íons cloreto, muito menos danosos que o cloro atômico, a mesma parece possuir seções de choque bem maiores que as correspondentes à fotólise das moléculas neutras ${ }^{4}$. Tal resultado levanta a hipótese de se utilizar elétrons para destruir moléculas de CFC na atmosfera. Neste trabalho investigamos a curva de energia potencial para o estado fundamental para a reação $\mathrm{CF}_{3} \mathrm{Cl} \rightarrow \mathrm{CF}_{3}+\mathrm{Cl}$ considerando a liberação do cloro e do cloreto. Os cálculos foram realizados utilizando os métodos HF, DFT (B3LYP e PBE1) e MP2 com as bases cc-pVxZ e aug-cc-pVxZ ($\mathrm{X}=\mathrm{D}, \mathrm{T}, \mathrm{Q}$). Utilizamos o programa Gaussian 98.

Nas figuras abaixo são mostrados os resultados UB3LYP e UHF, com a base cc-pVTZ, para a curva de energia potencial ao longo da ligação $\mathrm{C}-\mathrm{Cl}$ para molécula do $\mathrm{CF}_{3} \mathrm{Cl}$ neutra e carregada. Para cada ponto da curva da espécie neutra foi mantida constante a distância $\mathrm{C}-\mathrm{Cl}$ e otimizado os demais parâmetros geométricos. Os cálculos para molécula carregada foram feitos utilizando a mesma geometria da neutra. O objetivo era comparar o perfil da curva para as duas moléculas e a dependência deste com o método e a base. Conforme pode ser visto, o método HF falha completamente na dissociação
levando inclusive a existência de uma estrutura de mínimo para a molécula do $\mathrm{CF}_{3} \mathrm{Cl}^{-}$. Este artifício devido a falta de correlação eletrônica do HF desaparece quando os métodos correlacionados DFT e MP2 são utilizados. A barreira do $\mathrm{CF}_{3} \mathrm{Cl}^{-}$ também desaparece com o aumento da base.

Cong Hisous

A barreira de dissociação para saída do íon cloreto do $\mathrm{CF}_{3} \mathrm{Cl}^{-}$é bem menor que da espécie neutra. O uso de métodos correlacionados e bases extensas é de fundamental importância para correta descrição da curva de energia potencial.

- Abratogalimenitos

UFPB, CNPq, CAPES, FAPESQ.

[^241]
$\beta=C I C L O D E X T R I N$ AS A MOLECULAR CARRIER FOR MEGAZOL. A STUDY PERFORMED BY MOLECULAR DYNAMICS SIMULATIONS AND $1 H$ NMR SPECTROSCOPY.

Ernesto R. Caffarena* ${ }^{1}(\mathbb{P Q})$, Edson F. da Silva ${ }^{2}(\mathbb{P Q})$, Fabiane \mathbb{R}. Rebello ${ }^{2}(I C)$, Samir \mathbb{A}. Carvalho ${ }^{2}(\mathbb{P Q})$
(ernesto@fiocruz.br)
1) Programa de Computação Cientifica (PROCC)
2) Instituto de Tecnologia em Fármacos - Far-Manguinhos, Laboratório de Síntese IV
Fundação Oswaldo Cruz, Manguinhos, 21041-250, Rio de Janeiro, RJ, Brazil;

Keywords: β-cyclodextrin, Inclusion complex; Megazol, Chagas' disease, Nuclear magnetic resonance, Molecular Dynamics simulation time we observed the formation of megazol / e-cyclodextrin complexes for all the studied molar ratios.
The formation of the stable 2:1 complex has been confirmed by both applied techniques and indicates that the cyclodextrin basket can complex with two megazol molecules.
The relative ligand binding free energies values ($\bullet \bullet \mathrm{G}$) show that thermodynamically the sequence of probabilities to be $1: 1$ complex $>2: 1>1: 2$ complexes. Although the $1 / 2: 1$ complex is structurally very stable and the megazol remains inside the ${ }^{\circ} \mathrm{CD}$ basket all the time, the intensity of the interactions between charged and polar megazol groups with solvent is weakened, which results in a higher absolute ligand binding free energy.

cromblusions

We have used ${ }^{1} \mathrm{H}$ NMR spectroscopy and molecular dynamics to analyze the binding of megazol and ocyclodextrin in aqueous solution at the different guest: host ratios of $1 / 2: 1,1: 1$ and $2: 1$. The significant (upfield) chemical shifts of the inner-most $0 \cdot \mathrm{CD}$ protons, $\mathrm{H}-3$ and $\mathrm{H}-5$, confirmed the formation of inclusion complexes. The formation of the $1: 1$ complex was calculated from values of the relative free energy of binding to be the most favorable. The least thermodynamically probable of the three complexes studied is the $1 / 2: 1$ complex, but it is still structurally stable. A strong intermolecular hydrogen bond network between cyclodextrin moieties enables the megazol to be maintained inside the channel of the head-to-head binary system.

This work was supported by the Fundação Oswaldo Cruz.

[^242]
ESTUDO TEÓRICO DO METABOLISMO OXIDATIVO DO ÁCIDO SALICILICO.

Rosivaldo dos Santos Borges ${ }^{1 *}(\mathbb{P G})$, José Luiz Martins do Nascimento ${ }^{1}(\mathbb{P Q})$, Cláudio Nahum Alves ${ }^{2}$ (PQ). e-mail: rosborg@ufpa.br.
${ }^{1}$ Curso de Pós-Graduação em Neurociências e Biologia Celular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Av. Augusto Corrêa 01. 66075-110. Belém, PA, Brasil.
${ }^{2}$ Curso de Pós-Graduação em Química, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Av. Augusto Corrêa 01. 66075-110. Belém, PA, Brasil.

Palavras Chave: ácido salicílico, metabolismo, DFT, citocromo P-450.

1762

A aspirina (ácido acetilsalicílico) é o analgésico, antitérmico e antiinflamatório mais consumido no mundo. Apresenta a hidroxila fenólica acetilada, que é hidrolisada ao ácido salicílico (AS) por esterases no tubo gastrintestinal, fígado e soro ${ }^{1}$.
O metabolismo oxidativo do AS através do citocromo P 450 (Cit $\mathrm{P}-450$) e radical hidroxil (HO^{l}) durante a peroxidação lipídica é importante para o entendimento de mecanismo de ação e resistência terapêutica aos salicilatos ${ }^{2}$.
A teoria do funcional da densidade (DFT) usando B3LYP/6-31G*, empregada na obtenção do potencial de ionização (PI), calculado pela energia da molécula ionizada menos a energia da molécula neutra e a densidade de spin, pode explicar as diferenças na formação destes produtos.

O mecanismo de oxidação do AS proposto na Figura 1, ocorre pela abstração de um elétron via HO^{\square} ou Cit P 450 , formando cátion radical e anion hidroxila. A reação do cátion radical na posição 5 com o $\mathrm{Cit}-\mathrm{OH}$ produz o ácido 2,5-dihidroxibenzóico (2,5-DHBA) e a recombinação nas posições 3 e 2 com outro $\mathrm{HO}^{\text {º }}$, gera o ácido 2,3-dihidroxibenzóico (2,3-DHBA) e catecol, respectivamente.

Figura 1. Estrutura, reações do ácido salicílico e formação de derivados hidroxilados.

A abstração inicial de elétron para o AS, fenol e ácido benzóico, usados para comparar a influência dos grupos fenol e ácido carboxílico é 194,4, 190,8 e 214,6 kcal/mol, mostrando que substituinte elétron-doador (hidroxila), decresce o Pl e grupo elétron-atraente (carbonila), aumenta o PI.
O cálculo de densidade de spin para os cátions radicais (Figura 2), mostram maior contribuição no ácido salicílico do O_{7} fenólico (22%), C_{1} ligado ao grupo carbonila (12\%), carbono C_{2} ligado ao grupo hidroxila (15\%), carbono $C_{3}(22 \%)$ e carbono $C_{5}(40 \%)$. Na molécula do fenol as contribuições no O_{7} fenólico (23\%), carbono C_{1} (17%), carbono C_{2} (22%), carbono C_{3} (12\%) e carbono $\mathrm{C}_{5}(42 \%)$. Enquanto que para o ácido benzóico as contribuições de carbono $C_{1}(25 \%)$, carbono C_{2} (35\%), carbono C_{4} (22%) e carbono $\mathrm{C}_{5}(35 \%)$.

Figura 2. Estrutura, numeração e cálculo de densidade de spin para o ácido salicílico e compostos relacionados.

Os resultados indicam que a posição 5 contribui mais na estabilização do elétron desemparelhado sendo o ponto de maior reatividade no metabolismo oxidativo destas moléculas e que o grupo hidroxila fenólica apresenta maior influência na reatividade química, potencial de ionização e distribuição de spin, em relação ao grupo carbonila ácido.

Gonhticses

Os resultados mostraram que a densidade de spin e o PI explicam a biotransformação oxidativa do ácido salicílico e a hidroxilação regiosseletiva para a formação do ácido 2,5-DHBA via Cit P-450 e dos demais produtos via radical livre hidroxil durante a peroxidação lipídica.

Os autores são gratos ao FUNTEC-SECTAM, a FINEP e ao CNPq pelo suporte financeiro.

[^243]
Relação Estrutura e Atividade de derivados acil-Éter do paracetamol.

Rosivaldo dos Santos Borges ${ }^{1 *}$ (PG), José Luiz Martins do Nascimento ${ }^{1}$ (PQ), Cláudio Nahum Alves ${ }^{2}$ (PQ). email: rosborg@ufpa.br.
${ }^{1}$ Curso de Pós-Graduação em Neurociências e Biologia Celular, Instituto de Ciências Biológicas, Universidade Federal do Pará, Av. Augusto Corrêa 01. 66075-110. Belém, PA, Brasil.
${ }^{2}$ Curso de Pós-Graduação em Química, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, Av. Augusto Corrêa 01. 66075-110. Belém, PA, Brasil.

Palavras Chave: paracetamol, derivados, PM3, atividade biológica.

PMillodicgoo
O mecanismo de ação do paracetamol está baseado na inibição da prostaglandina endoperóxido sintase (PGES). ${ }^{1} \mathrm{O}$ uso terapêutico é seguro para humanos, mas em doses altas desenvolve hepatite e óbito em poucos dias. ${ }^{2}$
Os derivados da Figura 1 foram usados no estudo de relação estrutura e atividade qualitativa (SAR). Os valores experimentais medidos pelo número de contorções induzidas por ácido acético, realizados por Duffy et al. (2001) ${ }^{3}$, foram correlacionados com as propriedades físico-químicas obtidas pelo método semi-empírico PM3.

Figura 1. Compostos derivados éteres e fenóis do paracetamol.

Os resultados teóricos mostram que a molécula mais ativa T11, tem menor valor de módulo para o HOMO de $-8,27 \mathrm{eV}$ em comparação com a aspirina ($-9,93 \mathrm{eV}$) (Tabela 1), sendo que este parâmetro eletrônico apresentou o maior valor de correlação com a atividade antiinflamatória ($R=0,71$). Enquanto que o parâmetro de solubilidade apresentou uma correlação menor quando comparado com os valores de logaritmo de partição (LogP) de $\mathrm{R}=0,49$ e a energia de hidratação (EH) de $\mathrm{R}=0,13$ (Tabela 2).
Os grupamentos alquilicos substituidos que mais influenciaram os valores de HOMO são os grupos presentes nas posições 3 e 5 do anel aromático, em relação ao grupo amida e éter. Os grupos mais volumosos mostraram maior contribuição.

Tabela 1. Propriedades dos derivados éteres e fenóis.

Derivados	AB	HOM O	LUM O	EH	LogP
T1	0.00024	-8.52	0.18	-9.37	2.03
T2	0.00034	-8.65	0.2	3.38	1.85

T3	0.00021		-		
		-8.45			
			0.25	2.15	3.27
T4				-	
	0.00019	-8.35	0.07	2.14	1.92
T5				-	
	0.00051	-8.76	0.1	1.01	2.71
T6	0.00042	-8.82	0.09	0.04	3.37
T7				-	
	0.00011	-8.55	-0.17	3.18	2.02
T8	0.00039	-8.46	-0.53	-7.1	2.56
T9				-	
	0.00037	-8.81	0.1	1.56	2.37
T10				-	
	0.00014	-8.69	0.18	8.86	2.69
T11					
	0.000049	-8.27	0.27	1.31	3.87
T12				.	
	0.00094	-9.93	-0.68	7.91	1.24

A presença do grupo fenol mostrou maior importância, possivelmente pela interação com o radical tirosil 385 da PGES, através de doação de elétron ou hidrogênio. ${ }^{4}$
Tabela 2. Matriz de correlação entre atividade analgésica e propriedades físico-quimicas de derivados do paracetamol.

	AB	HOM O	LUM O	EH	LogP
AB	1				
HOM					
O	0,71	1			
LUMO	0,52	0,62	1		
EH	0,13	0,28	0,41	1	
LogP	0,49	0,52	0,52	0,48	1

PMomeneres W
Os resultados indicam que a introdução de grupos volumosos apesar de alterar a solubilidade, o caráter nucleofilico do HOMO governa a interação com PGES. Os trabalhos prosseguem com cálculos de DFT e modelos de regressão linear múltipla.

- Aholucecoltimhlos:

Os autores são gratos ao FUNTEC-SECTAM, a FINEP e ao CNPq pelo suporte financeiro.

[^244]
ESTUDO COMPARATIVO ENTRE ESPECTROS DE ABSORÇÃO OBTIDOS EXPERIMENTALMENTE E TEORICAMENTE (TDDFT) PARA MOLÉCULA DE ALQ.

Flávia P. Rosselli ${ }^{1 *}$ (PQ), Welber G. Quirino ${ }^{1}(P Q), C$ (PQ), Luís G. Dias ${ }^{3}$ (PQ), Marco Cremona ${ }^{4}$ (PQ), Rodri * fprosselli@inmetro.gov.br

${ }^{1}$ DIMAT - Divisão de Metrologia de Materiais, Instituto Nacion. INMETRO, Duque de Caxias, RJ.
${ }^{2}$ DIMAT (INMETRO), e Departamento de Quimica, Universidad
${ }^{3}$ Departamento de Química, Universidade de São Paulo, USP-FI
${ }^{4}$ DIMAT (INMETRO), e Laboratório de Optoeletrônica Molecu Janeiro, PUC-Rio, Rio de Janeiro, RJ.
${ }^{5}$ DIMAT (INMETRO), e Instituto de Física, Universidade Federal
${ }^{6}$ DIMAT (INMETRO) e Laboratório de Superficies e Filmes Finos

Palavras Chave: A / q_{3}, TDDFT, absorção.

LED (Light-Emiting Diode, diodo emissor de luz) é um diodo semicondutor capaz de emitir luz quando uma corrente elétrica passa por ele (eletroluminescência). No LED, o material semicondutor deve ser dopado com impurezas de forma a se obter a junção p-n. Já nos LEDs orgânicos (OLEDs) não há materiais dopados, mas sim compostos orgânicos (de natureza molecular) constituindo as camadas tipo-n (injetora de elétrons) e tipo-p (injetora de buracos). O material orgânico injetor de elétrons (e emissor de luz) mais utilizado até hoje nos OLEDs é a Alq_{3}. Neste trabalho, foram obtidas as energias de transição para a Alq_{3} utilizando cálculos teóricos, as quais foram comparadas com o espectro de absorção obtido experimentalmente.

Para os cálculos, foi utilizado o método TDDFT com o funcional B3LYP em combinação com as funções de base 6-31G(d,p) e LANL2DZ (a base LANL2DZ foi utilizada para descrever o átomo de Al enquanto a $6-31 \mathrm{G}(\mathrm{d}, \mathrm{p})$ foi utilizada para os demais átomos da molécula). A molécula foi otimizada com o funcional PBEPBE no mesmo esquema de funções de base.

Os resultados mostram que os cálculos teóricos obtidos com o esquema acima estão muito próximos do experimental, conforme indica a figura abaixo. Os picos teóricos são observados em 195, 242 e 439 nm , enquanto os picos experimentais são observados em 198, 260 e 382 nm, respectivamente.

Figura 1. Gráficos de absorção teórico e experimental para Alq3.

CROMCluEbes

Os resultados teóricos obtidos com o método TDDFT (aplicado com o funcional B3LYP e bases 6-31G(d,p) e LANL2DZ) para a Alq3 reproduziram bem o espectro de absorção obtido experimentalmente.

- AIraceamemios

Os autores agradecem ao CNPq pelo financiamento dado ao projeto.

[^245]
NOVO CONJUNTO DE BASE DESENVOLVIDO PARA ÁtomOS DE H, LI, BE, B, C, N, O E F: PRIMEIROS TESTES COM FUNCIONAL BLYP DA DFT.

Flávia Pirola Rosselli ${ }^{1 *}(\mathrm{PQ})$, Moacyr Comar Junior ${ }^{2}(\mathrm{PQ})$, Albérico Borges Ferreira da Silva ${ }^{3}(\mathrm{PQ})$
* fprosselli@inmetro.gov.br
${ }^{1}$ DIMAT - Divisão de Metrologia de Materiais, Instituto Nacional de Metrologia, Normalização e Qualidade Industrial, INMETRO, Duque de Caxias, RJ.
${ }^{2}$ Departamento de Química, Universidade Federal do Amazonas, UFAM, Manaus, AM.
${ }^{3}$ Departamento de Química e Fisica Molecular, DQFM, Universidade de São Paulo, USP-IQSC, São Carlos, SP.

Palavras Chave: novo conjunto de base, DFT, BLYP.

Inrodticao

Cálculos ab initio utilizam comumente a aproximação LCAO (linear combination of atomic orbitals), que é a combinação linear, ou superposição quântica, de orbitais atômicos. Mais corretamente falando, orbitais atômicos (ou moleculares) são escritos como combinação linear de funções de base, as quais são funções monoeletrônicas centradas nos núcleos dos átomos constituintes da molécula. As primeiras aproximações para orbitais atômicos foram feitas por Slater, baseadas nos orbitais hidrogenóides. Com o tempo, orbitais tipo Slater (STO) foram substituídos por orbitais gaussianos (GTO); funções gaussianas representam grande economia computacional em razão da facilidade de se calcular com elas certas integrais ${ }^{[1,2]}$. De forma a dar maior flexibilidade às funções de base na descrição dos orbitais atômicos, podem ser acrescentadas a elas outras funções como polarizações e difusas. Neste trabalho são apresentados resultados de energia total obtidos com uma nova base desenvolvida para os átomos de H, Li, Be, B, C, N, O e F. As energias totais são comparadas a valores de afinidade eletrônica e energia de ionização obtidos experimentalmente ${ }^{[3]}$. A nova base foi testada por enquanto com o funcional BLYP da DFT. A efeito de comparação do desempenho da nova base, foram testadas com o mesmo funcional as bases aug-cc-pV5Z, cc-pVQZ e 6-311G(3df,3pd), sendo estas bases maiores e mais dispendiosas computacionalmente.

Wratw

Para energia de ionização, os resultados apresentados pela base nova e pelas demais bases comentadas são todos muito próximos. Já para a afinidade eletrônica os resultados são menos próximos entre elas e os resultados mostrados pela base nova são consideravelmente superiores às demais bases testadas.

Tabela 1. Resultados obtidos com a nova base e com a base aug-cc-pV5Z em comparação com valores de afinidade eletrônica (A) e energia de ionização (I) obtidos experimentalmente ${ }^{[3]}$

	Aug-cc-pV5Z		Nova Base		1 exp. [3]	A exp. [3]
	1	A	1	A		
H	13.549	0.881	13.548	0.479	13.598	0.754
Li			5.529	0.421	5.392	0.618
Be			8.977	-1.441	9.323	
B	8.629	0.468	8.626	0.201	8.298	0.280
C	11.403	1.367	11.401	1.092	11.260	1.262
N	14.501	0.398	14.500	-0.022	14.534	
0	14.153	1.839	14.141	1.458	13.618	1.461
F	17.705	3.681	17.695	3.327	17.423	3.401

* a base aug-cc-pV5Z não está parametrizada para os átomos de Li e Be ; e não há afinidades experimentais para os átomos de Be eN.

Gonichisors

Considerando cálculos de energia de ionização e afinidade eletrônica, os quais envolvem energias totais de espécies neutras, catiônicas e aniônicas, tem-se que a nova base testada foi superior às demais testadas, sendo que a segunda melhor base foi a aug-cc-pV5Z. Porém, a nova base tem a vantagem de ser menor que a aug-cc-pV5Z, o que representa grande economia de tempo computacional. A nova base, em termos de tamanho e número de funções de polarização, assemelha-se mais à $6-311 \mathrm{G}(3 \mathrm{df}, 3 \mathrm{pd})$, sendo que os resultados apresentados em relação a esta base foram muito superiores!

7ablrorecthinemios

Os autores agradecem ao CNPq e CAPES pelo financiamento dado ao projeto.

[^246]ESTUDO DFT DA ADSORÇÃO DO METANO, MONÓXIDO DE CARBONO E HIDROGÊNIO EM AGLOMERADOS DE R h_{10}
Julia Viegas Rymer ${ }^{1^{*}}$ (IC), José Walkimar de M. Carneiro ${ }^{2}(\mathrm{PQ})$, Fábio Barboza Passos ${ }^{3}(\mathrm{PQ})$ e Mauricio Tavares de M. Cruz ${ }^{4}$ (PG)
${ }^{1}$ Graduação em Engenharia Química , Universidade Federal Fluminense - UFF
${ }^{2}$ Departamento de Química Inorgânica, Universidade Federal Fluminense - UFF
${ }^{3}$ Departamento de Engenharia Quimica, Universidade Federal Fluminense - UFF
${ }^{4}$ Pós-Graduação em Qứmica Orgânica, Universidade Federal Fluminense - UFF julia.rymer@hotmail.com

Palavras Chave: DFT, hidrogênio, metano , monóxido de carbono, ródio
apresenta energia $1.25{\mathrm{kcal} . \mathrm{mol}^{-1}}$ mais baixa que a

Thlloriraco

Nos últimos 20 anos, o hidrogênio tem sido muito utilizado em processos de refino de petróleo. O principal processo industrial de produção de hidrogênio é a reforma catalítica a vapor, cujo custo corresponde a 60 a 70% do total dos custos dos processos de refino. Portanto, a utilização de sistemas catalíticos mais eficientes e/ou a otimização dos sistemas tradicionais é fundamental. Os metais do grupo VIII são ativos para a reação de reforma, dentre eles, o níquel é o mais utilizado industrialmente pelo seu baixo custo. Porém, este é mais suscetível a desativação, despertando interesse no estudo de catalisadores a base de ródio devido a este exibir maior velocidade de reforma a vapor ${ }^{1}$ e tendência a inibir a formação de coque. ${ }^{2}$ Neste trabalho, através de métodos de química computacional, são estudadas as formas de adsorção do metano, monóxido de carbono e hidrogênio sobre um aglomerado de Rh \{111\}, com objetivo de investigar os mecanismos envolvidos na conversão do metano a gás de síntese.

O método B3LYP/LANL2DZ foi utilizado para otimizar as moléculas de $\mathrm{CH}_{4}, \mathrm{CO}, \mathrm{H}_{2}$ sobre um aglomerado fixo de $\operatorname{Rh}\{111\}$ contendo 10 átomos, construído a partir dos parâmetros do "bulk" (Rh-Rh=2.69Å). Testamos vários estados de spin do $R h_{10}$ e o estado $S=9$ apresentou mais baixa energia. Os parâmetros geométricos, eletrônicos e de energia estão agrupados na tabela 1.
Tabela 1. Modo de adsorção; energia absoluta (hartree); energia de adsorção calculada e experimental (kcal.mol ${ }^{-1}$) e carga total no metal (e^{-}).

	modo	$-\mathrm{E}_{\text {abs }}$	$-\mathrm{E}_{\text {ads }}$	-Exp	$\mathrm{q}_{\text {total }}(\mathrm{Rh})$
CH_{4}	$*$	1135.6545	0.37	6.00^{3}	-0.029
CO	atop	1208.4738	35.47	38.01^{4}	+0.149
H_{2}	$*$	1096.3188	3.12	6.40^{5}	-0.156

*não adsorve.
Otimizamos, também, CO e H_{2} dissociados sobre o aglomerado de $R h_{10}$. A energia absoluta encontrada para o CO dissociado é aproximadamente $72 \mathrm{kcal}_{\mathrm{k}} \mathrm{mol}^{-1}$ mais alta do que para o CO molecular adsorvido. No entanto, para o hidrogênio, a forma dissociada
forma molecular adsorvida.

Figura 1: modo preferencial para a adsorção em Rh_{10} : (a) hidrogênio dissociado, bridge; (b) CO molecular; atop.

Nossos resultados apontam para o modo de adsorção "bridge" como preferencial para o hidrogênio dissociado (figura 1(a)). A forma "hollow-fcc" converge para a forma "bridge", enquanto a forma atop apresentou problemas de convergência com o método utilizado. Já o CO adsorve na forma atop (figura 1(b)) com energia de $35.47 \mathrm{kcal}_{\mathrm{kc}}^{\mathrm{mol}}{ }^{-1}$. Este resultado está de bom acordo com o calor de adsorção experimental obtido por Hopstaken e colaboradores. Os Cálculos para a adsorção do metano dissociado sobre o aglomerado $R h_{10}$ estão em andamento, porém o resultado já obtido indica que o CH 4 não adsorve na forma molecular ($\mathrm{E}_{\text {ads }}$

A diferença entre as energias absolutas da forma molecular e dissociada para o CO é grande o suficiente para concluirmos que a adsorção molecular é preferencial, ocorrendo na forma "atop" com energia de $35.47{\text { kcal. } \mathrm{mol}^{-1} \text {. Já para o } \mathrm{H}_{2} \text {, esta diferença não é }}^{\text {. }}$ significativa ($1.25 \mathrm{kcal} . \mathrm{mol}^{-1}$), não sendo possível que o DFT possa distinguir entre as formas preferenciais de adsorção. Porém, tanto para o H_{2} quanto para o CH_{4} molecular, as energias de adsorção obtidas foram muito baixas, indicando que estes não são adsorvidos.

AOIRCGMentos

CNPq, CAPES, FAPERJ

[^247]
ESTUDO COMPUTACIONAL DA INFLUÊNCIA DA SOLVATAÇÃO EM PROTOPORFIRINA COMPLEXADA COM FE ${ }^{2+}$

Teobaldo Guizado ${ }^{(1) *}(P G)$, Samuel Pita ${ }^{(2)}$ (PG), Sonia Louro ${ }^{(1)}(P Q)$, Pedro Pascutti ${ }^{(2)}(\mathbb{P Q})$
${ }^{1)}$ Departamento de Fisica I Pontifica Universidade Católica do Rio de Janeiro
${ }^{2)}$ Laboratório de Modelagem e Dinâmica Molecular I Inst.de Biofísica Carlos Chagas Filho I Univ.Federal de Rio de Janeiro
* teobaldo.ricardo@fis.puc-rio.lor

Palavras Chave: Protoporfirina IX, Grupo heme, Dinâmica Molecular, Ferro - porfirinas, solvatação, Protoporfirina IX

Intipolurab

A Dinâmica Molecular (DM) de heme-proteínas tem sido amplamente estudada em termos de solvatação e hidratação ${ }^{1}$ as quais permitem determinar as camadas de hidratação, a relação estrutura-solvente, hidrofobicidade, estabilidade e possíveis formações de ligações de hidrogênio. Nesse sentido um estudo de DM com protoporfirina-IX (PPIX) complexada com Fe^{2+} (PPIX- Fe^{2+}) em solvente explícito foi realizado usando o pacote Gromacs ${ }^{2}$. A topologia usada na PPIX-Fe ${ }^{2+}$ foi a parametrização para o grupo heme do campo de forças Gromos96. A caracterização eletrônica da PPIX foi realizada usando o pacote Gamess, com o formalismo Chelpg e o site PRODRG para o restante da parametrização. As simulações executaram-se num tempo de 10 ns com tratamento eletrostático PME e temperatura de 310 K no meio aquoso. Para avaliar os efeitos do solvente sobre as porfirinas foi usada a função de distribuição radial $g(r)$ para identificar as regiões hidrofóbicas e hidrofílicas. O objetivo deste trabalho é fazer um estudo comparativo de solvatação entre PPIX-Fe ${ }^{2+}$ e PPIX para melhor compreender a interação dessas porfirinas com proteínas.

ReSulmolos e Drecussdo

O comportamento claramente hidrofóbico da PPIX- Fe^{2+} e da PPIX é demonstrado na esquerda e direita respectivamente da Fig.1. Na PPIX-Fe ${ }^{2+}$ são observadas duas regiões distintas: uma completamente hidrofóbica, composta pelos grupos aromáticos em torno do átomo de ferro, e outra hidrofílica, composta pelas cadeias laterais em torno do anel, Fig. 2. No caso do Fe^{2+} pode-se observar na Fig 2. a formação de 3 camadas de hidratação em torno do ion Fe^{2+} : a primeira delas a uma distancia de $1,8 \AA ́$ o que indicaria uma possível coordenação do Fe^{2+} com átomos de oxigênio da água. A Fig. 2 mostra o comportamento hidrofilico dos grupos carboxila nas extremidades da molécula. Nas regiões em torno dos oxigênios da porfirina observam-se acúmulos de moléculas de água representados por três camadas de solvatação: a primeira a uma distancia de 1.8 A o que indica a formação de ligações de hidrogênio nessa região,

Fig. 1 Esquerda (PPIX-Fe2+), Direita (PPIX), $g(r)$ medido desde o centro de massa das porfirinas mostrando o comportamento geral hidrofóbico.

Fig. 2 PPIX- Fe^{2+} : Esquerda, em vermelho e negro a interação do ion $\mathrm{Fe} 2+$ com os oxigênios e hidrogênios da água respectivamente. Direita, em vermelho e negro a interação dos oxigênios da porfirina com os oxigênios e hidrogênios da água respectivamente.

(ounho 18 (o) c

A demonstração do caráter hidrofóbico das porfirinas e seu comportamento não homogêneo com respeito a sua afinidade pela água e averiguado a traves dos resultados de DM. O caráter hidrofóbico determina-se pela presença do anel porfirínico, o que determina a inserção das moléculas nos bolsões hidrofóbicos de proteínas.

A CNPq pela bolsa de posgraduaçao do autor.

[^248]
ESTUDO DOS DÍMEROS $\mathrm{CH}_{N} \mathrm{CL}_{4-\mathrm{N}} \cdot \mathrm{H}_{2} \mathrm{O}(\mathrm{N}=1,2,3)$

Guilherme P. Silva ${ }^{1}(I C)$, José R. dos S. Politi ${ }^{1}(\mathrm{PQ})$
*guipaivas@gmail.com

1- Laboratório de Química Computacional, Instituto de Química - UnB, Brasilia-DF, Brasil
Palavras Chave: clorometanos, clorofórmio, ligações de hidrogênio, dímeros, ab initio

A ligação de hidrogênio representa um assunto chave na química, física e biologia. Ela é, por exemplo, a principal responsável pela estrutura e propriedades da água. Além disso, as ligações de hidrogênio representam também um fator essencial na determinação da estrutura, propriedades e funções de biomoléculas. Essa ligação intermolecular se forma entre um hidrogênio deficiente de elétrons de uma molécula e uma região de alta densidade eletrônica de outra molécula. Mais freqüentemente, uma ligação de hidrogênio é do tipo $X-H \cdots Y$, onde X e Y são elementos eletronegativos e Y possui um ou mais pares de elétron não compartilhados.
Nesse trabalho, foram estudadas as estruturas dos dímeros de clorometanos e água e as características das ligações de hidrogênio que formam esses dimeros. Foram realizados cálculos em nível RHF, utilizando funções de base $6-311++G^{* *}$. Foi realizada também uma avaliação da importância das correções de superposição de base (BSSE) e da energia do ponto zero (ZPE) para os resultados sistemas estudados.

Resurpalos e DISGMESx

Foram realizados cálculos RHF com a função de base $6-311++G^{* *}$ empregando o programa Gaussian 03, para a determinação das estruturas e para o cálculo das energias.
Foram encontradas duas estruturas para o dímero de clorometano-água, duas estruturas para o dímero de diclorometano-água e uma única estrutura para o dímero de clorofórmio-água. Para tais dímeros, somente uma das estruturas entre clorometano e água e a estrutura do clorofórmio e água apresentaram todas as freqüências positivas.
As energias dos dímeros e a energia de interação estão na tabela 1.
Tabela 1. Energias dos dímeros e de interação ($\Delta \mathrm{E}$) em Hartree

	E(BSSE/ZPE)	- E
$\mathrm{CH}_{3} \mathrm{Cl} . \mathrm{H}_{2} \mathrm{O} A$	-575,1248196934	-0,0019504977
$\mathrm{CH}_{3} \mathrm{Cl} . \mathrm{H}_{2} \mathrm{OB}$	-575,1242877084	-0,0013969708
$\mathrm{CH}_{2} \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{OA}$	-1.034,0519017548	-0,0027832998
$\mathrm{CH}_{2} \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O} \mathrm{B}$	-1.034,0521279278	-0,0029956007
$\mathrm{CHCl}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$	-1.492,9734637717	-0,0042183650

Através dos valores das energias dos dímeros e dos monômeros, ambos corrigidos pela correção de superposição de base (BSSE) e pela correção do ponto zero (ZPE), o cálculo da energia de interação dos dímeros ($\Delta \mathrm{E}$), para o caso do dímero $\mathrm{CHCl}_{3} \cdot \mathrm{H}_{2} \mathrm{O}$, se dá pela equação: $\Delta \mathrm{E}=\mathrm{E}_{\text {dimero }}-\mathrm{E}_{\text {clorofórmio }}-\mathrm{E}_{\text {água }}$.
Tabela 2. Obtenção das energias de interação para o dímero de clorofórmio em Hartree

	E (HFIBSSE)	E (HFIBSSE/ZPE)
Dímero	$-1.493,0196487717$	$-1.492,9734637717$
Clorofórmio	$-1.416,9606372300$	$-1.416,9388612300$
Água	$-76,0534201767$	$-76,0303841767$
$\Delta \mathrm{E}$	$-0,0055913650$	$-0,0042183650$

*Comparação entre os valores de $\triangle \mathrm{E}$ obtidos somente com o BSSE com os valores também corrigidos com o ZPE

Na estrutura do dímero de clorofórmio e água (figura ao lado) a ligação de hidrogênio possui comprimento de 2,26555 ângstroms, o ângulo entre C-H-O é de $173,07179^{\circ}$ e o ângulo de diedro entre C-H-O-H é de $16,47494^{\circ}$. Esses fatores estruturais caracterizam uma típica ligação de hidrogênio para esse dímero, que também contribuem para baixa energia do dímero.

A partir do estudo dos dimeros $\mathrm{CH}_{n} \mathrm{Cl}_{4-n} \cdot \mathrm{H}_{2} \mathrm{O}(n=1,2$, 3) foram determinadas as estruturas dos dímeros de clorometano-água e clorofórmio-água. Obteve-se as energias de interação para os dímeros, devidamente corrigidas com a correção de superposição de base e com a correção do ponto zero, e verificou-se que a ligação de hidrogênio mais estável se dá também no dímero de clorofórmio e água. Foi possível observar também que a correção ZPE para esses dímeros é mais importante que a BSSE. Estão sendo processados os cálculos para a determinação das estruturas dos demais dimeros.

Moraemalnentos

CNPq, Funpe-UnB

[^249]
ESTUDO TEÓRICO DE NOVOS DERIVADOS DA DIIDROARTEMISININA CONTENDO AÇÚCAR COM ATIVIDADE ANTIMALÁRICA USANDO MEPS E DOCKING MOLECULAR

Cleydson Breno Rodrigues dos Santos*1(PG), Ruth C. O. Almeida ${ }^{1}$ (IC), Fábio Mota Rosa ${ }^{1}$ (IC), Williams Jorge da Cruz Macedo ${ }^{1}(\mathrm{PG})$, Maycon da Silva Lobato ${ }^{1}(\mathrm{PG})$, Antonio F. de Figueiredo ${ }^{1}(\mathrm{PG})$ Jardel Pinto Barbosa ${ }^{1}(\mathrm{PG})$, Maria da Glória Gomes Cristino ${ }^{1}$ (PG) José Ciríaco Pinheiro ${ }^{1}(\mathrm{PQ})$. E-mail: cleybren@ufpa.br
${ }^{1}$ Laboratório de Química Teórica e Computacional, Departamento de Química, Centro de Ciências Exatas e Naturais, Universidade Federal do Pará, CP 101101, 66075-110 Belém, PA, Amazônia, Brasil
Palavras Chave: Derivados da dihidroartemisinina, Mapas de Potencial Eletrostático (MEPs) e Docking Molecular.

InMordicato

Na atualidade, o planejamento racional de fármacos consiste na modificação molecular, considerando um composto de estrutura química conhecida e ação biológica comprovada como modelo para ensaio de novos compostos que sejam análogos estruturais do fármaco matriz.

Neste trabalho, a diidroartemisinina e seus derivados foram estudados a partir de comparações qualitativas na região do anel 1,2,4-trioxano da artemisinina, utilizando o método Hartree-Fock e a base $6-31 \mathrm{G}^{* *}$, os quais mostraram excelente concordância com os dados cristalográficos da artemisinina. Os mapas de potencial eletrostático molecular (MEPs), foram computados com densidade eletrônica e visualizados com auxilio software MOLEKEL 4.3. Foram realizados estudos de docking molecular com o programa AUTODOCK 4.0, a fim de averiguar, a tendência de interação entre os derivados da diidroartemisinina e a heme cristalográfica. Os docking moleculares foram obtidos com os métodos: algoritmos genéticos; método de busca local; e um moderno, método de busca local-global adaptado, baseado no algoritmo genético Lamarckian (LGA) ${ }^{1}$.

Na Figura 1, são mostrados os MEPs para o análogo da diidroartemisinina (a) composto mais ativo e um análogo contendo açúcar (b), de acordo com essa figura podemos notar uma região de potencial eletrostático molecular negativo, em volta do anel trioxano; uma vez que de acordo com a literatura a forma geométrica do potencial eletrostático na região é similar em todos os compostos ativos ${ }^{2}$.
,A figura 2 mostra que o O 1 do anel trioxano sofre ataque da heme na ligação endoperóxido, devido apresentar um menor comprimento de ligação O1-Fe. Isso está de acordo com o mapa de potencial eletrostático, que indica uma maior densidade eletrônica na região do anel trioxano. Os nossos resultados demonstram que o ferro ataca,

MODELAGEM DE NOVOS ANTIMALÁRICOS (ARTEMISININAS) USANDO MAPAS DE MEP E ANÁLISE MULTIVARIADA

Fábio J. B. Cardoso ${ }^{1}(\mathrm{PG})$, Antonio F. Figueiredo ${ }^{1}(\mathrm{PG})$, Jardel P. Barbosa ${ }^{1}(\mathrm{PG})$, Ruth C. O. Almeida ${ }^{1}(\mathrm{IC})$, Maycon S. Lobato ${ }^{1}(\mathrm{PG})$, Williams J. C. Macedo ${ }^{1}(\mathrm{PG})$, Helieverton G. Brito ${ }^{1}(\mathrm{IC})$, Elierge B. Costa ${ }^{1}(\mathrm{PG})$, Ricardo M. Miranda ${ }^{1}(\mathrm{PG})$, José C. Pinheiro ${ }^{1}(\mathrm{PQ})^{*}$. E-mail: ciríaco@ufpa.br.
${ }^{1}$ Laboratório de Química Teórica e Computacional, Faculdade de Química, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, CP 101101, Campus Universitário, CEP 66075-110 Belém, PA, Amazônia, Brasil

Palavras Chave: Artemisininas, Malária,Análise Multivariada, MEP, Mapas MEP

ThHLOCTHCDO

A artemisinina e seus derivados (artemisininas) representam uma classe muito importante de antimaláricos. A artemisinina (qinghaosu) foi isolada da Artemisia annua (qinghao) usada há 2000 anos na medicina tradicional chinesa. As artemisininas são na atualidade os compostos mais promissores no tratamento da malária falciparum e a característica responsável pela existência da atividade biológica, dessa classe de compostos, é a presença do anel-trioxano nas moléculas ativas, ou seja: os compostos inativos não possuem o aneltrioxano ${ }^{1}$. Neste trabalho, reportamos novas artemisininas ativas contra Plasmodium falciparum modeladas com o uso de mapas de MEP e de análise multivariada. A estrutura da artemisinina foi modelada (HF/3-21G) e considerada como ponto de partida para a construção dos demais derivados reportados na literatura (conjunto de treinamento, 21 compostos). A construção dos mapas de MEP propiciou o desenvolvimento de novos derivados (conjunto teste, 20 compostos), tendo como referência a característica apresentada pelos compostos ativos na região próxima do aneltrioxano. Análise de componente principal (PCA) e análise hierárquica de cluster (HCA) foram usadas para separar os compostos do conjunto de treinamento em mais ativos e menos ativos. Com as variáveis selecionadas foi construído o modelo PLS e previstas as atividades dos novos antimaláricos. A modelagem multivariada foi feita com o programa Pirouette. Na visualização das moléculas foi usado o programa GaussView. Os MEPs foram visualizados com o programa Molekel.

Na Fig. 1 são mostrados os mapas de MEP para duas artemisininas modeladas neste estudo (mais ativa do conjunto de treinamento (a) e proposta com atividade prevista com o modelo PLS (b)). Dessa figura pode-se notar que os mapas apresentam porções mais negativas da superfície MEP próximas do anel-trioxano envolvido na complexação com a heme.

Fig. 1. Mapas de MEP para duas artemisininas modeladas [mais ativa do conjunto de treinamento (a) e proposta com atividade prevista co o modelo PLS (b)). $\mathrm{AR}=\mathrm{IC}_{50}$ artemisinina/ IC_{50} análogo].

O modelo PLS foi construído com, 15/6 compostos do conjunto de treinamento e seis como conjunto de validação externa, três variáveis latentes (VLs). Os parâmetros considerados como critérios para explicar a qualidade do modelo são:
$\operatorname{LogAR}=0,2105 \mathrm{HOMO}+0,024 \mathrm{Q}_{1}+0,1976 \mathrm{VOL}-$ 0,7006HYF
$\mathrm{N}=15$ \%VA $=88,9 \mathrm{R}=0.967 \mathrm{R}^{2}=0,935 \mathrm{~F}_{(5,10)}=25.89$ $Q=0,916 \quad Q^{2}=0,838$ SEP=0,152 PRESS $=0,347$
A aplicação do modelo PLS para as artemisininas do conjunto teste previu um novo composto (Fig 1, composto b) mais ativos do que aqueles reportados na literatura.

Cofich 1sores

1. Mapas de MEP de 21 artemisininas reportadas na literatura foram construídos.
2. Características estruturais das moléculas, responsáveis por suas atividades, e a intuição química permitiram propor novas artemisininas.
3. O modelo PLS construído com compostos do conjunto de treinamento possibilitou a previsão de um composto (conjunto teste) mais ativo do que os reportados na literatura.

CNPq, CAPES.
[^250]
MODELAGEM MOLECULAR DE DERIVADOS DA TRYPTANTHRINS COM ATIVIDADES ANTIMALÁRICAS

Fábio M. Rosa*(IC), Ruth C. O. Almeida ${ }^{1}(I C)$, Osmarina P. P. Silva ${ }^{1}(\mathrm{PG})$, Williams J. C. Macêdo ${ }^{1}(\mathrm{PG})$, Helieverton G. Brito ${ }^{1}(I C)$, Cleydson B. R. Santos ${ }^{1}(P G)$, Antonio F. Figueiredo ${ }^{1}(P G)$, Alexandre A. Maciel ${ }^{1}(\mathrm{PG})$, Ricardo M. Miranda ${ }^{1}(\mathrm{PG})$, José C. Pinheiro ${ }^{1}$ (PQ). E-mail: fmota@ufpa.br
${ }^{1}$ Laboratório de Química Teórica e Computacional, Faculdade de Química, Instituto de Ciências Exatas e Naturais, Universidade Federal do Pará, CP 101101, CEP 66075-110, Belém, PA, Amazônia, Brasil.

Palavras Chave: Malária, Tryptanthrins, PCA, Potencial Eletrostático Molecular.

pode ser expressa pela seguinte equação: PC1 = $0,1493 \mathrm{HOMO}+0,5503 \mathrm{DMT}+0,6058 \mathrm{Q} 3^{*}+$ 0,5549A12; a PC2 pela equação: PC2 = $0,7829 \mathrm{HOMO}+0,4642 \mathrm{DMT}+0,1313 \mathrm{Q} 3^{*}-$ 0,3930A12 e a PC3 pela equação: PC3 = $0,2233 \mathrm{HOMO}+0,3062 \mathrm{DMT}-0,7365 \mathrm{Q3}{ }^{*}+$ $0,5604 \mathrm{~A} 12$. De acordo com a Figura 2(a) os compostos estudados estão distribuídos em duas regiões. Uma delas contém os compostos mais ativos $(1,2,3,4,5,13,15,16,17,19,20,21,22,24)$ e a outra os menos ativos ($6,7,8,9,10,11,12,14$, 18, 23, 25). De acordo com Figura 2(b) os compostos mais ativos têm principal contribuição dos descritores DMT, Q3* e A12, enquanto os menos ativos têm maior contribuição do descritor HOMO.

Figura 2. Gráficos dos "scores" e "loadings" (PC1 e PC2) para os 25 compostos estudados.

- Os Tryptanthrins ativos apresentam regiões de MEP mais negativas correspondente ao farmacófaro dessas moléculas.
- A PCA separou os 25 Tryptanthrins em duas classes. Os mais ativos $(1,2,3,4,5,13,15,16,17$, $19,20,21,22,24$) e os menos ativos $(6,7,8,9,10$, $11,12,14,18,23,25)$.

Fioltrebermentos

CNPq, LQTC-UFPA

[^251]
Parameterization of the ief-pCM for Anion Solvation in Organic solvents.

Elvis S. Böes ${ }^{1}$ (PG), Paulo F.B. Gonçalves ${ }^{2}$ (PQ), and Hubert Stassen ${ }^{1 *}$ (PQ). gullit@iq.ufrgs.br
IInstituto de Química - UFRGS, Av. Bento Gonçalves 9500, 91540-000 Porto Alegre - RS, Brazil.
${ }^{2}$ Centro Universitário La Salle, Av. Victor Barreto 2288, 92010-000 Canoas - RS, Brazil.

Palavras Chave: Polarizable Continuum Model, Acetonitrile, DMF, Formamide, Nitrobenzene, Methanol.

Trioducio

The integral equation formalism of the polarizable continuum model (IEF-PCM) ${ }^{1}$ was parameterized for the solvation free energy of monovalent anions in five organic solvents: Acetonitrile (AN), Formamide (FA), Dimethylformamide (DMF), Methanol (ME), and Nitrobenzene (NB). As usual ${ }^{2}$, the solvation free energy has been partitioned into contributions from the cavitational process of the anions in the solvents, its electrostatic contribution, and the van der Waals term. The parameterization procedure involved two steps: i) Initially, a solvent dependent scaling factor applied to atomic radii in the the cavity creation has been established from Molecular Dynamics (MD) Simulations. ii) Secondly, the van der Waals contribution to the solvation free energy was used to minimize differences between experimental and calculated solvation free energies by defining solvent dependent atomic hardness parameters for the entire set of anions. For each solvent, a set of 11-13 monovalent anions containing $\mathrm{C}, \mathrm{O}, \mathrm{S}, \mathrm{H}, \mathrm{N}$, and halide atoms have been considered.

MD simulations on diluted solutions of halide or cyanide ions in the solvents AN, DMF, NB, FA, and ME have been performed using well established force fields. Maintaining the experimental solvent density and the temperature at 298 K , radial pair distribution functions for pairs of anions and solvent atoms have been computed from the simulations. In any case, the most probable distance between anions and solvent molecules in the first solvation shell was identified by the peak position of the first sharp maximum in these functions. These distances represent the average position of a solvent atom around the solute. Dividing these distances by the atomic radii of the solute's atoms ${ }^{3}$, we obtained solvent dependent scaling factors: NB: 1.64, AN: 1.44, DMF: 1.52 , FA: 1.28 , ME: 1.26 .

These scaling factors for atomic radii have been utilized to define effective radii for the soute's
atoms in the calculation of the cavity contribution to the solvation free energy by the ClaveriePierotti method ${ }^{4}$. The solute cavities have been obtained by the GEPOL algorithm ${ }^{5}$ from quantum-mechanically optimized molecular geometries for the anions. From the apparent surface charge distribution, the electrostatic solvation free energy was computed by the IEFPCM.
The van der Waals contribution to the solvation free energy for each solute is assumed to obey the linear relation involving atomic solvent acessible surface areas A_{i}, weighted by the corresponding atomic hardness parameter ξ_{i} according to ${ }^{6} \Delta G_{v d w}=\sum_{i} \xi_{i} A_{i}$.
The hardness parameters have been parameterized by a multiple linear regression procedure minimizing the difference between experimental free energy of solvation and the computed sum of electrostatic and cavitational energy portions for the entire set of anions for each solvent. This procedure furnished optimized parameters ξ_{i} for the solute atoms in the solvent under consideration.

OM Mreliceres

Our parameterization processes establishes theore-tical solvation free energies for monovalent anions that correlate very well with experimental findings. Moreover, partial contributions originated at cavita-tion, electrostatic, and van der Waals interactions reflect the particularities of the solvents.

CNPq, CAPES

[^252]
RELAÇÃO ESTRUTURA-ATIVIDADE ANTIMALÁRICA DE ÉTERES DE DIIDROARTEMISININA USANDO MAPAS DE MEP E ORBITAIS HOMO E LUMO.

Alexandre de A. Maciel ${ }^{1}(\mathrm{PG})^{*}$,Antonio F. de Figueiredo ${ }^{1}(\mathrm{PG})$, Maycon da S. Lobato ${ }^{1}(\mathrm{PG})$, Jardel P. Barbosa ${ }^{1}(\mathrm{PG})$, Marcos A. B. dos Santos ${ }^{1}(\mathrm{PG})$, Ricardo M. de Miranda ${ }^{1}(\mathrm{PG})$, João E. V. Ferreira ${ }^{1}(\mathrm{PG})$, Anderson M. Marques ${ }^{1}(\mathrm{PG})$, Cleydson B. Rodrigues dos Santos ${ }^{1}(\mathrm{PG})$, José C. Pinheiro ${ }^{1}(\mathrm{PQ})$.

E-mail: alexandremaciell@yahoo.com.br
${ }^{1}$ Laboratório de Química Teórica e Computacional, Programa de Pós-Graduação em Química, Instituto de Ciências Exatas e Naturais, Universidade Federal de Pará, CP 101101, CEP 66075-110, Belém, Pa, Amazônia, Brasil.

Palavras Chave: Diidroartemisinina, Antimaláricos, MEPs.

A malária é uma infecção causada por protozoários do gênero Plasmodium e pode matar em poucas horas. No Brasil, de acordo com o Ministério da Saúde, a maior incidência de malária ocorre na Amazônia Legal, onde em 2006 foram registrados $99,5 \%$ do total dos casos. Neste trabalho, éteres de diidroartemisinina ${ }^{1}$ (Figura 1) foram estudados com o método Hartree-Fock (HF)/3-21G como implementado no programa Gaussian 98. Construímos a geometria da artemisinina e comparamos os parâmetros geométricos do anel trioxano com dados experimentais e valores teóricos da literatura. Com o programa GaussView e subseqüente otimização completa obtivemos as conformações mais estáveis para os éteres diidroartemisinina. Os potências eletrostáticos moleculares (MEPs) e os orbitais homo e lumo desses compostos foram calculados.

Figura 1. Éteres de diidroartemisininas.

Os MEPs podem ser valiosos no entendimento de sítios para ataque eletrofílico e são adequados para analisar processos de reconhecimento de uma molécula por outra, como interação drogareceptor e enzima-substrato. Sendo também usados extensivamente para interpretar e predizer o comportamento reativo de uma variedade de sistemas químicos em reações eletrofílicas e nucleofilicas, bem como estudar processos de reconhecimento biológico e interações do tipo ponte de hidrogênio.
A Figura 2, mostra os mapas de MEP de éteres de diidroartemisinina ativos. A análise desses mapas evidência que porções mais negativas da superfície são encontradas próximas do anel trioxano envolvido na complexação com heme.

Figura 2. Mapas de mep de éteres $a(+$ ativo) e b (-ativo) Na Figura 3, são mostrados os orbitais homo e lumo de dois éteres de diidroartemisinina ativos.Pode-se notar que o composto mais ativo (a) apresenta os lobos do orbital homo situados sobre os átomos do anel trioxano estendendo-se para os átomos do substituinte, enquanto, no composto menos ativo (b) os lobos desse orbital estão posicionados nos átomos do substituinte. Da mesma forma, os lobos do orbital lumo dos compostos (a) e (b) estão posicionados sobre átomos dos substituintes, entretanto, no composto menos ativo (b) esses lobos estão situados em átomos do anel benzênico.

Figura 3. Orbitais homo e lumo dos éteres a eb.

- omelicoes

(1) Os mapas de MEP dos éteres ativos mostram porções mais negativas próximas do anel trioxano envolvido na complexação com heme.
(2) O orbital homo do éter mais ativo encontra-se na região do anel trioxano e do menos ativo no substituinte.
(3) O orbital lumo do éter mais ativo e do menos ativo encontram-se ambos no substituinte.
-
CAPES,CNPq e LQTC.

[^253]
MODELAGEM COMPUTACIONAL DE COMPLEXOS DE AZIRIDINA
 Isabelle N. Peixoto* (IC), Claudia de F. Braga (PQ) e Regiane de Cássia M. U. de Araújo (PQ)
 Departamento de Química, Universidade Federal da Paraíba 58036-300 João Pessoa (Brasil) isabellenp@hotmail.com

Palavras Chave: Aziridina, ligação de hidrogênio.

2 - ln Hodmiczo

A aziridina é um composto heterocíclico altamente tensionado, que se comporta como espécie receptora de próton, e pode interagir com o ácido fluorídrico, espécie doadora de próton, para a formação do complexo de hidrogênio. A estabilidade dos complexos de aziridina (Fig. 1) foi analisada mediante o efeito do método/base, efeito do grupo substituinte e posição do HF (cis ou trans). Foram realizados cálculos de estrutura eletrônica utilizando os métodos HF e DFT com os funcionais (B3LYP e PBE1PBE).

Figura 1 - Estruturas dos complexos de hidrogênio.
Resulfados cliscussan
Os resultados obtidos para a distância de ligação H-N na aziridina, indicam uma excelente concordância com os resultados experimentais ($d=1,01$). Os métodos B3LYP e PBE1PBE ($\alpha=1,01$) apresentaram melhor desempenho que o HF ($d=0,99$).

Um aumento na ligação H-F foi observado para todos os complexos (Tab. 1), fato que pode ser explicado pela formação do complexo de hidrogênio, ou seja, a ligação de hidrogênio se forma, enquanto que a ligação H-F enfraquece.

Complexos	B3LYP $\Delta r H---F(A)$	PBE1PBE $\Delta r H---F$ (A)
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~N}$	0,029	0,032
$\mathrm{CH}_{3}-\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{~N}$ cis	0,031	0,034
$\mathrm{CH}_{3}-\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{~N}$ trans	0,030	0,033
$\mathrm{OH}-\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{~N}$ cis	0,042	0,046
$\mathrm{OH}-\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{~N}$ trans	0,027	0,031

Tabela 1: Tabela da variação da distância da ligação H F. B3LYP e PBE1PBE/6-311G**.

Em relação ao parâmetro eletrônico, o método DFT/PBE1PBE foi o que apresentou maiores valores para a energia de estabilização dos complexos formados. O substituinte na posição cis promove maior estabilidade ao complexo (Fig. 2).

Foram incluidas correções BSSE e ZPE sobre os valores de energia intermolecular, segundo a fórmula: $\Delta E^{\text {corf }}=\Delta E-$ BSSE - ZPE

Figura 2: Energia de estabilização corrigida ($\Delta \mathrm{E}^{\text {corr }}$) para todos os complexos e métodos/6-311G**.

Observou-se um deslocamento para valores menores na freqüência de estiramento da ligação H-F do ácido, seguido por um aumento na sua intensidade de absorção (Tab. 2), o que caracteriza a formação do complexo de hidrogênio.

Complexos	B3LYP $\Delta v--F$	PBE1PBE $\Delta v H---F$
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~N}$	$-636,6$	$-706,3$
$\mathrm{CH}_{3}-\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{~N}$ cis	$-683,5$	$-762,6$
$\mathrm{CH}_{3}-\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{~N}$ trans	$-659,0$	$-730,9$
$\mathrm{OH}_{2}-\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{~N}$ cis	$-881,8$	$-983,1$
$\mathrm{OH}-\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{~N}$ trans	$-605,4$	$-694,2$

Tabela 2: Tabela da variação do modo de estiramento da ligação $\mathrm{H}-\mathrm{F}$.

Cornctusers

Os melhores resultados, em relação aos dados experimentais disponíveis, indicam que é necessária a inclusão das funções de polarização para descrição destes sistemas. A posição cis para os complexos se mostrou mais estável que a posição trans. A formação do complexo promove mudanças significativas nos parâmetros eletrônicos, estruturais e vibracionais.

Aolradecmentios

UFPB, FAPESQ-PB, CNPq e CAPES.

[^254]
ESTUDO TEÓRICO DOS PROCESSOS DE ATIVAÇÃO DA NEDAPLATINA.

Fabiana Pereira de Sousa(IC) ${ }^{* 1}$, Valdilei J. Da Silva(PG) ${ }^{2}$, Juliana F. Lopes $(\mathbb{P G})^{1,2}$, Hélio F. Dos Santos(PQ) ${ }^{2}$, Wagner B. De Almeida(PQ) ${ }^{1}$ fabiana@netuno.qui.ufmg.br.
${ }^{1}$ LQC-MM, Departamento de Química, ICEx, UFMG, Campus Pampulha, Belo Horizonte, MG, BRASIL.
${ }^{2}$ NEQC: Departamento de Química, ICE, UFJF, Campus Martelos, Juiz de Fora, MG, BRASIL.

Palavras Chave: Nedaplatina, hidrólise, ab initio.

17THOClIC50

A nedaplatina, cis-diamino(glicolato)platina(II) (NDP), Fig.1, é um potencial antitumoral e possui o diânion glicolato ligado de forma bidentada à platina. Assim como a cisplatina, o mecanismo de ação pode inciar-se pela hidrólise da nedaplatina ou pela substituição por cloretos existentes no meio extracelular. Este trabalho tem como objetivo traçar o perfil termodinâmico das reações de substituição do grupo glicolato por cloretos e assim a NDP atuaria como pró-droga transformando-se em cisplatina. e quando a NDP sofre hidrólise diretamente.

2.

Foram realizados cálculos MP2/6-31G(d,p) e o pseudopotencial LANL2DZ para o átomo de platina. Todas as espécies estudadas foram otimizadas sem restrições de geometria e através da análise vibracional foram caracterizadas como mínimos reais ou estados de transição de primeira ordem. Os intermediários mostrados aqui foram propostos através de dados existentes na literatura. Através dos cálculos de freqüência, podem-se obter as propriedades termodinâmicas a 298 k e calcular alguns parâmetros de ativação que seguem compilados na tabela I. A fig. 2 n ostra a substituição, através dos reagentes originando os estados de transição TS_Cl ($\mathrm{v}=-$ $\left.262 \mathrm{~cm}^{-1}\right)$ e TS_AG(v=-268 $\left.\mathrm{cm}^{-1}\right)$.

Fig.2:Esquema de ativação: $\mathrm{R} \rightarrow$ TS.
a) Substituição pelo cloreto; b)Hidrólise da NDP.

Aqui são apresentadas as estruturas dos reagentes e dos estados de transição para estas substituições sendo contemplados na primeira etapa de reação na qual apenas um sítio de coordenação do glicolato é removido para a substituição do cloreto ou do ligante aquo. Na tabela 1ainda podem ser observados os parâmetros ΔH^{\ddagger} e ΔG^{\ddagger} para a ativação levandose em consideração os reagentes principais (RP).

Tabela l.Dados termodinâmicos para os processos (MP2/6-31g(d,p)/LANL2DZ), ΔH e ΔG em kcal. mol^{-1}

	ΔH^{\mp}	$\Delta \mathbf{G}^{\mp}$
$\mathbf{N D P}+\mathrm{Cl}^{-} \rightarrow \mathbf{T S} 1$	4,77	14,10
$\mathbf{N D P}+\mathrm{H}_{2} \mathbf{O} \rightarrow \mathbf{T S} 2$	41,39	52,97

Os dados apresentados na tabela acima, mostram a barreira de reação da substituição de uma ligação do grupo glicolato por um cloreto como sendo menor do que a mesma substituição pelo ligante aquo. Cálculos IRC devem ser realizados para confirmar os intermediários que se conectam através dos estados de transição já encontrados, para traçar o perfil completo destas reações de substituição. Além disso, a segunda etapa da substituição deve ser contemplada para traçar o perfil completo da reação e o efeito do solvente nas propriedades termodinâmicas será avaliado.

eonollisores

Os resultados, apesar de incipientes, mostram uma preferência para a reação de substituição pelo grupo cloreto, uma vez que esta possui a menor barreira de reação. Desta forma, a hipótese de que a nedaplatina atuaria como uma pró-droga em seu mecanismo de ação, seria confirmada.

CNPq, FAPEMIG, CAPES.

[^255]
ESTABILIDADE RELATIVA DOS ISÔMEROS DO $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{M}_{2}(\mathrm{CO})_{4}$. CARBONILAS EMI PONTE OU TERMINAIS?
 Oswald Cezar Viana Silva(IC), José Walkimar de M. Carneiro (PQ), Maria Domingues Vargas(PQ), Eluzir Pedrazzi Chacon (PG)

Departamento de Química Inorgânica, Instituto de Química - UFF
Universidade Federal Fluminense - UFF, zarcevi@yahoo.com.br
Palavras Chave: DFT, equilíbrio conformacional, compostos organometálicos

A familia dos compostos $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{M}_{2}(\mathrm{CO})_{4}$ onde $\mathrm{M}=$ ferro,rutênio ou ósmio está entre os mais antigos compostos organometálicos estudados e talvez seja a segunda classe mais estudada de compostos derivados do ferroceno. Embora Excelentes sínteses modernas estejam disponíveis para o complexo de ferro e rutênio, a química do complexo com ósmio é ainda pouco desenvolvida por causa do custo e da dificuldade de síntese. Com o passar dos anos, as técnicas de melhoramento para análise desses compostos têm sido aprimorada e alguns conceitos estão sendo desenvolvidos a partir delas ${ }^{(1)}$. Neste trabalho analisamos o sistema $\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{M}_{2}(\mathrm{CO})_{4}$ para $\mathrm{M}=\mathrm{Fe}, \mathrm{Ru}$ Os em diferentes geometrias e simetrias. Foram realizados cálculos utilizando 2 métodos: B3LYP/LANL2DZ e B3LYP/6-31+G(d)/LANL2DZ. Nosso objetivo é determinar estabilidades relativas entre diferentes confôrmeros e, patircularmente, determinar os casos em que as carbonilas assumem posições em ponte ou terminais.

Foram calculadas para cada metal as três conformações mostradas na figura $1.0 s$ valores de energia relativa são dados na tabela 1.

Figura 1: Formas otimizadas para o complexo
$\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{M}_{2}(\mathrm{CO})_{4}$ com simetria: a) C_{2} (ponte, cis);
b) $\mathrm{C}_{2 h}$ terminal e c) $\mathrm{C}_{2 h}$ (ponte, trans).

Tabela1: Energias relativas ($\mathrm{kcal} / \mathrm{mol}$) e número de frequências imaginárias para diferentes confôrmeros do complexo ($\left.\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{M}_{2}(\mathrm{CO})_{4}$ calculadas com os métodos B3LYP/LANL2DZ e [B3LYP/6-31+G(d)/LANL2DZ].

Energias relativas (Kcal/mol)			
M	C_{2} (ponte, cis)	$\mathrm{C}_{2 \mathrm{~h}}$ terminal	$\mathrm{C}_{2 \mathrm{~h}}$ (ponte, trans)
Fe	$0,00(0)$		
Ru	$0,00(0)]$	$1,56(0)$	
$[-0,95(0)]$	$-0,94(0)$		
$[-0,60(0)]$			
Os	$[0,00(0)]$	$1,59(0)$	$-1,26(0)$
	$0,00(0)$	$-7,86(0)]$	$[-0,38(0)]$
$[0,00(2)]$	$[-12,52(0)]$	$-2,24(0)$	
$[-1,74(1)]$			

() número de frequências imaginárias.
Pelo método B3LYP/LANL2DZ as estruturas em simetria $\mathrm{C}_{2 \mathrm{~h}}$ com carbonilas em ponte tanto para complexos de ferro quanto para rutênio são mais estáveis. Para o complexo de ósmio a estrutura mais estável é a de simetria $C_{2 h}$ com carbonilas terminais. Pelo método B3LYP/6-31+G(d)/LANL2DZ as estruturas de simetria mais estáveis são as $\mathrm{C}_{2 \mathrm{~h}}$ com carbonilas terminais. Dados experimentais mostram que para o complexo de rutênio as estruturas com carbonilas terminais e carbonilas em ponte possuem mesma energia. Para o complexo de ferro a conformação de carbonilas em ponte é mais estável, ao passo que para o ósmio a estrutura com carbonilas terminais é mais estável. Nossos resultados são concordantes com estes fatos embora indiquem que a base $6-31+G(d) / L A N L 2 D Z$ superestime a estabilidade relativa das estruturas com carbonilas terminais por cerca de 2 a $3 \mathrm{kcal} / \mathrm{mol}$.

Nossos resultados indicam que para o complexo de ferro a estrutura mais estável é aquela com carbonilas em ponte, enquanto que para rutênio e ósmio as estruturas com carbonilas terminais são as mais estáveis. O método B3LYP/6-31+G(d)/LANL2DZ superestima a estabilidade das espécies em carbonilas terminais.

CAPES, CNPq, FAPERJ

[^256]
ESTUDO COMPUTACIONAL DE DERIVADOS DA ARTEMISININA ATRAVÉS DA ANÁlise dos mapas de potencial eletrostático e dos orbitais homo e LUMO.

João E. V. Ferreira*1 ${ }^{1}(P G)$, Antonio F. de Figueiredo ${ }^{1}(\mathbb{P G})$, Marcos A. B. dos Santos ${ }^{1}(\mathbb{P G})$, Jardel P. Barbosa ${ }^{1}$ (PG), Maycon da S. Lobato ${ }^{1}(P G)$, Ruth C. O. Almeida ${ }^{1}$ (IC), Fabio M. Rosa ${ }^{1}$ (IC), Cleydson B. R. dos Santos ${ }^{1}(\mathrm{PG})$, José C. Pinheiro ${ }^{1}(\mathrm{PQ})$, joao.elias@yahoo.com.br.
Laboratório de Química Teórica e Computacional, Programa de Pós-graduação em Química, Universidade Federal do Pará, CP 101101, 66075-110, Belém, PA, Amazônia, Brasil.

Palavras Chave: Malária, Artemisinina, MEP, Homo, Lumo.

O estudo da malária é de suma importância, pois se trata de uma doença que pode matar em poucas horas. O Brasil é um país de grande incidência da malária, sendo a maioria dos casos registrados na Amazônia Legal ${ }^{1}$. No tratamento dessa doença, várias drogas foram estudadas, porém resistência à doença tem sido desenvolvida, o que torna necessário a investigação de novos derivados. Neste trabalho, foram estudados vários derivados da artemisinina ${ }^{2}$, substância empregada no combate à doença, sendo usado o método Hartree-Fock e a base $3-21 \mathrm{~g}^{* *}$. Foram construídos mapas de potencial eletrostático (MEP) e de orbitais HOMO e LUMO utilizando os programas GAUSSIAN 98 e MOLEKEL 4.3.

Os resultados preliminares mostram que o mapa de MEP da artemisinina (Fig. 1a) evidencia que a carga negativa se localiza sobre a região da (ej joçãa O-O do anel trioxano, o qual é envolvido na complexação com a heme. Os derivados da artemisinina também contêm região do mapa de MEP similar nesse anel. A Fig. 1b mostra o mapa de MEP de um dos análogos (mais ativo). A zona de menor potencial indica que os análogos da artemisinina podem interagir de modo semelhante a ela quando aplicados no tratamento da malária. O orbital HOMO da artemisinina (Fig. 1c) encontra-se localizado sobre o anel trioxano, a carbonila e o seu átomo de oxigênio adjacente, já no seu análogo (Fig. 1d) ocorre deslocamento desse orbital para a região do substituinte na posição do carbono 9. Para o orbital LUMO, na artemisinina (Fig. 1e) ele encontra-se junto ao grupo carbonila, enquanto no análogo este mesmo orbital se encontra localizado entre a carbonila e o substituinte. Essa se mostrou uma característica do tipo de substituinte e de sua localização na molécula.

Figura 1. Mapas de potenciais eletrostáticos e de orbitais HOMO e LUMO para a artemisinina e um dos seus derivados mais ativos.

Os mapas de MEPs, assim como a análise gráfica dos orbitais HOMO e LUMO, mostram ser ferramentas eficazes quando empregados como indicativos qualitativos no estudo de novos derivados da artemisinina, pois revelam modelos estruturais de moléculas que podem ser responsáveis pelas suas atividades biológicas, podendo desse modo auxiliar no estudo teórico do planejamento de novos derivados ativos que possam ser usados no combate à malária, o que será feito posteriormente por métodos quimiométricos.
W. Mablaberimanuos

CAPES, CNPq e LQTC.

[^257]
ESTUDO MCSCF DE ALGUNS ESTADOS SINGLETE DO 2H-TETRAZOL.

Miguel A. F. de Souza* (PG), Elizete Ventura (PQ), Regiane C. M. U. Araújo (PQ), e Silmar A. do Monte (PQ) migranthy@yahoo.com.br.

Departamento de Química, Universidade Federal da Paraiba, LQQC, 58036-300, João Pessoa-PB.
Palavras Chave: 2H-tetrazol-MCSCF-Valência-Rydberg-Fotoquímica.

O tetrazol $\left(\mathrm{CN}_{4} \mathrm{H}_{2}\right)$ e seus derivados apresentam uma fotoquímica bastante rica. Um foto-produto primário destas moléculas é o N_{2}, liberado como consequência da clivagem do anel ${ }^{1}$. Baseando-se em resultados MCSCF sugerimos que o caminho reacional fotoquímico da abertura do anel do 2 H -tetrazol em fase gasosa deve envolver vários cruzamentos entre estados singlete. O trabalho será dividido em duas partes: primeiro descreveremos o ordenamento e o caráter dos estados singlete, e em seguida discutiremos os resultados referentes à saída do N_{2} (fotoquímica), apresentando as superfícies de energia potencial relevantes (SEPs).

As energias foram calculadas utilizando-se o método MCSCF/d-aug-cc-pvDZ, implementado no programa COLUMBUS. As geometrias foram obtidas com o método rb3lyp/6-31+g*, utilizando o Gaussian 03. A construção da função de Onda MCSCF levou em consideração as duas situações seguintes:

1) $O 1^{\circ}$ espaço ativo adequou-se à descrição das excitações verticais (com os orbitais de Valência, V, incluindo 5 orbitais π e $3 n$, assim como os de Rydberg, R, 3s e $3 p_{x, y, z}$). Os orbitais V foram incluídos no espaço CAS, enquanto que os R foram incluídos no espaço RAS (com $\mathrm{CAS}^{1{ }^{1-}} \rightarrow \mathrm{AUX}$). A caracterização dos estados é dada em função da quantidade $\left\langle z^{2}\right\rangle$, o qual representa a medida da extensão da função MCSCF convergida ${ }^{2}$.

Tabela. Caracterização e ordenamento dos estados singlete do 2 H -tetrazol (Cs), com a função de onda $\operatorname{CAS}(12,8)+A U X(3,1) / d-a u g-c c-p v D Z$

Estados	Energias (eV)	$\left.<z^{2}\right\rangle$ (a.u.)
V-1a'(Camada Fechada)	0,00	21,10
$V-1 a^{\prime \prime}\left(n-\pi^{*}\right)$	6,55	21,94
$V-2 a^{\prime}\left(\pi-\pi^{*}\right)$	6,71	22,52
R-2a' ${ }_{(\pi-3 s)}$	7,03	32,39
$V-3 a^{\prime \prime}\left(n-\pi^{*}\right)$	7,12	22,40
R-4a" ${ }_{(\pi-3 s)}$	7,46	31,77
$R-3 a^{\prime}(n-3 s)$	7,59	35,65
R-5a" $(\pi-3 p \mathrm{x})$	7,87	38,64

2) Para o estudo das SEPs, foi montado um 2° espaço, acrescentando-se mais 4 orbitais, 2σ e $2 \sigma^{*}$, ao espaço V . Um esboço do caminho reacional investigado está mostrado na figura abaixo.

Como podemos observar na figura algumas intersecções ocorrem ao longo da coordenada R (ver figura) sendo o cruzamento S_{1} / S_{0} o mais importante, pois o mesmo representa o foto-processo reacional (abertura do anel e eliminação de N_{2}) de desativação do estado excitado para o fundamental via decaimento não-radiativo. Observando os pesos configuracionais dominantes ao longo da reação percebemos mudanças significativas na composição dos estados.

Na apresentação teremos mais resultados comparando algumas bases em relação ao caráter e ordenamento dos estados singlete, além da construção de superfícies 3D referentes a esta foto-clivagem, o que proporcionará uma melhor compreensão do mecanismo da reação.

Figura. Energias do estados relevantes à abertura do anel do 2 H -tetrazol, CAS $(16,12) / \mathrm{d}$-aug-cc-pvDZ. Os pesos configuracionais estão indicados.

Acreditamos que a fotodecomposição via cruzamentos entre estados caracterizada neste trabalho também pode servir de base para os derivados do 2 H -tetrazol.

WOIbobeclichers

UFPB, CAPES, CNPQ.

[^258]
Electronic properties of liquid ammonia: a sequential Qm/Mm APPROACH

Tania A. Almeida ${ }^{1}$ (PG), Kaline Coutinho ${ }^{2 *}$ (PQ), Benedito J. Costa Cabral ${ }^{1,3}$ (PQ), Sylvio Canuto ${ }^{2}$ (PQ)
* kaline@if.usp.br
${ }^{1}$ Grupo de Fisica Matemática da Universidade de Lisboa, Av. Professor Gama Pinto 2, 1649-003 Lisboa, Portugal.
${ }^{2}$ Instituto de Física, Universidade de São Paulo, CP 66318, 05315-970 São Paulo, SP, Brazil.
${ }^{3}$ Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.

Palavras Chave: Ammonia, Quantum Calculations, Computer simulation, QMIMM

hromeraton

Liquid ammonia, similar to liquid water, is characterized by a complex hydrogen bond network with interesting properties. The study of the electronic properties of liquids are of fundamental importance for a better understanding of chemical reactivity in solution. Of particular relevance is the relationship between hydrogen bonding and the electronic density of states. Specifically, it is known that hydrogen bonding in aggregates or in condensed phases lead to a broadening of the orbital energies (electronic broadening) and to the formation of bands. The structure of these bands is also dependent on the temperature or thermal broadening.

The electronic properties of liquid ammonia are investigated by a sequential computer simulation/quantum mechanics approach ${ }^{1}$. Quantum mechanics calculations for the liquid phase are based on a parametrized hybrid exchange-correlation functional ${ }^{2}$ that reproduces the electronic properties of small ammonia clusters.

RESTISTMOMTSMSSTOM

Electronic properties of liquid ammonia are based on the extrapolation of the results for small clusters of different size ($n=2,5,8,10,14$), where n is the number of ammonia molecules explicitly included in the quantum mechanics calculations. Surface effects are minimized by the introduction of embedding charges.

Results for the dipole moment, ionization potential, electron binding energies and electronic density of states of liquid ammonia will be reported. As an example, in figure 1 is shown a relationship between the ionization potential and the total dipole moment of the cluster when the number n of molecules included in the cluster increases, with and without surface effects.

Figure 1:. Relationship between the ionization potential and the total dipole moment of the cluster of ammonia when the number n of molecules included in the cluster increases, with (above) and without (below) surface effects.

Conclusions

In comparison with the gas phase value, the dipole moment of liquid ammonia is increased by ~28\%.

The ionization potential of liquid ammonia is $9.74 \pm 0.73 \mathrm{eV}$, which is $\sim 1.0 \mathrm{eV}$ below the gas phase value for the isolated molecule.

The dependence of the electronic properties on the polarizing field of embedding charges was also investigated and we are providing evidence that the vertical ionization potential and the electron affinity of ammonia clusters correlate with the total dipole moment of the aggregates.

This work was partially supported by FAPESP, CNPq, RENAMI (Brazil) and the bilateral GRICES/CAPES (Portugal-Brazil) program.

[^259]
MOLECULAR DYNAMICS SIMULATION OF POLYMER ELECTROLYTES BASED ON POLY(ETHYLENE OXIDE) AND IONIC LIQUIDS.

Luciano T. Costa ${ }^{1}$ (PQ), Mauro. C. C. Ribeiro ${ }^{1}$ (PQ) Iuciano@iq.usp.br

1) Instituto de Química, Universidade de São Paulo, São Paulo, SP, CP 26077, CEP 05513-970

Palavras Chave:
Molecular dynamics, ionic liquids, polymer electrolytes.

[bmim] PF_{6} is significantly higher than κ for $\mathrm{P}(\mathrm{EO})_{8}-\mathrm{LiClO}_{4}$ at the same temperature. ${ }^{2}$ It was previously shown that modifications of polymeric chains as probed by distribution of dihedral angles, radius of gyration, and end-to-end distances are less severe when PEO solvates the large imidazolium cation than Li^{+}cations. ${ }^{1}$ Furthermore, since κ^{NE} is the result of a single particle property, namely D, which does not discern mass from charge transport because an ionic pair contributes to κ^{NE}, when smaller is the $\kappa / \kappa^{\mathrm{NE}}$ ratio, larger is the role played by ion pairs and neutral aggregates in the electrolyte. The ratio $K / K^{N E}$ in the ILs polymer electrolytes is higher than $\mathrm{P}(\mathrm{EO}) / \mathrm{LiClO}_{4}$, indicating that ion pairs are less important in the former than in the latter. Other dynamical properties were calculated and the Figure 1 shows a comparative perspective of several single particle time correlation functions of imidazolium cations in $\mathrm{P}(\mathrm{EO})_{8}-[\mathrm{bmim}] \mathrm{PF}_{6}$.

Figure 1. Calculated time correlation functions for imidazolium cations in $\mathrm{P}(\mathrm{EO})_{8}-[\mathrm{bmim}] \mathrm{PF}_{6}$.

conclusions

This work revealed the dynamical consequences of the equilibrium structures in $\mathrm{PEO} /[\mathrm{dmim}] \mathrm{PF}_{6}$ and $\mathrm{PEO} /[\mathrm{bmim}] \mathrm{PF}_{6}$ reported in Ref. 1.

We thank to FAPESP and CNPq for the financial support.

[^260]
ESTUDO DA INFLUÊNCIA DA FORMAÇÃO DE COMPLEXOS FÓSFAFERROCÊNOS no Estiramento isolado C-H de Ligantes Fosfolil e derivados

Ênio Dikran V. Bruce ${ }^{1, *}$ (IC), João B. P. da Silva ${ }^{1}$ (PQ), Willian R. Rocha ${ }^{2}$ (PQ)
${ }^{1}$ Departamento de Quimica Fundamental, Universidade Federal de Pernambuco
${ }^{2}$ Laboratório de Química Computacional e Modelagem Molecular (LQC-MM),Departamento de Química, Universidade Federal de Minas Gerais
* eniobruce@hotmail.com
Palavras Chave: Fosfaferroceno, DFT, Infravermelho, C-H

Na última década, a química dos
\[\begin{aligned} \& \begin{array}{|l|c|c|c|c|} \hline \& (+44) \& (+100) \& (19,5) \& (3,9)
\hline A^{M}=intensidade do monômero e A^{C} intensidade do complexo;
def = deformação fora-do-plano. \end{array} \end{aligned} \]

fósfaferrocênos tem ganhado destaque na literatura devido a importantes aplicações, como em catálise assimétrica [1]. Recentemente, cálculos químicoquânticos de complexos do tipo $\mathrm{Fe}(\mathrm{Cp})(\mathrm{L})$, onde $\mathrm{Cp}=$ $\left[\mathrm{C}_{5} \mathrm{H}_{5}\right]^{-}$e $\mathrm{L}=\left(\mathrm{Cp}, \mathrm{LP}_{1}=\left[\mathrm{PC}_{4} \mathrm{H}_{4}\right]\right.$ e $\left.\mathrm{LP} 2=\left[1,3-\mathrm{P}_{2} \mathrm{C}_{3} \mathrm{H}_{3}\right]\right)$ mostraram que a estrutura eletrônica e a natureza da interação metal-ligante está associada ao número de átomos de fósforo no anel aromático [2]. Por outro lado, da Costa Jr. e colaboradores mostraram que a aromaticidade clássica de Bird pode ser avaliada a partir da freqüência e da intensidade de osciladores CH em anéis aromáticos de cinco e seis membros [2]. Portanto, neste trabalho, freqüências e intensidades harmônicas no infravermelho do estiramento (str) e da deformação fora-do-plano (def) dos osciladores C-H foram calculados para os complexos fósfoferrocenos deuterados (a fim de evitar acoplamentos entre modos $\mathrm{C}-\mathrm{H})$ do tipo $\mathrm{Fe}\left(\mathrm{Cpd}_{5}\right)(\mathrm{Ld})$, onde $\mathrm{Cpd}_{5}=\left[\mathrm{C}_{5} \mathrm{~d}_{5}\right]$, $\mathrm{Ld}=$ $\left(\mathrm{Cpd}_{4}=\left[\mathrm{C}_{5} \mathrm{Hd}_{4}\right], \mathrm{LP}_{1} \mathrm{~d}_{3}=\left[\mathrm{PC}_{4} \mathrm{Hd}_{3}\right]^{-}\right.$e $\mathrm{LP}_{2} \mathrm{~d}_{2}=[1,3-$ $\left.\mathrm{P}_{2} \mathrm{C}_{3} \mathrm{Hd}_{2}\right]^{-}$), visando avaliar a Influência da complexação na aromaticidade dos Ligantes Fosfolil e Derivados. Em todos os casos realizamos cálculos DFT-B3LYP, com os conjuntos de base 6-31G(d) para os átomos de C e P, 6-31G para o H e com o pseudopotencial de caroço de Hay e Wadt (LANL2DZ) e um conjunto de base descontraído [441/2111/41] para os elétrons de valência do Fe .

Na Tabela 1 apresentamos as freqüências e intensidades hamônicas calculadas para os oscilador $\mathrm{C}-\mathrm{H}$ nos ligantes e complexos deuterados.

Tabela 1 - Freqüência (v) e intensidade (A) C-H de ciclofósfodienilas deuteradas. Em parênteses ($\Delta v=v_{C}-v_{m}$) e em cochetes $\left[A^{M} / A^{C}\right]^{a}$.

Ligante	$v\left(\mathrm{~cm}^{-1}\right)$		$A\left(\mathrm{~km} \cdot \mathrm{~mol}^{-1}\right)$	
	str	def $^{\mathrm{b}}$	str	def $^{\mathrm{b}}$
Cpd_{4}	3135	698	97	12
	$(+160)$	$(+112)$	$(19,4)$	$(0,9)$
$\mathrm{LP}_{1} \mathrm{~d}_{3}$	3152	756	71	15
	$(+81)$	$(+95)$	$(17,8)$	$(3,0)$
$\mathrm{LP}_{2} \mathrm{~d}_{2}$	3161	730	39	27

A partir desta tabela é possível notar que a introdução de átomos de fósforos no ligante Cpd isolado leva, sistematicamente, a um deslocamento para o azul da frequaência de estiramento C -H (o que representa um fortalecimento desta ligação) e uma diminuição da intensidade deste oscilador. Entretanto, o efeito mais notável na Tabela 1 é a formação do complexo fósfoferroceno que leva a deslocamentos para maiores freqüências do oscilador $\mathrm{C}-\mathrm{H}\left(160 \mathrm{~cm}^{-1}\right.$ a 44 cm^{-1}) e uma acentuada diminuição na intensidade (19 vezes em média). Ainda, a introdução de átomos de fósforo no anel do complexo leva a um efeito contrário daquele do ligante isolado, qual seja, uma diminuição da freqüência de estiramento C-H. De fato, os valores calculados para este oscilador valem $3295 \mathrm{~cm}^{-1}, 3233$ cm^{-1} e $3205 \mathrm{~cm}^{-1}$, para os ligantes contendo 0 , 1 e 2 átomos de fósforo, respectivamente. Este resultado é consistente com os valores das cargas atômicas de Mulliken para o átomo de hidrogênio C-H que valem 0,146 e, 0,169 e e 0,192 e, respectivamente. Com relação ao modo de deformação fora-do-plano C-H, é possível notar que a complexação lava a um efeito médio de aumento da freqựência C-H c.a. $+100 \mathrm{~cm}^{-1} \mathrm{e}$ uma diminuição de $1 \mathrm{~km} \cdot \mathrm{~mol}^{-1}$ a $4 \mathrm{~km} \cdot \mathrm{~mol}^{-1}$ na intensidade deste oscilador.

Mudanças significativas na frequência e na intensidade dos modos de estiramento e de deformação fora-do-plano C-H são evidenciadas na comparação do espectro térico dos ligantes e dos complexos fósfoferrocenos. O número de átomos de fósforos também influencia nesses parâmetros vibracionais, tanto nos ligantes como nos complexos.

Aaliadeamentos

CNPq, PIBIC/CNPq/UFPE, FACEPE, FAPEMIG

[^261]
EnERgETIC, STRUCTURAL, AND KINETICS CHARACTERIZATION OF THE H + $\mathrm{CH}_{3} \mathrm{OH}$ HYDROGEN ABSTRACTION REACTIONS

Alessandra N. Baraúna ${ }^{1}$ (IC) ${ }^{*}$ (alebarauna@yahoo.com.br), Francisco B. C. Machado ${ }^{1}$ (PQ), Orlando Roberto-Neto ${ }^{2}$ (PQ)
${ }^{1}$ Departamento de Química - Instituto Tecnológico de Aeronáutica - São José dos Campos - SP
${ }^{2}$ Divisão de Aerotermodinâmica e Hipersônica,Instituto de Estudos Avançados - São José dos Campos - SP.

Palavras Chave: $\mathrm{CH}_{3} \mathrm{OH}$, energetic, transition state.

Methanol is one of the simplest oxygenated hydrocarbon compounds and about 53\% of its consumption is due to the reaction with hydrogen atoms under fuel-rich conditions. ${ }^{1}$ There are three different reactive species that can be formed in reaction channels corresponding to hydrogen attack at three different sites of the $\mathrm{H}+\mathrm{CH}_{3} \mathrm{OH}$ system. The products of those channels are (1) $\mathrm{CH}_{2} \mathrm{OH}+\mathrm{H}_{2}$, (2) $\mathrm{CH}_{3} \mathrm{O}+\mathrm{H}_{2}$, and $\mathrm{CH}_{3}+\mathrm{H}_{2} \mathrm{O}$. The channel (1) has the lowest forward barrier height, and thus is the most important and studied reactive channel. In order to achieve a consistent and accurate characterization of all reactions to be used in chemical combustion applications, the geometries, frequencies, reaction energies, and rate constants are computed.

Pasill 5 aho

The MP2, HF-DFT and $\operatorname{CCSD}(\mathrm{T})$ methods combined with cc-pVDZ and cc-pVTZ correlationconsistent basis sets of Dunning are employed in the characterization of the reactants, products and transition state of the three reactive channels. The Hartree-Fock hybrid density function (HFDFT) methods employed are BHandHLYP, B3LYP, and BB1K, which the last one is specially fitted to give accurate thermochemical and kinetics parameters. ${ }^{2}$ Using the MP2/cc-pVTZ geometries, single-point calculations are carried out with the $\operatorname{CCSD}(T)$ approach and the cc-pVQZ and $c c-p V 5 Z$ basis sets. Additionally, the extrapolation scheme of Halkier et al. ${ }^{3}$ is also used to estimate the energetic values at the complete basis set (CBS) limit. Selected $\operatorname{CCSD}(\mathrm{T})$ and extrapolated values of the energies for the $\mathrm{H}+\mathrm{CH}_{3} \mathrm{OH}$ reactions are present in the table. $\mathrm{CBS}_{\mathrm{Q}-5}$ forward barrier heights and reaction energies for the first channel are equal to 9.8 and $-6.1 \mathrm{kcal} / \mathrm{mol}$, respectively, which are comparable to previous benchmark calculations from Pu and Truhlar, i.e., 9.7 and $-6.4 \mathrm{kcal} / \mathrm{mol}^{4}$

Table $\operatorname{CCSD}(\mathrm{T})$ barriers heights and reaction energies (in kcal/mol).

$\mathrm{H}+\mathrm{CH}_{3} \mathrm{OH} \rightarrow \mathrm{CH}_{2} \mathrm{OH}+\mathrm{H}_{2}$			
Method	$\Delta \mathrm{V}_{\mathrm{f}}^{\#}$	$\Delta \mathrm{~V}_{\Gamma}^{\#}$	$\Delta \mathrm{E}$
cc-pVQZ	9.702	15.718	-6.016
cc-pV5Z	9.801	15.843	-6.042
CBS $_{\text {Q-5Z }}$	9.8	15.9	-6.1

$\mathrm{H}+\mathrm{CH}_{3} \mathrm{OH} \rightarrow \mathrm{CH}_{3} \mathrm{O}+\mathrm{H}_{2}$			
cc-pVQZ	15.099	12.012	3.087
cc-pV5Z	15.281	11.919	3.361
$\mathrm{CBS}_{\mathrm{Q}-5 \mathrm{z}}$	15.5	11.8	3.6
$\mathrm{H}+\mathrm{CH}_{3} \mathrm{OH} \rightarrow \mathrm{CH}_{3}+\mathrm{H}_{2} \mathrm{O}$			
cc-pVQZ	24.934	52.144	-27.210
$\mathrm{cc-pV5Z}$	24.342	51.718	-27.376
CBS			-27.6

Conctristons

All stationary points were identified for local minima and transition states by vibrational analysis for the $\mathrm{H}+\mathrm{CH}_{3} \mathrm{OH}$ hydrogen abstraction reactions. BB1K give energies, geometries and frequencies in slight better agreement with the $\operatorname{CCSD}(\mathrm{T})$ results than the others tested HF-DFT methods. The results suggest that barrier heights and electronic reaction energies were calculated within chemical accuracy.

Ach now coghichis

CNPq, FAPESP.

[^262]
O MÉTODO DA COORDENADA GERADORA NA TEORIA DO FUNCIONAL DA Densidade.

E. Orestes ${ }^{1 *}$ (PG), A. B. F. da Silva ${ }^{1}$ (PQ) e K. Capelle ${ }^{2}$ (PQ)
${ }^{1}$ Instituto de Química de São Carlos, Universidade de São Paulo, Caixa Postal 380, 13560-970, São Carlos, SP, Brasil.
${ }^{2}$ Instituto de Física de São Carlos, Universidade de São Paulo, Caixa Postal 369, 13560-970, São Carlos, SP, Brasil.
* ednilsom@iqsc.usp.br

Palavras Chave: Funcional da densidade, coordenada geradora, função de onda.
meio das energias totais e dos valores esperados do operador ${ }^{i}$ (para $i=-2,-1,0,1$ e 2) obtidos por meio da aproximação para a função de onda de muitos obtida com este procedimento. Com isto, verifica-se a influência sobre os resultados para diferentes aproximações para o potencial de troca e correlação (xc) como funcional da densidade, dos diferentes conjuntos de coordenadas geradoras (malhas dos pontos de discretização) utilizados e da forma como modificam o Hamiltoniano KS.

Resulinios en oliclesao

Os resultados mostram que a influência tanto das diferentes aproximações para o potencial de xc quanto dos diferentes termos do Hamiltoniano KS que são modificados pelo coordenada geradora pode ser compreendidada até certo ponto. No entanto, ainda é inconclusiva a influência da utilização de diferentes conjuntos de coordenadas geradoras nos resultados finais indicando a necessidade de estudos mais abrangentes e detalhados sobre este aspecto.

Por fim, são apresentadas sugestões de procedimentos para entender melhor a influência da escolha das coordenadas geradoras e da sua correlação com os termos a serem modificados no Hamiltoniano KS.

Este trabalho recebeu suporte financeiro da CAPES.

[^263]
ISOTOPIC DIPOLE MOMENTS OF WATER CLUSTERS

*Gustavo G. de Castro Amorim ${ }^{1}$ (IC), Leonardo Gabriel Diniz ${ }^{1}$ (PG), Mario Sergio Mazzoni ${ }^{2}$ (Pq), José Rachid Mohallem ${ }^{1}$ (Pq)
${ }^{1}$ Laboratório de Átomos e Moléculas Especiais, ${ }^{2}$ Departamento de Física, ICEx, Universidade Federal de Minas Gerais ggca@fisica.ufmg.br, rachid@fisica.ufmg.br

Palavras Chave: Isotopic Dipole Moments, Water Clusters, DFT.

Water clusters are most investigated objects due to their importance in many chemical and biological systems. Their study is the first step in the understanding of condensed water. The most studied clusters properties are equilibrium geometries and electronic properties like binding energies and electrical dipoles.
In this work we calculate, for the first time, DFT electrical dipole moments of water clusters due to isotopic asymmetry. We use an updated version of the deMon program [1] that includes the finite nuclear mass correction already reported for MO type calculations [2]. The clusters considered here are $\left(\mathrm{H}_{2} \mathrm{O}\right)_{n}$, for $\mathrm{n}=1-4,6$ and 8 .

Resinlis

For each cluster, hydrogen (H) atoms are replaced with deuterium (D) atoms, thus breaking the cluster symmetries and generating the dipoles. For the monomer, dimmer and trimmer, a $6-311++G(3 d f, 3 p d)$ basis set was used; for the others, the DZVP basis set available in deMon was used. For example, the isotopic dipole moment (just pointing from D to H) of the monomer with the above basis set gives 1,176 $\times 10^{-3} \mathrm{D}$, to be compared with $1.020 \times 10^{-3} \mathrm{D}$ (DFT) and $1.431 \times 10^{-3} \mathrm{D}$ (MP2) obtained with a basis set specially designed for this [3].

Different configurations are tested to search for the larger dipole moments. The dimmer ($n=2$) presents a standard dipole moment of 2.6016 D (Debye), while (HDO) 2 gives 2.5996 D to 2.6018 D , depending on the isotopic configuration. With the trimmer we obtain 1.2040 D , while the larger variation was obtained with the replacement of the two H atoms out of the plane of the oxygen atoms by D atoms, namely 1,2026 D.

The tetramer, hexamer and octamer are very interesting cases, because they have zero regular dipole moments. The O atoms form planes in which lay the H atoms that make H -bonds, while the remaining H atoms lay out of the plane. With isotopic substitution of these last H atoms, we obtain $2,1 \times 10^{-3} \mathrm{D}$ for the tetramer and $3,2 \times 10^{-3}$ D for the hexamer. Note that this last value is
about 4 times the dipole moment of HD and 3 times the dipole moment of the monomer.

These larger values are obtained by the replacement of all H atoms above (or bellow) the cluster plane by D atoms.
An octamer is made of two tetramers. Again, with isotopic substitution of the H atoms that lay out of the plane, we obtain $4.1 \times 10^{-3} \mathrm{D}$, the largest so far. Presently, we are calculating the hexamer and the octamer in different almost degenerate geometries

Figure 1. Some water clusters.

EHBCISSIOH

We are obtaining progressively larger isotopic dipole moments for increasing cluster sizes. At these magnitudes, they are already measurable, so that calculations of regular dipole moments should include them. In cases they are the only dipole moments, cluster properties may be interestingly affected.

Act movyledements

Supported by Fapemig and CNPq.

[^264]
A NATUREZA DAS INTERAÇÕES NOS COMPLEXOS FORMADOS ENTRE $\mathrm{H}_{2} \mathrm{~S} E\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~S}$ COM O RADICAL •OH.

Renato Luis Tâme Parreira (PQ), Sérgio Emanuel Galembeck (PQ)*
*segalemb@usp.br
Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, 14040901, Ribeirão Preto - SP, Brasil.

Palavras Chave: Interação $\mathrm{S} \cdots \mathrm{O}, \mathrm{H}_{2} \mathrm{~S},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~S}, \cdot \mathrm{OH}, \mathrm{NBO}$, AIM.

Grande parte dos compostos de enxofre presentes na atmosfera, sobretudo $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~S}$, são produzidos e emitidos em áreas oceânicas'. Estas espécies são importantes na formação de aerossóisi, uma vez que seus processos de oxidação fotoquímica podem dar origem a diversos derivados de enxofre. Durante o dia, a degradação do DMS é efetuada principalmente pela reação com o radical $\cdot \mathrm{OH}^{\mathrm{i}, \mathrm{ii}}$. Apesar dos esforços despendidos para a elucidação do mecanismo de reação e de aspectos estruturais, cinéticos, termoquímicos e energéticos, a natureza química da interação não usual $\mathrm{S} \cdots \mathrm{O}$ nos complexos $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~S} \cdots \mathrm{OH}$. (Figura 1) e $\mathrm{H}_{2} \mathrm{~S} \cdots \mathrm{OH}$. não foi totalmente compreendida ${ }^{\text {iiiiv }}$.

Figura 1. Geometria de equilíbrio, $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~S} \cdots \mathrm{OH} \cdot$.
No presente trabalho, a caracterização e a natureza da interação $\mathrm{S} \cdots \mathrm{O}$ nos complexos $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~S} \cdots \mathrm{OH}$. e $\mathrm{H}_{2} \mathrm{~S} \cdots \mathrm{OH}$. foram investigadas com o uso dos métodos NBO (Natural Bond Orbital), NRT (Natural Resonance Theory) e AIM (Atoms in Molecules).

Fasulfaldos chorsouscab

A energia de ligação para o complexo com $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~S}$ $(13,96 \mathrm{kcal} / \mathrm{mol})$ é, aproximadamente, o dobro da obtida para o complexo com o $\mathrm{H}_{2} \mathrm{~S}$, refletindo a maior estabilidade e a maior força da interação entre os monômeros no complexo $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~S} \cdots \mathrm{OH}$.
Tabela 1. Densidades de spin.

	Spin densities			
Átomo				
	. OH	$\mathrm{H}_{2} \mathrm{~S} \cdots \mathrm{OH}$	$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~S} \cdots \mathrm{OH}$	
O	1,01	0,73	0,58	
S		0,30	0,47	

A acomodação do elétron desemparelhado na estrutura de equilíbrio dos complexos requer o compartilhamento da densidade de spin (Tabela 1) entre os átomos de oxigênio e enxofre, correspondendo às ligações $S-O$ longas. De acordo com a análise NBO, a estabilidade dos complexos é decorrente da interação entre os orbitais " p " do enxofre $\left(n_{p s}\right)$ e " p " antiligante do oxigênio do radical $\left(n_{p^{*}}\right)$, $n_{p S} \rightarrow n_{p^{*}}$. Essa interação é cerca de três vezes maior no complexo com $\left(\mathrm{H}_{3} \mathrm{C}\right)_{2} \mathrm{~S}$ do que no complexo com o $\mathrm{H}_{2} \mathrm{~S}$. O método NRT indicou que a estrutura de ressonância que contém a ligação entre os átomos de enxofre e oxigênio contribui com 31% e 48% nos complexos $\mathrm{H}_{2} \mathrm{~S} \cdots \mathrm{OH}$. e $\left(\mathrm{CH}_{3}\right){ }_{2} \mathrm{~S} \cdots \mathrm{OH} \cdot$, respectivamente. A análise topológica (AIM) revelou a existência do ponto crítico de ligação (BCP) entre os átomos de enxofre e oxigênio. Com relação à natureza da interação S $\ldots \mathrm{O}$, tanto $H\left(r_{C P}\right)$ quanto a relação $G\left(r_{c p}\right) / V\left(r_{c p}\right)$ (Tabela 2) sugerem uma natureza parcialmente covalente para essa interação nos complexos estudados.

Tabela 2. Densidades de energia local.

BCP $\mathrm{C} \cdots \mathrm{O}$	$\mathrm{H}_{2} \mathrm{~S} \cdots \mathrm{OH} \cdot$	$\left(\mathrm{H}_{3} \mathrm{C}\right)_{2} \mathrm{~S} \cdots \mathrm{OH} \cdot$
$\mathrm{G}\left(\mathrm{r}_{\mathrm{c}}\right)$	0,0298	0,0405
$\mathrm{~V}\left(\mathrm{r}_{\mathrm{c}}\right)$	$-0,0320$	$-0,0488$
$\mathrm{H}\left(\mathrm{r}_{\mathrm{cp}}\right)$	$-0,0022$	$-0,0083$
$-\mathrm{G}\left(\mathrm{r}_{\mathrm{cp}}\right) / \mathrm{V}\left(\mathrm{r}_{\mathrm{cp}}\right)$	0,9312	0,8299

PM Monglisocs
O radical $\cdot \mathrm{OH}$ interage mais fortemente com o $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{~S}$ do que com o $\mathrm{H}_{2} \mathrm{~S}$ e a estabilidade dos complexos é decorrente da interação $n_{p s} \rightarrow n_{p^{*}}$. Nos complexos, a densidade de spin foi redistribuída entre os átomos de O e S . Os critérios baseados nas densidades de energia locais sugeriram uma natureza covalente parcial para a interação $S \cdots O$.
 01/06101-6), CAPES/PROAP e LCCA-USP.

[^265]
SUPERFÍCHE DE ENERGIA POTENCIAL DO SISTEMA HE ${ }_{3}$

Alessandra F. Albernaz Vilela ${ }^{1 *}$ (PQ) alevilela2002@yahoo.com.br
${ }^{1}$ Instituto de Fisica, Universidade de Brasilia, CEP 70919-970 Brasilia - DF.

Palavras Chave: ajuste, superfície de energia potencial, He_{3}

Thlor ligato

Pequenos clusters de gases nobres são objetos de estudos, tanto experimental quanto teórico, nas últimas décadas. O desenvolvimento de novas técnicas experimentais, dinâmica de espalhamento, vários modelos de potencias interatômicos, Superficies de Energia Potencial, são exemplos de objetos de investigação para estes clusters. Neste trabalho, a Superfície de Energia Potencial, SEP, é representada pela soma das contribuições das energias potenciais dos diferentes subsistemas. Este método é conhecido como MBE ${ }^{1}$ (Many-Body Expansion). A energia total do sistema é dada pela expressão:
$V_{A B C}=\sum V_{A}^{(1)}+\sum V_{A B}^{(2)}\left(R_{A B}\right)+\sum V_{A B C}^{(3)}\left(R_{A B}, R_{B C}, R_{A C}\right)$
(1)
para um sistema de triatômico.
Os termos de dois e três corpos são definidos pelas expressões:

$$
\underset{A B}{V_{(2)}^{(2)}}\left(R_{A B}\right)=\frac{c_{0} e^{-\alpha_{A B} R_{A B}}}{R_{A B}}+\sum_{i=1}^{N} c_{i} \rho_{A B}^{i}
$$

$$
V_{(3)}^{(3)}\left(R_{A B}, R_{B C}, R_{A C}\right)=\sum_{i, j, k}^{N} c_{i j k} \rho_{A B}^{i} \rho_{B C}^{j} \rho_{A C}^{k}
$$

onde $\quad \rho_{A B}=R_{A B} e^{-\beta_{A B}^{\prime} R_{A B}} \quad$ com $/=2$ ou 3.
Os parâmetros lineares $c_{i}, i=1,2, \ldots, \mathrm{~N}, \mathrm{e}$ os parâmetros não-lineares α e β, das equações (2) e (3) são determinados pelo ajuste dos pontos $a b$ initio dos fragmentos diatômicos.

Remulions eviscues.io

A superficie de energia potencial do sistema He_{3} neutro foi determinada através do ajuste de uma função analítica para os pontos $a b$ initio, utilizando o programa desenvolvido por A. Aguado e M. Paniagua ${ }^{2}$. Para a molécula de Hélio, foram calculados 94 pontos ab initio. Para se construir a SEP, foi determinada uma malha regular de intervalos de $0.2 \AA, 1.0 \leq \mathrm{R}_{\mathrm{He}-\mathrm{He}} \leq 11.0 \AA$,
e para os ângulos θ iguais a $30^{\circ}, 45^{\circ}, 60^{\circ}, 90^{\circ}$, $120^{\circ}, 160^{\circ}$ e 180°; o que corresponde a um total de 18207 configurações nucleares diferentes. Destes 18207, foram usados para o ajuste da superfície, 2601 pontos ab initio. Tanto para o diátomo quando para o triátomo, usou-se a base aug-cc-pvtz e o nível de cálculo QCISD(T), usando o programa Gaussian 03^{3}.

Para os ajustes dos termos de dois e três corpos, obteve-se um erro de $2.8 \times 10^{-6} \mathrm{kcal} / \mathrm{mol} \mathrm{e}$ $2.6 \mathrm{kcal} / \mathrm{mol}$, respectivamente. Na figura 1, está o resultado do ajuste da SEP, juntamente com seus contornos isoenergéticos para a configuração angular de $\theta=60^{\circ}$, cuja separação é de $0.0325 \mathrm{kcal} / \mathrm{mol}$.

Figura 1. SEP ajustada do sistema He_{3} para a configuração angular $\theta=60^{\circ}$.

Agradeço ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) pelo financiamento desse trabalho.

[^266]
Estudos Teóricos das rotas de hidrólise e interações MOleculares de Compostos Paladaciclos que Apresentam ATIVIDADE ANTI-TUMORAL.

Tatiane F. Moraes ${ }^{1}$ (PG)* tatianefm@umc.br e Kaline Coutinho ${ }^{2}$ (PQ)
${ }^{1}$ Universidade de Mogi das Cruzes, CP 411, 08701-970, Mogi das Cruzes, SP, Brasil.
${ }^{2}$ Instituto de Física, Universidade de São Paulo, CP 66318, 05315-970, São Paulo, SP, Brasil

Palavras Chave: Cálculos quânticos, simulação computacional, efeito solvente, processo reativo e enantioseletividade
Identificamos nas ligações Pd-N e Pd-C diferenças marcantes com relação à quiralidade. Na quebra dessas ligações do $S(-)$, observamos que a hidroxila da água pode interagir com os átomos de hidrogênio ligados ao grupo metil (ligantes do átomo de N) e também ao átomo de hidrogênio ligado ao carbono quiral, porém no $R(+)$ esse átomo está do lado oposto à hidroxila como mostra as Figuras 2. Portanto numa possível quebra dessas ligações, no $S(-)$ existe uma possibilidade maior de ocorrer mais interações intermoleculares, comparado ao $R(+)$, o que nos indica a possibilidade de explicarmos a enantioseletividade.

rigura z: Geometrias estaveis das moléculas formadas na quebra da ligação Pd-N e Pd-C dos enantiômeros $\mathrm{S}(-)$ e $\mathrm{R}(+)$. Em destaque a hidroxila ligada ao paládio depois da reação com a água.

Con cilvedes

Desta forma, concluímos que as ligações Pd-N e PdC foram as que indicaram diferenças marcantes com relação à quiralidade presente nas moléculas estudadas. Ainda analisando a ligação Pd-C, a energia de hidratação encontrada foi de $-6.4 \mathrm{kcal} / \mathrm{mol}$ para o $\mathrm{S}(-)$ sendo, portanto uma quebra favorável. Este resultado pode ser um fator importante para a explicação da atividade biológica do enantiômero $S(-)$ ser mais ativa em células antitumorais comparada ao enantiômero $R(+)$.

THERMODYNAMICS OF β-CYCLODEXTRIN COMPLEXATION WITH CAFFEINE IN AQUEOUS SOLUTIONS

Gunar V.S. Mota (PQ) ${ }^{1 *}$, Marcos R. M. Chagas (IC) ${ }^{1}$, Fábio L.P. Costa (PG) ${ }^{\mathbf{2}}$, Antônio M. J. Chagas (PQ) ${ }^{3}$
1NUCEM, CCET, UFS, 49100-000, São Cristóvão, SE, Brazil. Correspondig Author: gunar@ufs.br
${ }^{2}$ NPPN, IQ, UFRJ, 21941-590, Rio de Janeiro, RJ, Brazil.
${ }^{3}$ Dep.Fis., CCEN, UFPA, 66075-110, Belém, PA, Brazil.

Palavras Chave: β-Cyclodextrin, Caffeine, Monte Carlo Simulation, DICE program.

nivrodition

The caffeine are known to play an important role in biochemical and physiological processes in living organisms ${ }^{1}$ and widely used in pharmacology. Like many other medicine, they are poor soluble in aqueous solution ${ }^{2}$. Methods for their encapsulation by Cyclodextrin ${ }^{\text {a) }}$ are being developed today in order to increase their solubility in water. The Cyclodextrin cavity is hydrophobic, while its external surface is hydrophilic. a) Therefore, this macrocycle can form water-soluble inclusion complexes with nonpolar molecules where there is a dissociation gradually to liberate a "guest" hidden inside ${ }^{3}$. The purpose of this work is to study of the β-Cyclodextrin to form inclusion complexes with caffeine in an aqueous solution at 298.1 K . The caffeinゅ) has side hydrophobic CH_{3} groups which, probably, can acts as the center of complexation with β-Cyclodextrin. The simulation was performed using the DICE program ${ }^{4}$ with geometry being fully optimized by PM3 method with MOPAC package ${ }^{5}$. For UV spectrum were performed with ZINDO package ${ }^{6}$.

We performed a Monte Carlo (MC) simulation of the complexation of the caffeine in β-Cyclodextrin in aqueous solution, where the SPC model for water was used to simulate an aqueous solution. To obtain the average number of the water molecules inside the cavity of the β Cyclodextrin, we analyzed the Radial Distribution Function (RDF) between center-of-masses of β Cyclodextrin and caffeine. Figure 1a shows the distribution of caffeine inside β-Cyclodextrin. For distance below $4.45 \AA$ we obtain an average of three molecules (one caffeine and two water) inside the cavity. The external distribution (that correspond to water) is beyond 7.45 \AA for LJ model. It is possible to observe more two solvatation shell and the distribution for continuum. The first solvatation shell is obtained for $10.15 \AA$ and the comportment of after this shell. It was performed a UV spectrum calculation carry out partial resulted obtained for caffeine in β-Cyclodextrin in aqueous solution, where is shown the main transition inside of the visible spectrum (Figure 1b).

Figure 1. a) Radial distribution function for betwe center-of-masses of β-Cyclodextrin and caffeine. b) spectrum of β-Cyclodextrin and caffeine in aquec solution.

Tome IISTon

Monte Carlo simulation of the study of the complexat of caffeine in β-Cyclodextrin shows an average of thi molecules (one caffeine and two water) inside the cav The established capability of the β-Cyclodextrin recognize caffeine in aqueous solution can find practi used in the development of encapsulation process anc the solution of problems associated with increase in solubility of this compound in water.

The authors thanks the COPES and Dr. Nivan Beze Jr. by use of their computational facilities.

[^267]
A MIXED QUANTUM/CLASSICAL METHOD TO CALCULATE THERMAL RATE CONSTANTS FOR HYDROGEN TRANSFER PROCESSES IN SOLUTION AND ENZYMES

Gustavo Pierdominici-Sottile and Juliana Palma
Centro de Estudios e Investigaciones, Universidad Nacional de Quilmes
Argentina.

Numerous relevant processes in biology involve proton, hydrogen or hydride transfer. Because of the small mass of the hydrogen nucleus these reactions usually present important quantum effects. Moreover, these reactions occur in condensed phase and the experimental evidence supports the idea that the transference is modulated by the interaction of the reacting species with the environment. Because of these characteristics, the theoretical treatment of these processes becomes quite involved. One common strategy is to treat a few degrees of freedom using quantum mechanics, while the rest of the system is treated using classical mechanics.
We have developed a program to calculate thermal rate constants for proton transfer reactions in solution and enzymes. The program makes use of a formulation developed by W.H. Miller, which is based on the computation of the flux-flux autocorrelation function ${ }^{1}$. In its current version, the program allows the quantum treatment of one or two degrees of freedom, while the rest of the system is treated classically. Contrary to the most widely used approaches, which are based on the transition state theory, the formulation we use incorporates tunneling, recrossings and non-
equilibrium solvation effects as an integral part of the calculation. Therefore no ad-hoc corrections are needed to account for these important effects.
In our presentation we will evaluate the strengths and drawbacks of our program through the analysis of the results obtained with model systems. Then, we will show some preliminary results corresponding to the study of an enzymatic reaction that has been extensively studied in our group during the last years ${ }^{2,3}$.

1) "Quantum and semiclassical theory of chemical reaction rates", W.H. Miller, Faraday Discussion 110, 1-21, (1998).
2) "Quantum study on the structure of the active site of Methylamine Dehydrogenase", G. Pierdonimici-Sottile, J. Echave and J. Palma, International Journal of Quantum Chemistry, 105 (6), 937-945, (2005).
3) "Molecular dynamics study of the active site of Methylamine Dehydrogenase", G. PierdonimiciSottile, J. Echave and J. Palma, The Journal of Physical Chemistry B, 110 (23), 11592-11599, (2006).

GERAÇÃO AUTONIÁTICA DE TOPOLOGIAS MOLECULARES

André A. S. T. Ribeiro* (IC), Bruno A. C. Horta (PG), Ricardo B. De Alencastro (PQ). aastr@yahoo.com.br
LabMMol, Laboratório de Modelagem Molecular, Departamento de Química Orgânica, Instituto de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária, CT, Bloco A, lab. 609, Rio de Janeiro, RJ 21941909, Brazil.

Palavras Chave: topologia, campo de força, dinâmica molecular

War Minroolbacio

A utilização de métodos de dinâmica molecular clássica no tratamento de sistemas biomoleculares vem se tornando cada vez maior. Campos de força empíricos são utilizados no cômputo das interações, visto que, geralmente, as grandes dimensões do sistema não permitem o uso de métodos ab initio. Um dos problemas do uso de campos de força é a necessidade da criação de um arquivo de topologia para cada nova molécula a ser calculada.
A topologia de uma molécula reune informações sobre a conectividade de cada átomo presente no sistema e o ambiente químico no qual está inserido. A determinação correta dessas informações é essencial para uma dinâmica bem-sucedida, uma vez que os parâmetros do campo de força dependem deste ambiente químico, isto é, do tipo de átomo (atom type).
Os pacotes computacionais para dinâmica molecular, tais como GROMACS ${ }^{1}$ e AMBER ${ }^{2}$, contém rotinas para criação automática de topologias, entretanto, no caso de não-peptídeos, tais como possíveis inibidores de uma enzima, o reconhecimento do ambiente químico de cada átomo não é satisfatório.
Considerando a inexistência de rotinas computacionais de geração automática de topologias para campos de força com descrição explícita de todos os átomos, teve-se como objetivo neste trabalho o desenvolvimento de um programa com esta função.

Resulforos chlicussa

O programa foi desenvolvido para criar topologias para o pacote GROMACS, utilizando o campo de força OPLS-AA ${ }^{3}$ e a linguagem de programação Perl.
A determinação da conectividade de cada átomo foi baseada na comparação da distância interatômica com distâncias de ligação encontradas na literatura. Também é necessário especificar, baseado na lista de átomos ligados, os conjuntos de ângulos, diedros e pares 1-4. Foram desenvolvidos critérios de seleção de ambiente químico, baseados na valência e conectividade de cada átomo, para todos os atom
types especificados pelo campo de força. As cargas parciais de cada átomo foram determinadas a partir do ajuste ao potencial eletrostático quântico (GAMESS) ${ }^{4}$ com restrição hiperbólica e carga-alvo igual a zero. ${ }^{5}$ Foi desenvolvida uma rotina própria para o ajuste das cargas.

Comemsoos

As topologias geradas para um conjunto de moléculas-teste foram inspecionadas e revelaram a adequação do programa à exigência de reconhecimento de ambiente químico. Metodologias alternativas (mais rápidas) para determinação de cargas pontuais estão sendo incorporadas ao programa, assim como sua adequação a outros campos de força disponiveis no GROMACS e no AMBER. O código final será disponibilizado para download na homepage do LabMMol (Laboratório de Modelagem Molecular).

CNPq e FAPERJ

[^268]
XIV Simpósio Brasileiro de Química Teórica (SBQT)

Molecular Dynamics study of the Local Anesthetics Tetracaine, Lidocaine and Benzocaine in Biological Membrane

Rafael C. Bernardi $(P G)^{1 *}$, Diego E. B. Gomes (PG) ${ }^{1}$, Ricardo Gobato (PG) ${ }^{2}$, André T. Ota (PQ) $)^{2}$, Carlton A. Taft (PQ) ${ }^{3}$, Pedro G. Pascutti (PQ) ${ }^{1}$
${ }_{2}^{1}$ Instituto de Biofísica Carlos Chagas Filho - Universidade Federal do Rio de Janeiro, Brazil
${ }^{2}$ Departamento de Física - Universidade Estadual de Londrina, Brazil
${ }^{3}$ Departamento de Física Aplicada - Centro Brasileiro de Pesquisas Físicas, Rio de Janeiro, Brazil
* bernardi@cbpf.br

Key-words : Local Anesthetics, DPPC, Molecular Modeling, Molecular Dynamics.

Abstract

The local anesthetics (LA) known nowadays are drugs derived from cocaine, and they are largely applied in surgery. We have made Density Functional calculations and Molecular Dynamics simulations to investigate the structure and pharmacological action of local anesthetics tetracaine, lidocaine and benzocaine. The Molecular Dynamics simulations were made in a NPT ensemble, in a box with 64 lipids (DPPC, dipalmitoyl-phosphatidylcholine) and 3822 water molecules, on both unprotonated and protonated forms of the local anesthetic. The LA probably affect the cellular membrane, and it is possible that it is their charged form that interact with the ion channels, causing the interruption of the nervous impulse. However, other studies suggest that the neutral molecule penetrates more easily into the membrane. There are many controversies about how exactly the LA acts upon the nervous system, so this study aims to determine the molecular details of LA interaction with lipids and its arrangement at the water/membrane interface.

REsulis ancericurtions

Quantum Mechanics calculations of LA molecular structures were made consecutively through various methods, until reasonable values for their charges and atomic coordinates were acquired. The results were very similar to those found in the literature, concluding that quantum calculations also show the displacement of atomic charges in the molecules of the LA.
The analysis of the dynamics shows that the charged form of the molecules does not cross the water/membrane interface, remaining stable and oriented at the interface. In contrast, despite of its polar groups, the neutral form can easily go through the interface, entering the membrane.

Figure 1. Representation of DPPC bilayer and Local Anesthetic tetracaine.

OOMc|SIOMS

The dynamics of LA/DPPC system shows that its charged form does not cross the water/membrane interface and the neutral form can easily go through the interface, entering the membrane, which agrees with the most recent experimental results. The general simulation results shown that biological membranes have a catalytic effect for molecular interactions, reducing ligand degrees of freedom, stabilizing translational and rotational movements and orienting molecules for a better receptor-ligand interaction.

APChomeroments

The authors are grateful for the support from CNPq, CAPES and FAPERJ.
${ }^{1}$ Bernardi, R. C.; Gomes, D. E. B.; Pascutti, P. G.; Ito, A. S.; Ota, A. T.; Int. J. Quan. Chem. 2006, 106, 1277.
${ }^{2}$ Bernardi, R. C.; Gomes, D. E. B.; Pascutti, P. G.; Ito, A. S.; Taft, C. A.; Ota, A. T.; Int. J. Quan. Chem. 2007, 107, 1642.
${ }^{3}$ Bernardi, R. C.; Gomes, D. E. B.; Ito, A. S.; Ota, A. T.; Pascutti, P. G.; Taft, C. A.; Mol. Sim. [in press]
${ }^{4}$ Tielenan, D. P.; Berendsen, H. J. C.; J. Chem. Phys. 1996, 105, 4871.
${ }^{5}$ Fraceto, L. F.; Spisni, A.; Schreier, S.; de Paula, E.; Bioph. Chem. 2005, 115, 11.

Molecular modeling of the inhibition of phospholipase \mathbb{A}_{2} by pollyhydroxy phenolic compounds

Elizabete R. M. Bezerra ${ }^{1, *}$ (IC), Felipe T. D. de Lima ${ }^{1}$ (IC), Clebson L. Veber ${ }^{3}$ (PG), José A.F.P. Villar ${ }^{3}$ (PG), Alfredo R.M. Oliveira ${ }^{3}(P G)$, Jamal S. Chaar ${ }^{1}(P Q)$, Moacyr Comar Jr. ${ }^{1}$ (PQ), K.M.T. Oliveira ${ }^{1}$ (PQ), Sérgio Marangoni ${ }^{2}$ (PQ), Saulo L. da Silva ${ }^{1}(P Q)$
${ }^{1}$ Depto de Quimica, ICE, Universidade Federal do Amazonas - UFAM, Manaus, AM., 69077-000, Brazil., ${ }^{2}$ Depto de Bioquímica, IB, Universidade Estadual de Campinas - UNICAMP, Campinas, S.P., 13100-000, Brazil, ${ }^{3}$ Depto de Química, SCE, Universidade Federal do Paraná - UFPR, Curitiba, PR., 81531-990, Brazil. *elizabete_mendes@Yahoo.com.br
Palavras Chave: $P L A_{2}$; phenolic compounds; molecular modeling

Abstract

Hincormothon Phosphlipases A_{2} (PLA 2) are enzymes that act over cell membrane phospholipids and release arachidonic acid (AA), which is a precursor of pro-inflammatory eicosanoids (prostaglandins (PGs) and leukotrienes (LTs)).Non-steroidal antiinflammatory drugs (NSAIDs) reduce the conversion of AA in PGs, but not LTs. The high levels of LTs are directly linked to adverse effects in the gastric and renal tracts as observed in patients that use NSAIDs. Some polyphenolic compounds have already been reported as presenting great capacity of PLA_{2} inhibition. In this work we have tested five polyphenolic compounds on PLA_{2} (1,3,5trihydroxy benzene, 1,3-dihydroxy benzene, 2,4,6trihydroxy acetophenone, 2,4-dihydroxy acethophenone and 2,6-dihydroxy acetophenone). The molecular modeling studies and the quantumchemical calculations through DFT (Density Functional Theory), together with the experimental results obtained, make the proposition of a probable mechanism of enzyme inhibition possible.

- nesulis ono Discusslon

In the concentration rate in which the inhibitors were tested, all compounds are able to inhibit the enzymatic activity of PLA . However, the $^{\text {. }}$ compounds A, B and C (1,3,5-trihidroxi benzene, 1,3-dihidroxi benzene and 2,4,6-trihidroxi acetophenone, respectively) were more efficient in inhibiting PLA_{2} than the other two acetophenone derivatives (compounds D and E, 2,4-dihidroxi acetophenone and 2,6-dihidroxi acetophenone, respectively). We can observe that the substrate concentration is very important in the kinetic behavior of PLA_{2} and, probably, the increase of substrate concentration has provoked a cooperative conformational change in the enzyme that increased the substrate access to the active site. The IC_{50} calculated values (concentration able to inhibit 50% of the enzymatic activity) were: 6.39 $\mu \mathrm{M}, 6.68 \mu \mathrm{M}, 7.35 \mu \mathrm{M}, 16.16 \mu \mathrm{M}$ and $17,54 \mu \mathrm{M}$, for compounds A, B, C, D and E, respectively. Once the catalytic site is well characterized and known, a very consistent molecular model was obtained when compounds A to E were inserted inside the
crystalline structure of PLA_{2} from C. atrox. When the models were optimized through molecular mechanics utilizing the OPLS method. All compounds could be perfectly adjusted inside the characteristic active site of the enzyme. The aromatic rings occupy the hydrophobic region formed by the aminoacids Leu 2, Phe 5 and Phe 106. Analyzing the models it was possible to observe that compounds A, B and C interact more effectively with PLA_{2}, since they form hydrogen bonds with Asp 49. The compounds D and E interact with the enzyme just through hydrophobic bonds and consequently, they are less intensely connected to PLA_{2}. The molecules with hydroxyls that formed hydrogen bounds (compounds A, B and C) showed a potential around 0.7 eV that seems to be an adequate value for interacts with the enzyme. The D compound showed one hydroxyls (position 4) that could form an hydrogen bound with the PLA 2 , but its molecular potential is much higher (0.912 eV) than the ones showed by the A, B and C compounds and this value seems to be too high for allow the complex formation between the D compound and the enzyme. The E compound has a potential in value of 0.753 eV that could allow the formation of hydrogen bound, but it doesn't occur because of the hydroxyls absence in position 4, while the hydroxyls in position 2 and 6 are sterically blocked by the acetyl group.

Goniciston

We have inferred that the presence of phenolic hydroxyl really plays an important role in the inhibition of the enzyme. Hence, the compounds A and B were the ones that showed the best results in the tests realized. The presence of an acetyl group in the polyhydroxy phenolic compounds C, D and E can reduce the efficiency in inhibition of the PLA_{2} enzymatic activity. Thus the molecule potential is affecting the biological activities studied. The molecules with adequate potential (around 0.7 eV) and that have a non-sterically blocked hydroxyl cause the attenuation of both the enzymatic activity and the induction of edema formation by PLA $_{2}$.

ADOMEDClamen

FAPEAM, CNPq and CAPES

ANÁLISE DE MÉTODOS QUÂNTICOS SEMIIEMPÍRICOS APLICADOS À REAÇÃO DE DIELS-ALDER

Catarina Baldissera (IC)*, Ricardo Luiz Longo (PQ)
Departamento de Química Fundamental - Universidade Federal de Pernambuco, 50740-540, Recife-PE, Brasil
*c_baldissera@hotmail.com ou cbaldissera@gmail.com
Palavras Chave: AM1, PM3, RM1, PM6, RHF, cicloadição.
\section*{Whurory uge}
A reação entre dieno e dienófilo, denominada de reação de Diels-Alder ou cicloadição [4+2], leva à formação de duas ligações carbono-carbono de

7

8

9

forma estéreo-específica, régio- e quimiosseletiva. Por isso, a reação de Diels-Alder tem sido largamente aplicada em síntese orgânica com potencial para novos desenvolvimentos, pois a reação pode, por exemplo, ser acelerada quando realizada em água. Dada a sua importância, esta reação tem sido estudada tanto experimental quanto computacionalmente. Entretanto, existem ainda inúmeras questões não esclarecidas quanto ao desempenho dos métodos quânticos para a previsão da reatividade e seletividade, bem como na dicotomia entre os métodos ab initio e semiempíricos sobre a natureza do estado de transição, a saber, síncrono ou assíncrono. Há sugestões de que os métodos semi-empíricos favorecem estados de transição assíncronos devido ao desprezo da matriz de recobrimento na equação de Hartree-Fock. Além disso, os métodos semi-empíricos falham na previsão da aceleração da reação entre 1,3butadieno e etenos substituídos com grupos ciano. Sendo assim, o objetivo deste trabalho consiste em determinar o desempenho de novos métodos semiempíricos (RM1 e PM6) para a reação de DielsAlder, assim, como tentar estabelecer a origem dos problemas apresentados por estes métodos quando aplicados a esta reação.

As reações entre dienos da Figura 1 e o tetracianoeteno foram selecionadas por apresentarem resultados experimentais e os dienos serem rígidos e simétricos.

1

4

2

5

6

Figura 1. Dienos selecionados para a reação com tetracianoeteno (TCNE).

Os métodos RHF/6-31(d), AM1, PM3, RM1 e PM6 foram utilizados para calcular as estruturas e freqüências vibracionais dos estados de transição (caracterizados por um constante de força negativa) e dos reagentes. A partir destes resultados, obteve-se a energia, a entalpia e a energia de Gibbs de ativação para estas reações, que foram comparadas com as constantes de velocidades experimentais medidas a 293 K em dioxano. Algumas comparações estão apresentadas na Figura 2.

Figura 2. Correlação entre os resultados calculados RHF/6-31G(d) e AM1 com os experimentais.

O método RHF fornece resultados em boa concordância (correlação linear $-0,95$) com os dados experimentais. Já os métodos semi-empíricos AM1 e PM3 distinguem entre os dienos exocíclos (4-9) dos endocíclicos (1-3). Entretanto, o método RM1 não apresenta esta distinção e a concordância com os dados experimentais é comparável ao método RHF. Uma análise preliminar sugere que a origem desta discrepância está nos valores superestimados das freqüências vibracionais associadas às deformações C-C-C quando comparada com às deformações $\mathrm{C}-\mathrm{C}-\mathrm{H}$.

Meroncharcolb

A origem da falha dos métodos semi-empíricos não está no uso da equação de Hartree-Fock, mas provavelmente na parametrização que, por exemplo, não inclui dados sobre freqüências vibracionais.

CAPES; CNPq; FINEP; RENAMI.

Investigação Teúrica do Mecanismo de Abertura de Anéis Epoxídicos

João Paulo Ataíde Martins (PG) Raimundo Clecio Dantas Muniz Filho (PG), Flávia da Silva Pereira (PG), Márcia Miguel Castro Ferreira (PQ).

Instituto de Química, Universidade Estadual de Campinas, CEP 13083-970 Campinas - SP.
e-mail: marcia@iqm.unicamp.br
Palavras Chave: Epóxidos, DFT, Cargas Atômicas, IRC

Thed Moaro

Epóxidos são éteres cíclicos com anéis de três membros (Figura-1) bastante conhecidos por serem importantes intermediários na síntese orgânica.

Figura-1. Estrutura molecular de um epóxido.
Em virtude da tensão angular e da polaridade desta classe de moléculas, reações que envolvem a abertura deste anel são suscetíveis a uma grande variedade de ataques nucleofilicos.
Na Figura-2, apresentamos uma provável rota de abertura do anel epoxídico, catalisada por ácido, frente a um ataque de um nucleófilos.

Figura-2. Provável mecanismo de abertura do anel epoxídico.
A proposta deste trabalho é investigar teoricamente o mecanismo de reação de abertura do anel dos compostos $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}, \quad \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{OCH}_{3}$ e $\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}\left(\mathrm{CH}_{3}\right)_{2}$, catalisadas por ácidos e bases, analisando variáveis tais como, cargas atômicas, potencial eletrostático e a energética da reação.
Cálculos de otimização de geometria e freqüência vibracional foram realizados usando o método DFT/B3LYP e o conjunto de base 6-311G(d,p). Para um melhor entendimento do mecanismo de reação, cálculos de IRC estão sendo aplicados, iniciando a partir da estrutura otimizada do estado de transição, e usando um passo de 0,100 (a.m.u) ${ }^{1 / 2}$.bohr.

Segundo a literatura ${ }^{2}$, quando esta reação é catalisada por um ácido, o ataque do nucleófilo ocorre preferencialmente no carbono mais substituído. Por outro lado, quando ela é catalisada por uma base, este ataque ocorre preferencialmente no carbono menos substituído. Analisando a Tabela1, que se refere aos valores de cargas atômicas de Mülliken para epóxidos catalisados em meio ácido e
básico, pode-se confirmar que quando a reação é catalisada pelo ácido, o ataque ocorre no carbono mais substituído (C_{1}).

Tabela-1. Valores de cargas atômicas de Mülliken para epóxidos catalisados por ácido e meio básico.

Meio ácido	C_{1}	C_{2}
$\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$	$-0,173$	$-0,173$
$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}\left(\mathrm{CH}_{3}\right)$	0,086	$-2,999$
cis-C	$\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}\left(\mathrm{CH}_{3}\right)_{2}$	$-0,027$
trans $-\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}\left(\mathrm{CH}_{3}\right)_{2}$	$-0,026$	
$\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}\left(\mathrm{CH}_{3}\right)_{2}$	0,064	$-0,010$
Meio Básico	0,421	$-0,458$
$\mathrm{C}_{1} \mathrm{H}_{4} \mathrm{O}$	C_{2}	
$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}\left(\mathrm{CH}_{3}\right)$	$-0,177$	$-0,177$
cis- $-\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}_{3}\left(\mathrm{CH}_{3}\right)_{2}$	0,055	$-0,252$
trans $-\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}\left(\mathrm{CH}_{3}\right)_{2}$	0,008	0,007
$\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}\left(\mathrm{CH}_{3}\right)_{2}$	$-0,008$	$-0,008$

Já quando a reação é catalisada pela base, os resultados indicam que o ataque nucleofilico deve ocorrer preferencialmente no carbono mais substituído $\left(\mathrm{C}_{1}\right)$, contradizendo assim a literatura.
Cálculos do potencial eletrostático estão sendo feitos no sentido de reforçar os resultados obtidos para a reação catalisada por ácido, e verificar se são capazes de explicar a reação catalisada por base. O mapeamento da superfície de energia potencial, por cálculos de IRC, está sendo realizado, a fim de se obter detalhes energéticos destas reações.

Comerisioss

Modelos teóricos de estrutura eletrônica se mostraram importantes ferramentas no estudo da abertura de aneis epoxídicos, pois, através destes é possível entender a reatividade química e a regiosseletividade das moléculas envolvidas. No entanto, modelos de carga atômicas não se mostraram eficientes para explicar a reatividade química dos epóxidos frente a um ataque nucleofílico em meio básico.

Os autores agradecem ao CNPq aos recursos disponibilizados à pesquisa.

[^269]
Aspectos teóricos da modelagem de proteínas para a olbtenção de estruturas de transição utilizando métodos QM/MM.

Valdilei J. Da Silva ${ }^{1 *}(\mathbb{P G})$, Luiz Antônio S. Costa ${ }^{2}(\mathbb{P Q})$, Hélio F. Dos Santos ${ }^{1}(\mathbb{P Q})$
${ }^{1}$ Núcleo de Estudo em Química Computacional - NEQC, Departamento de Química - ICE, Universidade Federal de Juiz de Fora, Juiz de Fora - MG, 36036-900.
${ }^{2}$ Escola Preparatória de Cadetes do Ar (EPCAR) - Departamento de Ensino da Aeronáutica (DEPENS), Comando da Aeronáutica, Rua Santos Dumont, 149, Barbacena - MG, 36205-970.
*valdilley@gmail.com
Palavras Chave: proteinas, platina, ONIOM.

Muitos estudos teóricos de complexos de metais de transição em sistemas biológicos têm sido realizados por meio de métodos de química quântica usando modelos simples, constituídos com pouco mais de 50 átomos. Como estes modelos são limitados, continua a questão de como a inclusão do ambiente das biomoléculas pode modificar os resultados, quando comparados com os sistemas modelos?
Os métodos hibridos QM/MM vêm se tornando cada vez mais conhecidos e utilizados ${ }^{1}$. Dentre eles, pode destacar o método ONIOM^{2}, o qual permite tratar grandes sistemas moleculares por divisão de camadas de acordo com níveis de teoria, sendo possível atingir boa acurácia nos cálculos.
Nos últimos anos alguns trabalhos experimentais tratando da interação de drogas de platina com proteínas, p.e. albumina e ubiquitina, tem sido publicados ${ }^{3}$. Por outro lado, não há nenhum trabalho teórico do ponto de vista do estudo das reações químicas com estes sistemas.
O presente trabalho tem como objetivo propor uma metodologia que seja melhor aplicável para a determinação de estruturas de transição (TS) em sistemas macromoleculares.
 A porção da proteína ubiquitina (resíduo Met1Leu15) foi obtida da estrutura cristalográfica depositada no banco dados PDB (1d3z). Foram retirados hidrogênios (p.e. o amino ácido Lys foi considerado na forma neutra) e adicionado no caso do amino ácido terminal de modo que a molécula se tornasse neutra. Os cálculos de geometria e de freqüências harmônicas foram realizados na fase gasosa utilizando o método ONIOM(HF:UFF), implementado no programa GAUSSIAN 03, com o conjunto de funções de base 6-31G(d) para (C, N, $\mathrm{O}, \mathrm{He} \mathrm{S}$) e LANL2DZ para (Pt).
Para criar as estruturas de transição (Figura 1) é fundamental eliminar ou reduzir ao máximo as freqüências imaginárias, referentes às torções e deformações da molécula. Portanto, primeiramente o resíduo da proteína deve ser otimizado.
A Tabela 1 mostra que a reação da cisplatina com a Met livre e com ela na proteína altera pouco os
parâmetros estruturais, sendo o maior desvio observado para o ângulo $\angle \mathrm{S}-\mathrm{Pt}-\mathrm{Cl}_{\mathrm{eq}}$. As freqüências harmônicas imaginárias dos TSs também são próximas, com a ubiquitina o valor é igual a 148,27 i e com a Met livre, 145,54 i, ambas caracterizadas como estiramento assimétrico S -$\mathrm{Pt}-\mathrm{Cl}_{\text {eq. }}$.

Figura 1. Estrutura otimizada no nível ONIOM(HF:UFF) para o estado de transição da reação do resíduo Met1-Leu15 da ubiquitina com a cisplatina
Tabela 1. Parâmetros estruturais calculados para o estado de transição da interação de cisplatina com Met e com a ubiquitina.

	rPt-Cl $_{\text {eq }}$	rPt-S	\angle S-Pt-Cl $_{\text {ea }}$	τ
ONIOM $^{\text {a }}$	2,73	2,79	85,72	0,57
$\mathrm{HF} / 6-31 \mathrm{G}(\mathrm{d})^{\text {b }}$	2,75	2,81	83,84	0,61

${ }^{\text {a }}$ Ubiquitina, ${ }^{\text {b }}$ Metionina

Whem

Concluímos que com a metodologia adotada foi possível obter uma estrutura de transição para um sistema grande (265 átomos) com resultados satisfatórios, possibilitando o estudo da cinética desta reação. Estudos com seqüências maiores estão sendo realizados visando avaliar a representatividade do modelo na descrição do sistema real.


```
CNPq, FAPEMIG, CAPES, FINEP
```

[^270]
Benchmark multi-reference Cl study of S_{0} and S_{1} states of $\mathrm{CF}_{3} \mathrm{CI}$.

*Elizete Ventura ${ }^{i}(P Q)$, Silmar A do Monte ${ }^{1}(P Q)$, Regiane C. M. U. Araújo ${ }^{1}(P Q)$, Juracy R. L. Junior ${ }^{1,2,3,4}(P G)$, Mozart N. Ramos ${ }^{2}(P Q)$ and Rui Fausto ${ }^{3}(P Q)$.
${ }^{1}$ Department Chemistry, University Federal of Paraiba, 58051-900 João Pessoa-PB (Brazil). ${ }^{2}$ Department Chemistry, University Federal of Pernambuco, 3004-535 Recife-PE (Brazil), ${ }^{3}$ Department Chemistry, University of Coimbra, 3004 535 Coimbra (Portugal), ${ }^{4}$ Department Chemistry, University State of Paraiba, 3004-535 Campina Grande-PB (Brazil). Email: elizete@quimica.ufpb.br
Palavras Chave: excited states, multi-reference calculations, CFC, ozone.

[THOCHIGTOM

The role of clorofluorcarbons (CFCs) as depleting agents of Earth's ozone layer in the stratosphere has been well established ${ }^{1}$. It is connected to their photodissociation, which yields chlorine radicals (Cl) that catalyze the cleavage of ozone molecules through chain reactions. Therefore, the study of the photochemistry of such molecules is crucial in order to get a deeper insight into their mechanism of action. The energies of the lowest electronically excited states of CFC's, obtained from absorption spectra, lay in the range 6.5 to 9.7 eV . Between ca. 6.5 and 8.8 eV the absorption spectra can be characterized by very broad, weak bands corresponding to transitions from the Cl lone pairs ($\mathrm{n}, \mathrm{3p}$) to the antibonding $\mathrm{C}-\mathrm{Cl} \sigma^{*}$ orbitals. Such transitions are expected to be dissociative, thus leading to formation of Cl and chlorofluoromethyl radicals. There are two important and still open questions that can be expected to be successfully addressed by high-level quantum chemistry calculations: (i) Is the $n \sigma^{*}$ state repulsive or attractive (along the $\mathrm{C}-\mathrm{Cl}$ coordinate)? If it is attractive, what is the associated well depth? and (ii) Is there any crossing of this state with the ground state? In order to answer theses questions, Extended CASSCF, MR-CISD and MR-AQCC calculations with Dunning's correlation consistent basis sets have been performed on the ground and first excited $\left(n \sigma^{*}\right)$ states of the $\mathrm{CF}_{3} \mathrm{Cl}$ molecule. The COLUMBUS program system was used.

Calculated values of dissociation energies ($\Delta \mathrm{E}_{\text {diss }}$) and dissociation enthalpies $\left(\Delta \mathrm{H}_{\text {diss }}\right)$ are given in Table I. The additional diffuse functions present in the augmented versions in the basis sets play an important role in the description of the no* state. The results for $\Delta \mathrm{E}_{\text {vertical }}$ at the MR-CISD level are 0.30 0.33 eV greater than the corresponding MCSCF results, indicating, as expected, a significant and almost constant effect of the dynamic electronic correlation. The most accurate value for $\Delta \mathrm{E}_{\text {diss }}$ (3.66 eV , at MR-AQCC/aug-TZ level) is somewhat lower than the value of 4.014 eV obtained by S . Roszak et al^{2} at MP2/aug-TZ level. Our best calculted value for
$\Delta H_{\text {diss }}$ ($3.72 \mathrm{eV}, \mathrm{MR}-A Q C C / a u g-T Z$) is in very good agreement with the experimental value of 3.68 eV .

		MCSCF	$\begin{aligned} & \hline \text { MR- } \\ & \text { CISD } \end{aligned}$	$\begin{gathered} \text { MR- } \\ \text { AQCC } \end{gathered}$
	DZP	7.91	8.24	8.19
	$\begin{aligned} & \text { aug- } \\ & \text { DZP } \end{aligned}$	7.50	7.81	7.64
	TZP	7.78	8.08	7.95
	aug-TZP	7.50	7.82	7.67
	Exp. ${ }^{3}$	7.7 ± 0.1		
	DZP	2.71	3.25	3.43
	$\begin{aligned} & \text { aug- } \\ & \text { DZP } \end{aligned}$	2.72	3.34	3.54
	TZP	2.82	3.44	3.64
	aug-TZP	2.79	3.48	3.72
	Exp. ${ }^{\text { }}$		3.68	

${ }^{2}$ Values in eV .
The "relaxed" potential energy curves for S_{0} and S_{1} states calculated at MR-CISD/TZ and TZ+d levels are given in the Figure I. The detail of the region around $\mathrm{S}_{0} / \mathrm{S}_{1}$ "crossing" point (Fig. left) shows that it seems to vanish as the basis set size increases.

The general agreement between the calculated values for $\Delta \mathrm{E}_{\text {vertical }}$ and $\Delta \mathrm{H}_{\text {diss }}$ and available experimental results is very good. The S_{0} / S_{1} crossing tends to disappear as the basis set increases, and such tendency is accompanied by a decrease in the well depth of S_{1}.

Mevionvedocemicnis

UFPB, CNPq, CAPES, FAPESQ.

[^271]
\section*{XIV Simpósio Brasileiro de Química Teórica (SBQT)}
 Infrared spectrum of monomeric $\mathrm{CF}_{3} \mathrm{Cl}$: Theoretical and experimental FTIR study

*Juracy R. L. Junior ${ }^{1,2,4}(P G)$, Regiane C. M. U. de Araújo ${ }^{2}(\mathbb{P Q})$, Elizete Ventura ${ }^{2}(P Q)$, Silmar A. do Monte $^{2}(\mathrm{PQ})$, Mozart N. Ramos ${ }^{3}(\mathrm{PQ})$, Igor D. Reva ${ }^{1}(\mathrm{PQ})$ and Rui Fausto ${ }^{1}(\mathrm{PQ})$

${ }^{1}$ Department Chemistry, University of Coimbra, 3004-535 Coimbra (Portugal),
${ }^{2}$ Department Chemistry, University Federal of Paraiba, 58051-900 João Pessoa-PB (Brazil).
${ }^{3}$ Department Chemistry, University Federal of Pernambuco, 3004-535 Recife-PE (Brazil),
${ }^{4}$ Department Chemistry, University State of Paraiba, 3004-535 Campina Grande-PB (Brazil) E-mail: jruepb@yahoo.com.br

Palavras Chave:CFC, Matrices, FTIR, B3LYP, MP2

InTher Motion

Chlorofluorocarbons, such as $\mathrm{CF}_{3} \mathrm{Cl}$, attract a great attention in the field of atmospheric chemistry. They are responsible for the destruction of stratospheric ozone ${ }^{1,2}$. The molecule of $\mathrm{CF}_{3} \mathrm{Cl}$ may exist only as a single conformer. Due to high symmetry of $\mathrm{CF}_{3} \mathrm{Cl}\left(\mathrm{C}_{3}\right)$, its vibrational spectrum has only six modes. Thus $\mathrm{CF}_{3} \mathrm{Cl}$ represents a good benchmark system for development of the theoretical methods. By these reasons, $\mathrm{CF}_{3} \mathrm{Cl}$ attracts permanent attention of experimentalists for more than half-a-century. ${ }^{3-8}$ In this work, vapours of $\mathrm{CF}_{3} \mathrm{Cl}$ were premixed with a noble gas (argon or xenon) in molar ratio 1:1000. This mixture was deposited onto a Csl window cooled to 12 K using a closed-cycle helium refrigeration system. At these conditions, the frozen mixture is dominated by monomeric molecules of $\mathrm{CF}_{3} \mathrm{Cl}$ suspended in a solid noble gas matrix. Its FTIR spectra were studied with resolution 0.5 and $0.25 \mathrm{~cm}^{-1}$ in the $4000-400 \mathrm{~cm}^{-1}$ range and provided the experimental reference for the theoretical calculations. The calculations were carried out at the DFT and MP2 levels of theory with Dunning's correlation consistent basis sets.

The experimental spectrum collected at lower resolution $\left(0.5 \mathrm{~cm}^{-1}\right)$ and the theoretically calculated survey spectra are in a good agreement with each other (Figure 1). When isolated in cryogenic matrices, the vibrational spectrum of $\mathrm{CF}_{3} \mathrm{Cl}$ is free of rotational transitions, and allows for studies of the fine structure of vibrational bands. The spectra collected with resolution of $0.25 \mathrm{~cm}^{-1}$ exhibit two effects: (i) strong band-splitting, not reported in the previous matrix isolation study ${ }^{3}$ and (ii) dependence on the substrate temperature. Upon changing of the matrix gas (Ar, Xe) both effects undergo notable changes, indicating the importance of the matrix environment. The nature of these two effects is currently under investigation.

Figure 1 - Comparison of experimental FTIR (top) and theoretical (bottom) spectra of $\mathrm{CF}_{3} \mathrm{Cl}$ monomers
The DFT(B3LYP) calculations slightly
Therestimate experimental frequencies while
undere calculations yield to a better agreement witn
experimental data. However, the DFT calculations
result in a better overall agreement with the
experiment, producing the smallest discrepancy
between the theory and the experiment after
linear scaling of the calculated frequencies
(average correlation coefficients $\mathrm{R}=99.99 \%$).

This work was funded by CAPES(Brazil)/GRICES project No. 165/06.

[^272]
Cálculos Semi-empíricos PM3 e ZINDO/S incluindo Efeito Solvente no Estudo Comparativo das Aflatoxinas B1 © G1

João Paulo Barbosa de Almeida (IC), Priscyla Toscano de Melo Sobreira (IC), Luciano de Azevedo Soares Neto (PQ) ${ }^{1 *}$
* e-mail: lasneto@dq.ufrpe.br
1 Universidade Federal Rural de Pernambuco. Av. Dom Manuel de Medeiros, sn, Dois Irmãos, Recife, PE. Palavras Chave: AFB1, AFG1, PM3 e ZINDO/S.

 reconhecidamente cancerígenos e tóxicos. ${ }^{(1)} \mathrm{A}$ aflatoxina mais tóxica é a aflatoxina B1 (AFB1) seguida da aflatoxina G1 (AFG1). Neste trabalho realizamos cálculos com o método químicoquântico semi-empírico PM3 para otimizar as geometrias e calcular o calor de formação das estruturas resultantes da reação entre as aflatoxinas B1 e G1 com o aminoácido Lisina. Também utilizamos o método ZINDO/S no cálculo das transições eletrônicas com interação de configuração (CI).
A AFB1 é de longe mais cancerígena do que AFG1. ${ }^{(2)}$ O principal objetivo deste estudo é entender porque duas estruturas tão parecidas causam efeitos tão antagônicos.

-1esurvolos cutbrespo

Realizamos cálculos com o método PM3 para as estruturas AFB1 e AG1 descritas na figura 1.
As geometrias foram otimizadas no vácuo e simulando o efeito solvente através do uso de caixa d'água.

O calor de formação ($\Delta \mathrm{H}_{\mathrm{F}}$) calculado para os adutos AFB1-Lisina e AFG1-Lisina são mostrados na Tabela 1. Os isômeros do aduto AFB1-Lisina são descritos pela referência 3 e do aduto AFG1-Lisina são descritos através da referência 4.

O cálculo do espectro usando o método ZINDO/S com Interação de Configuração (CI) mostrou boa concordância no caso da estrutura mais estável encontrada para o aduto AFB1Lisina (isômero 2) quando comparado com dados experimentais. ${ }^{(3)}$ No caso do aduto AFG1-Lisina, o espectro calculado é semelhante na forma do experimental ${ }^{(4)}$ quando utilizamos a estrutura do isômero 3.

(AFGI)

Figura 1. Estruturas otimizadas das Aflatoxinas B1 e G1.

Tabela 1. Resultado do Calor de Formação ($\Delta \mathrm{H}_{\mathrm{F}}$) para os isômeros dosadutos AFB1-Lisina e AFG1-Lisina.

Adutos		COM H O	NO VÁCUO
AFB1- Lisina	ISÔMERO 1	$\Delta \mathrm{H}=-26,08$	$\Delta \mathrm{H}=-274,19$
	ISÔMERO 2	$\Delta \mathrm{H}=-106,74$	$\Delta \mathrm{H}=-273,10$
	ISÔMERO 3	$\Delta \mathrm{H}=-96,63$	$\Delta \mathrm{H}=-279,48$
	ISÔMERO 1	$\Delta \mathrm{H}=-41,22$	$\Delta \mathrm{H}=-314,13$
	ISÔMERO 2	$\Delta \mathrm{H}=-96,86$	$\Delta \mathrm{H}=-314,73$
	ISÔMERO 3	$\Delta \mathrm{H}=-79,41$	$\Delta \mathrm{H}=-318,49$

- M M M MEOES

Os resultados obtidos dos calores de formação $\left(\Delta H_{F}\right)$ mostram concordância em termos de estabilidade nos dois casos (AFB1 e AFG1). As estruturas mais estáveis, quando se coloca o efeito solvente, coincidem com as previstas segundo dados experimentais. ${ }^{(3,4)}$ Os espectros calculados reproduzem as principais bandas observadas experimentalmente, apenas deslocadas de um valor constante, 50 nm , no caso da AFB1 e 70 nm , no caso da AFG1.

FADURPE - Fundação Apolônio Salles
UFRPE - Universidade Federal Rural de Pernambuco

[^273]
ESTUDO DE PROPRIEDADES ÓPTICAS NÃO LINEARES DE DERIVADOS DO DIETINILSILANO

Ramon Araújo Brennand (IC)*, Ana Elizabete de Araújo Machado (PQ). Ramon_brennand@yahoo.com.br.

Departamento de Química Fundamental, Centro de Ciências Exatas e da Natureza, Universidade Federal de Pernambuco, Recife, 50670-901, Brasil.
Palavras Chave: Hiperpolarizabilidade, materiais ópticos não lineares
hiperpolarizabilidade β dinâmica é de 113 , sendo 45 moléculas na conformação do PDES(i) enquanto 68 são derivadas do PDES(ii).

Os derivados modelados do dietinilsilano apresentam magnitudes superiores a 1600.10^{-36} esu, para a hiperpolarizabilidade γ (estática), sendo 25 sistemas na conformação do PDES(i) enquanto 52 apresentam a conformação do PDES(ii). Estes valores são da mesma ordem de magnitude do observado para o caroteno, utilizando a metodologia AM1/TDHF. O caroteno é um material óptico não linear de terceira ordem, cujo valor experimental de γ se encontra entre os maiores da literatura.

Figura1. Estruturas dos sistemas investigados, onde n apresenta os valores de 1 a 10.

Os derivados de ambas as conformações, a PDES(i) e a PDES(ii), apresentam potenciais aplicações em opto-eletrônica e fotônica em razão dos elevados valores obtidos para as respostas não lineares β e γ. Em adição, verificamos que os oligômeros substituídos, contendo nos grupos doadores o heteroátomo oxigênio, apresentam as maiores magnitudes das hiperpolarizabilidades β e γ.

4 OH aremincmioe

Propesq/UFPE, CNPq, FACEPE.

[^274]
Estados Eletrônicos mais Baixos da Molécula MgS

Vladir W. Ribas ${ }^{1}(\mathrm{PG})^{*}$, Orlando Roberto-Neto ${ }^{2}(\mathrm{PQ})$, Francisco B. C. Machado ${ }^{1}$ (PQ) vladi@@ita.br
${ }^{1}$ Departamento de Química - Instituto Tecnológico de Aeronáutica - São José dos Campos - SP.
${ }^{2}$ Divisão de Aerotermodinâmica e Hipersônica - Instituto de Estudos Avançados - São José dos Campos - SP.
Palavras Chave: CASSCF, MRCI, ab initio, molécula MgS, constantes espectroscópicas.

Na tabela 1 estão sumarizadas algumas

Os radicais formados por alcalinos terrosos com os elementos do segundo e terceiro períodos da tabela periódica, quando ligados, devem ter um tempo de vida muito pequeno, o que dificulta as identificações experimentais. Informações teóricas de propriedades espectroscópicas têm servido como ponto de partida para a determinação empírica. Recentemente, em nosso grupo foram estudados vários estados eletrônicos de simetria dupleto e quarteto das moléculas $\operatorname{BeAl}{ }^{1}$ e $M g A I^{2}$. Este trabalho consiste em caracterizar os estados eletrônicos mais baixos de simetria singleto e tripleto da molécula MgS , que no limite assintótico se correlacionam com os dois primeiros canais de dissociação: $\operatorname{Mg}\left({ }^{1} S_{g}\right)+S\left({ }^{3} P_{g}\right)$ e $M g\left({ }^{1} S_{g}\right)+S\left({ }^{1} D_{g}\right)$.

Os cálculos de estrutura eletrônica foram realizados utilizando o conjunto base cc-pVQZ de Dunning e o método CASSCF/MRCI. Numa primeira etapa, a fim de incluir os efeitos da correlação estática realizou-se cálculos utilizando o método CASSCF com o espaço ativo constituído dos elétrons e orbitais de valência dos átomos, ou seja, $(8,5)$ para MgS . Numa próxima etapa, com o intuito de incluir o máximo possível dos efeitos da correlação dinâmica, cálculos MRCI foram realizados utilizando o conjunto de referência gerado pela função de onda CASSCF. Os resultados MRCI fornecidos são aqueles calculados utilizando o método de extrapolação de Davidson para o limite Full-Cl.
Como verificado para a molécula isovalente MgO , o estado fundamental $X^{1} \Sigma^{+}$se correlaciona com o segundo canal de dissociação $M g\left({ }^{1} S_{g}\right)+S\left({ }^{1} D_{g}\right)$.
Os valores obtidos para os três primeiros estados eletrônicos, $X^{1} \Sigma^{+},(1)^{3} \Pi$ e (1) ${ }^{1} \Pi$ estão de acordo com os resultados teóricos e experimentais existentes ${ }^{3,4}$. A energia de dissociação do estado eletrônico (1) ${ }^{1} \Pi$ calculada no nosso trabalho é igual a $2,82 \mathrm{eV}$ diferindo do valor também teórico obtido por Partridge et al. ${ }^{4}$, igual a $1,70 \mathrm{eV}$ que usou o método SDCI .
propriedades espectroscópicas para os estados singletos e tripletos da molécula MgS .

Tabela 1. Constantes espectroscópicas dos estados mais baixos das simetrias singleto e tripleto da molécula MgS.

MgS	$\mathrm{T}_{\mathrm{e}}(\mathrm{eV})$	$\mathrm{R}_{\mathrm{e}}\left(\mathrm{a}_{0}\right)$	$\mathrm{D}_{\mathrm{e}}(\mathrm{eV})$	$\omega_{\mathrm{e}}\left(\mathrm{cm}^{-1}\right)$
$\mathrm{X}^{1} \Sigma^{+}$	0.0	4,09	3,31	510
		$4,05^{3}$	$2,86 \pm 0,69^{4}$	529^{3}
		$4,10^{4}$		511^{4}
$(1)^{3} \Pi$	0,43	4,42	1,80	420
	$0,48^{4}$	$4,42^{4}$		415^{4}
$(1)^{1} \Pi$	$0,52^{4}$			
	0,57	4,38	2,82	418
$(2)^{1} \Sigma^{+}$	2,86	$4,38^{4}$	$1,70^{4}$	431^{4}
	4,20	0,40		
$(1)^{1} \Delta$	3,47	4,45		

C. MonduEves

O presente estudo caracteriza vários estados da molécula MgS , dos quais alguns foram determinados pela primeira vez, tais como: $(2)^{1} \Sigma^{+} \mathrm{e}(1)^{1} \Delta$. Os resultados obtidos para o estado eletrônico (2) ${ }^{1} \Sigma^{+}$ estão em concordância com os resultados experimentais existentes ${ }^{3}$.

Aiglvereminentor

FAPESP, CNPq, CENAPAD-SP

[^275]
Estudo MRCI de Estados Excitados da Molécula CaAl

Vladir W. Ribas ${ }^{1}(\mathrm{PG})^{*}$, Orlando Roberto-Neto ${ }^{2}(\mathrm{PQ})$, Francisco B. C. Machado ${ }^{1}$ (PQ)
vladir@ita.br
${ }^{1}$ Departamento de Química - Instituto Tecnológico de Aeronáutica - São José dos Campos - SP.
${ }^{2}$ Divisão de Aerotermodinâmica e Hipersônica - Instituto de Estudos Avançados - São José dos Campos - SP.
Palavras Chave: CASSCF, MRCI, ab initio, molécula CaAl, constantes espectroscópicas.

HuT0 eluco

Os estudos da espectroscopia dos estados eletrônicos de metais diatômicos podem auxiliar no desenvolvimento de novos materiais semicondutores e em muitas áreas de aplicações tecnológicas, bem como no conhecimento dos fundamentos fenomenológicos. Informações teóricas de propriedades espectroscópicas têm servido como ponto de partida para a determinação empírica.
Até onde sabemos existem dois trabalhos na literatura relacionados com a caracterização dos estados eletrônicos da molécula CaAl; são eles: Simons et al. ${ }^{1}$ e Morse et al. ${ }^{2}$ cujos resultados não são conclusivos a respeito da ordenação dos estados eletrônicos excitados mais altos. Este trabalho tem como objetivo buscar esclarecer quais são os estados eletrônicos e qual a ordem energética dos mesmos. Vários estados eletrônicos de simetria dupleto e quarteto para a molécula CaAl, isovalente das espécies MgAl^{3} e Beal ${ }^{4}$, foram estudados. No limite assintótico eles se correlacionam com os três primeiros canais de dissociação, ou seja, $\mathrm{Ca}\left({ }^{1} \mathrm{~S}_{\mathrm{g}}\right)+\mathrm{Al}\left({ }^{2} \mathrm{P}_{\mathrm{u}}\right), \mathrm{Ca}\left({ }^{3} \mathrm{P}_{\mathrm{u}}\right)$ $+\mathrm{Al}\left({ }^{2} \mathrm{P}_{\mathrm{u}}\right)$ e $\mathrm{Ca}\left({ }^{3} \mathrm{D}_{\mathrm{g}}\right)+\mathrm{Al}\left({ }^{2} \mathrm{P}_{\mathrm{u}}\right)$.

Os cálculos de estrutura eletrônica foram realizados utilizando o conjunto base cc-pVQZ de Dunning e o método CASSCF/MRCI. Numa primeira etapa, a fim de incluir os efeitos da correlação estática realizou-se cálculos utilizando - método CASSCF com o espaço ativo constituído dos elétrons e orbitais de valência dos átomos, ou seja $(5,8)$ para CaAl. Numa próxima etapa, com o intuito de incluir o máximo possível dos efeitos da correlação dinâmica, cálculos MRCI foram realizados utilizando o conjunto de referência gerado pela função de onda CASSCF. Os resultados MRCl fornecidos são aqueles calculados utilizando o método de extrapolação de Davidson para o limite Full-Cl.
Na tabela 1 são fornecidas constantes espectroscópicas para os estados excitados mais altos juntamente com o estado fundamental $X^{2} \Pi$.

Estado Eletrônico	$\mathrm{T}_{\mathrm{e}}(\mathrm{eV})$	$\mathrm{R}_{\mathrm{e}}\left(\mathrm{a}_{0}\right)$	$\mathrm{D}_{\mathrm{e}}(\mathrm{eV})$
$\mathrm{X}^{2} \Pi$	0,0	6,11	0,52
$(2)^{2} \Sigma^{+}$	1,49	6,70	0,71
$(3)^{2} \Pi$	$1,631,67^{1}$	6,58	0,58
$(3)^{2} \Sigma^{+}$	$1,971,95^{1}$	6,30	0,20
$(2)^{2} \Sigma^{-}$	$2,002,11^{1}$	5,89	1,17
$(4)^{2} \Sigma^{+}$	2,04	6,38	1,09
$(4)^{2} \Pi$	$2,092,11^{2}$	6,15	1,08
$(2)^{2} \Delta$	2,13	5,87	0,99

De acordo com os nossos cálculos foi possível identificar o estado (2) ${ }^{2} \Sigma^{-}$, o qual, experimental e teoricamente se pensou ser um estado ${ }^{2} \Delta^{1}$. Foi possível confirmar a existência do estado excitado $(4)^{2} \Pi^{2}$.

O presente estudo caracteriza vários estados eletrônicos da molécula CaAl, dos quais, até onde sabemos, alguns foram determinados pela primeira vez, tais como: (2) ${ }^{2} \Sigma^{-},(4)^{2} \Sigma^{+},(4)^{2} \Pi$ e $(2)^{2} \Delta$. Os resultados obtidos para os estados $(2)^{2} \Sigma^{-}$e (4) ${ }^{2} \Pi$ estão em concordância com as observações teóricas e experimentais existentes ${ }^{1,2}$.

FAPESP, CNPq, CENAPAD-SP

[^276]Tabela 1. Constantes espectroscópicas de alguns estados eletrônicos da molécula CaAl.

Comparison of the first hyperpolarizability of two porphyrin derivatives measured using HRS and calculated by PM6

Antonio E. H. Machado (PQ) ${ }^{1 *}$, Leonardo T. Ueno (PQ) ${ }^{1}$, Weverson R. Gomes (IC) ${ }^{1}$, Diesley M. S. Araújo (IC) ${ }^{1}$, Newton M. Barbosa Neto (PQ) ${ }^{2^{*}}$, Paulo L. Franzen (PQ) ${ }^{3}$, Sérgio C. Zilio (PQ) ${ }^{3}$, Rodrigo de Paula (PG) ${ }^{4}$, José A. S. Cavaleiro (PQ) ${ }^{4}$
${ }^{1}$ Universidade Federal de Uberlândia, Instituto de Química - Laboratório de Fotoquímica; Caixa Postal 593-CEP 38400-902 Uberlândia, Minas Gerais, Brasil. aeduardo@ufu.br
${ }^{2}$ Universidade Federal de Uberlândia, Instituto de Física. newton@infis.ufu.br
${ }^{3}$ Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brasil.
${ }^{4}$ Universidade de Aveiro, Departamento de Química; 3810-193 Aveiro, Portugal.
Keywords: First hyperpolarizability, porphyrin derivatives, HRS, DFT, PM6.

The interest in organic compounds with large nonlinear optics (NLO) responses combined with other desirable properties has been stimulated by the expectation of lower cost, faster optical response, high versatility, possibility of tunning the structure in terms of their NLO properties, and NLO susceptibilities comparable or superior to conventional materials ${ }^{1-4}$.
In this communication we report the comparison between the first hyperpolarizability (β), measured for two porphyrin derivatives (the free-base (P1) and zinc (P2) 5,10,15,20-tetraiodide(1,3-dimethylimidazol-2-yl) porphyrin), by an extension of the conventional Hyper-Rayleigh Scattering technique (HRS) ${ }^{5}$ and the calculated using a semiempirical method (PM6).

Hacultang Discussion

The structure of the studied compounds was optimized by a DFT methodology (B3LYP/6$31 \mathrm{G}(\mathrm{d}, \mathrm{p})$) using the GAUSSIAN 03 program. The average values of polarizability and first static hyperpolarizability (for $\hbar \omega=0.0 \mathrm{eV}$) were calculated using the PM6 semi-empirical method in a TDHF approach, implemented in MOPAC 2007.
Both compounds present expressive $\beta_{H R S}$ values (Table 1). The $\beta_{\text {HRS }}$ of P2 is around 2.40 times the measured for P1, due to the positive influence of Zn (II) on π-electron delocalization ${ }^{1,3,6}$, improving the NLO properties. This is cleared by an analysis of the HOMO and LUMO molecular orbitals (not shown).

Table 1. First hyperpolarizability of $P 1$ and $P 2$, measured by HRS.

Compound	$\beta\left(\mathrm{cm}^{5} / \mathrm{esu}\right)$
P1	366×10^{-30}
P2	879×10^{-30}

A similar ratio was estimated using data from semiempirical calculation (Table 2).
Table 2. Average polarizability ($\langle\alpha\rangle$) and hyperpolarizability $(\langle\beta\rangle)$ calculated for P1 and. P2.

Compound	$\langle\alpha\rangle\left(\AA^{3}\right)$	$\langle\beta\rangle\left(\mathrm{cm}^{5} / \mathrm{esu}\right)$
P1	100	20×10^{-30}
P2	103	39×10^{-30}

The $<\alpha>$ suggests that these compounds should be highly polarizable, agreeing with spectroscopic data (not shown). This property must be strongly influenced by the partial ionic character of the 1,3dimethylimidazol -2-yl moiety linked to the positions $5,10,15$ and 20 of the macrocycle. The calculated $<\beta\rangle$, despite the values very far from the experimental values, gives, however, a ratio that shows good agreement with the experimental data.

Despite the incapacity of semi-empirical methods to do a quantitative prediction of NLO data, and the methodological challenges for DFT and $a b$ initio methods to do good quantitative predictions, PM6 TDHF furnished a good prediction of $\beta_{\mathrm{P} 2} / \beta_{\mathrm{P} 1}$ with low computational cost.

FAPEMIG, CNPq and Fundação para a Ciência e a Tecnologia (FCT/FEDER) for funding the Aveiro research group and for the PhD grant awarded to one of us (R. de Paula).

[^277]
Phase selectivity in organic-inorganic hybrid semiconductors.

Gustavo Martini Dalpian (PQ)* gustavo.dalpian@ufabc.edu.br
Universidade Federal do ABC, Centro de Ciências Naturais e Humanas, Rua Santa Adélia, 166, Santo André, SP, 09210-170
Palavras Chave: Hybrid semiconductors, organic, inorganic

We studied the structural and electronic properties of a new class of hybrid organicinorganic materials, $\mathrm{A}_{\| 1} \mathrm{~B}_{\mathrm{VI}}(\mathrm{en})_{0.5}(\mathrm{~A}=\mathrm{Zn}$ and Cd and $B=S$, Se , and Te).[1] These materials have been shown to exhibit a number of unusual structurally dependent properties that are not typically found in conventional inorganic and organic materials. The observed phases are called alpha(I), alpha(II), and beta, and the general chemical trends are revealed and are consistent with experimental observations. A kinetic growth model is proposed to explain the experimental observation of the phase selection for these hybrid materials.

R Resuls anolergeussion

The optimized lattice parameters of all the studied materials were calculated and compared to experimental data, showing a good agreement. The lattice parameters in the a and b directions are related to the inorganic slabs, and in the c direction it is related to the stacking direction of the superlattices.
Considering the same inorganic material, the c lattice parameter of the alpha(II) phase is much smaller than that of the alpha(I) phase.
The total energy differences between different phases are small, on the order of 0.3 eV per 64 atom cell. The total energy for all the hybrids follows the same trend, $E($ alpha(I)) $<E($ beta $)<$ $E($ alpha(II)), that is, the alpha(I) phase is energetically the most stable at low temperature. The total energy differences between the alpha(I) and beta phases and between the alpha(I) and alpha(II) phases tend to decrease when the corresponding bulk II-VI binary lattice constant increases.

[^278]
I would like to thank my co-authors C.-Y. Moon, Y. Zhang, S.-H. Wei, X.-Y. Huang and J. Li. I would also like to thank financial support from FAPESP and CNPq.

[^279]
Relação Estrutura-Atividade de Compostos Artemisinínicos Anticâncer HepG2, através de MEPs e Orbitais Moleculares- HOMO e LUMO

Jardel Pinto Barbosa(PG)*, Antonio F. de Figueiredo(PG), João E. V. Ferreira(PG), Cleydson B. R. dos
Santos(PG), Marcos A. B. dos Santos(PG), Elierge B. Costa(PG),

Alexandre de A. Maciel(PG), Maycon S. Lobato(PG), Marcio de S. Farias(PG), José C. Pinheiro(PQ). jardel@ufpa.br

Laboratório de Química Teórica e Computacional, Programa de Pós-Graduação em Química Palavras Chave: Câncer, MEP, HOMO, LUMO

11H1rectucion

A incidência de câncer no Brasil, segundo o INCA, nos últimos anos, foi acima de 467.400 novos casos. Esta doença é caracterizada pela multiplicação e propagação descontrolada de formas celulares anormais do próprio organismo.
Em função do grande numero de casos da doença tem sido necessário a busca por estratégias para redução e tratamento através de drogas (quimioterapia). Segundo a literatura ${ }^{1}$, a artemisinina e seus derivados são mais tóxicos para células cancerosas do que para células normais, isso possibilita a abertura de uma nova perspectiva na terapia contra essa doença.
Preliminarmente aplicamos o potencial eletrostático molecular (MEP) no estudo da relação estruturaatividades de compostos artemisinínicos da literatura. É sabido que artemisinina e seus derivados ativos contra o câncer, assim como na malária, apresentam a ocorrência da função endoperóxido na sua estrutura, isso possibilita o planejamento de novos derivados considerando essa característica desses compostos. Também exploramos, dentro do conceito relação estrutura-atividade, os orbitais de fronteiras dos compostos estudados.

Na Figura 1 mostramos os mapas de MEPs para dois dos artemisinínicos ativos estudados (a e b). Nessa figura, como pode ser evidenciado pelos valores do MEP (ua), a região de potencial mais negativo, que envolve a função endoperóxido (anel trioxano), é similar nos dois compostos.

FIGURA 1. Mapas de MEPs de compostos artemisinínicos estudados
A Figura 2 mostra os orbitais de fronteira Homo e Lumo dos dois compostos ativos (a-menos ativo e bmais ativo) estudados. Como pode ser notado, os lobos do HOMO de um dos compostos (a) estão posicionados sobre a função endoperóxido, estendendo-se para o oxigênio com dupla ligação,
enquanto, que o outro composto (b) tem os lobos do HOMO fora do endoperóxido (no substituinte). Por outro lado, como podemos notar, o LUMO do composto menos ativo (a) esta posicionado sobre átomos fora da região do endoperóxido, principalmente, no anel contendo oxigênio com dupla ligação, enquanto, no artemisinínico mais ativo (b) este orbital encontra-se situado em átomos dos substituinte.

FIGURA2. Orbitais de fronteira (HOMO e LUMO) de compostos artemisinínicos estudados

1. A região de potencial mais negativo em torno da função endoperóxido é similar nos dois artemisinínicos.
2. No composto mais ativo (b) o HOMO está posicionado no substituinte químico, enquanto, no menos ativo (a) esse orbital esta posicionado no endoperóxido e no anel contendo oxigênio com dupla ligação.
3. O LUMO no composto mais ativo (b) também se situa em átomos do substituinte, enquanto, no menos ativo (a) o mesmo esta posicionado em átomos do anel que contem o oxigênio com ligação dupla.

CNPq, LQTC-UFPa.

[^280]
Estudo de moléculas $\left[y(t p y-S H)_{2}\right]^{\mathrm{x}}$ utilizando DFT com correção de autointeração.

Matheus P. Lima* ${ }^{11}(\mathrm{PG})$, Renato B. Pontes ${ }^{1}(\mathrm{PG})$, Antônio J. R. da Silva ${ }^{1}(\mathrm{PQ})$, A. Fazzio $^{1}(\mathrm{PQ})$
mplima@if.usp.br
${ }^{1}$ Departamento de Física dos Materiais, Universidad de São Paulo.
Palavras Chave: Correção de auto-interação, DFT, metal de transição.

THTQ 0 (Toxo

Na teoria do funcional da densidade (DFT), o funcional exato para a energia do estado fundamental é completamente livre de autointeração. Entretanto, em aproximações tais como LDA, GGA(PBE), etc. existe uma contribuição espúria gerada pelo não cancelamento dos termos de auto-interação no funcional Energia Total. A correção de auto-interação (SIC) consiste em subtrair estes termos de auto-interação, tornando o sistema livre desta contribuição indesejável. Esta correção é importante em sistemas com orbitais localizados e/ou compostos de metais de transição. Neste trabalho, exploramos uma proposta de correção de auto-interação sugerida por A. Filippetti, e N. Spaldin ${ }^{1}$. Fizemos uma implementação computacional no código SIESTA, que utiliza bases numéricas estritamente localizadas e DFT. Neste trabalho, os sistema de interesse são moléculas do tipo $\left[y(t p y-S H)_{2}\right]^{x}$, onde " y " representa um metal de transição (Co, Fe ou Ni), " x " está associado ao estado de carga ($0,+$, $2+$ e 3+) e tpy-SH indica 4-(mercapto)-2,2:6,2terpyridinyl. Trabalhos anteriores mostraram que estas moléculas poderiam ser utilizadas como transistores ${ }^{2}$. Sendo, portanto, de grande interesse tecnológico.

Fizemos um estudo sistemático comparando resultados com e sem a inclusão do SIC para todos os sistemas de interesse. Nos cálculos SICGGA e GGA utilizamos bases do tipo DZP e a parametrização PBE para o funcional de troca e correlação. A forma estrutural destas moléculas é similar ao $\left[\mathrm{Fe}(\mathrm{tpy}-\mathrm{SH})_{2}\right]$ (figura 1), onde os metais de transição ocupam a posição central.

Figura 1. Estrutura da molécula $\left[\mathrm{Fe}(\mathrm{tpy}-\mathrm{SH})_{2}\right]$.

A correção de auto-interação torna a interpretação do espectro de Kohm-Sham como energias de ionização mais acurada ${ }^{3}$. A correção devido à subtração dos termos indesejáveis de auto-interação gera modificações relativamente grandes nos níveis de energia desta molécula. Na tablela 1 podemos apreciar a importância dessa correção para átomos de metais de transição.

Tabela 1: Desdobramento dos orbitais " d " do

$\mathrm{Fe}^{2+}, \mathrm{Co}^{2+} \mathrm{e} \mathrm{Ni}$				
	$\Delta \varepsilon^{\text {GGA }}$ isolados (em eV). $\Delta \varepsilon=\varepsilon_{\mathrm{d}+}-\varepsilon_{\mathrm{dl}}$			
Fe^{2+}	4.1	$\Delta \varepsilon^{\text {SIC-GGA }}$	$\Delta \varepsilon^{\text {SIC-GGA }}-\Delta \varepsilon^{G G A}$	
Co^{2+}	3.0	10.0	5.9	
Ni^{2+}	2.0	7.7	4.7	

O desdobramento $\Delta \varepsilon$ gerado pela interação de troca em átomos isolados (tabela 1), revela a importância da correção de auto-interação nas moléculas aqui estudadas. O spin total destas moléculas é definido pela ocupação dos orbitais " d " dos metais de transição, que se desdobram em " $t_{2 g}$ " e "e" se considerarmos que a os metais de transição sentem um campo octaédrico gerado pela molécula. De fato, existe uma competição entre o efeito do campo molecular e o efeito da interação de troca.

Conclubges

Em nosso estudo das mléculas $\left[y(t p y-S H)_{2}\right]^{x}$ para diferentes estados de carga, mostramos que a inclusão da correção de auto-interação é importante para a descrição correta dos orbitais tipo Kohn-Sham. Em alguns casos observamos uma mudança no momento magnético local.

- Matratesinictios

Agradecemos à FAPESP e ao CNPQ pelo apoio financeiro.

[^281]
Efeito da Correlação Eletrônica na Transferência de Carga no Par Citosina-Guanina

João Bosco P. da Silva (PQ)*, Carlos Henrique B. Cruz (IC).
Departamento de Química Fundamental - Universidade Federal de Pernambuco, 50740-540, Recife (PE), Brasil. paraiso@ufpe.br

DNA, transferência de carga, ab initio, cistosina-guanina

phtednes 0

Existem vários trabalhos na literatura descrevendo parâmetros estruturais, energéticos e eletrônicos de sistemas modelos de pares de bases do DNA de Watson e Crick na sua geometria de equilíbrio. Entretanto, não existem trabalhos envolvendo cálculos químico-quânticos que descreva esses parâmetros durante o processo de separação da dupla fita. Portanto, neste trabalho foram realizados cálculos HF/6-31G(d,p), MP2/6-31G(d,p)//HF/631G(d,p) e MP2/6-31G(d,p) para descrever as propriedades acima citadas para o par de bases Citosina-Guanina (CG) quando submetidos a três tipos de separações: a) afastamento-1 onde as distâncias das três ligações de hidrogênio (L.H.) foram sistematicamente aumentadas, b) afastamento-2 onde a distância da L.H. N1-H...O14 foi aumentada e c) o afastamento-3 onde a distância da L.H. O8...H-N24 foi aumentada, ver esquema-1. Em cada caso, o aumento das L.H. ocorreu a passos de $0,5 \AA$ Á, com o resto da geometria molecular sendo completamente otimizado.

Esquema 1 - Três afastamentos do par CG estudados.

Na Figura 1 é apresentado o perfil da energia de ligação (E.L.) e da transferência de carga ($\Delta \mathrm{Q}$) para os afastamento-1, -2 e -3. Para o afastamento-1 existe uma diferença significativa nos valores da E.L. e de $\Delta \mathrm{Q}$ nos primeiros passos próximos a geometria de equilíbrio entre os cálculos HF (vermelho) e MP2 (preto). Por outro lado, nos afastamentos-2 e -3, esses parâmetros são claramente distintos, entre as curvas HF e MP2, em todo intervalo investigado.

Em geral, os valores da E.L. e $\Delta \mathrm{Q}$ calculados no ponto, i.e., MP2/6-31G(d,p)//HF/6-31G(d,p) (azul) são bem similares àqueles calculados com a geometria otimizada MP2/6-31G(d,p). O $\Delta \mathrm{Q}$ no afastamento-3 é particularmente interessante, pois o aumento da L.H. O8...H-N24 leva a uma mudança no sentido da transferência de carga, que na geometria de equilibrio (Passo 0) é da citosina \rightarrow guanina. Isto está associado à quebra das L.H.'s O8...H-N24 e N3...H-N16 (que doam carga da citosina para a guanina) e a manutenção da L.H. N1-H...O14 que retrodoa carga no sentido inverso.

Figura 1 - Perfil calculado da energia da L.H. e de ΔQ nos afastamentos-1, -2 e -3 no par CG.

Gomichisores

$O \Delta Q$ se dá no sentido $C \rightarrow G$ na geometria de equilíbrio. Este diminui durante os processos de afastamento. Para a maioria das curvas há uma diferença significativa entre os valores HF e MP2. Os cálculos MP2/6-31G(d,p)//HF/6-31G(d,p) são uma boa alternativa para estudar as propriedades energéticas e eletrônicas do dímero CG.

A Olobechinchios

CNPq, FACEPE

Estudo Teórico do Complexo de Hidrogênio da Hidantoína

Daniela Nadvorny* (PG), Eduardo C. Aguiar (PG), Marcus Vinícios P. dos Santos (PG), Silvânia M. de Oliveira (PG) ${ }^{\dagger}$ e João Bosco P. da Silva (PQ)

Departamento de Química Fundamental - Universidade Federal de Pernambuco, 50740-540, Recife (PE), Brasil.
*nady@ufpe.br, ${ }^{\dagger}$ in memorian.
Palavras-chave: hidantoína, Complexo de Hidrogênio, DFT.

Ihimelucao

A imidazolidin-2,4-diona, ou simplesmente hidantoína (Figura 1), representa a estrutura de partida para a síntese de vários compostos derivados com diferentes atividades biológicas. Por exemplo, os compostos 5,5-dimetil-hidantoína, 5-benzilideno-3-fenil-hidantoína e o 3-(4-cloro-benzil)-5-(4-nitro-benzilideno)-hidantoína apresentam atividades anticonvulsivante, antibacteriano e esquistossomicida, respectivamente [1].
Figura 1: Estrutura com numeração do anel
heterociclico imidazolidin-2,4-diona (hidantoína).
A título de subsidiar os estudos sintéticos com informações sobre como esse anel está disposto, i.e., se na forma isolada ou formando auto-agregação (complexos de ligação de hidrogênio (L.H.)), neste trabalho, cálculos DFT-B3LYP/6-31++G(d,p) foram realizados para investigar parâmetros geométricos, energéticos e eletrônicos devido à formação do dímero da hidantoína (Figura 2).
Figura 2: Estruturas do dimero da hidantoína.

Figura 2: Estruturas do dímero da hidantoína.

Nossos cálculos indicam que a hidantoína livre e o seu dímero são previstos nos grupos pontuais C_{s}, e $\mathrm{C}_{2 \mathrm{~h}}$, respectivamente. As principais mudanças geométricas ocorreram nos comprimentos das ligações e nos ângulos planares próximos das L.H.'s. A distribuição de cargas de Mulliken também aponta
para mudanças significativas apenas nos átomos diretamente envolvidos nas L.H.'s. Na Tabela 1, parâmetros energéticos e vibracionais decorrentes da formação do dímero são apresentados. Percebe-se que tanto os picos associados aos osciladores $\mathrm{C} 4=\mathrm{O}$ como N3-H são deslocados para menores freqüências e maiores intensidades, porém este último em maior extensão. Do ponto de vista energético, cálculos B3LYP/6-31++G(d,p) foram também realizados para o dímero da maleimida (onde o fragmento $\mathrm{N} 1-\mathrm{H}$ da hidantoína é substituído por $\mathrm{C}-\mathrm{H}$) e observa-se uma energia de ligação menor em $10,76{\mathrm{~kJ} . \mathrm{mol}^{-1}}^{\text {. }}$.

Tabela 1: Variações B3LYP/6-31 energéticos (zpe+BSSE) e infravermelho entre o complexo monômero I da hidantoína.	+G(d,p) nos parâmetros espectroscópicos no de hidrogênio ll e o
$\Delta E_{B S S E}^{0}\left(\mathrm{~kJ} \cdot \mathrm{~mol}^{-1}\right)$	-47,52
$\Delta V_{N-H}\left(\mathrm{~cm}^{-1}\right)$	-313
$\Delta v_{C=O}^{\operatorname{sim}}\left(\mathrm{cm}^{-1}\right)$	-8
$\Delta v_{C=O}^{\text {assim }}\left(\mathrm{cm}^{-1}\right)$	-33
$A_{N-H}^{C} / A_{N-H}^{M}$	25,5
$A_{C=O}^{C, \operatorname{sim}} / A_{C=O}^{M, s i m}$	1,6
$A_{C=O}^{C, \text { assim }} / A_{C=0}^{M, \text { assim }}$	2,5

Nossos resultados B3LYP/6-31++G(d,p) mostram que a formação do dímero da hidantoína leva: a) a alterações estruturais e de distribuição de cargas significativos apenas nos sítios próximos as L.H.'s; b) A energia da L.H. no dímero da hidantoína é maior que no dímero da maleimida; c) As principais mudanças espectroscópicas no IV são o deslocamento da freqüência N3-H para o vermelho e o aumento da intensidade deste pico em c.a. 26 vezes. Cálculos para o dímero III encontram-se em andamento no nosso laboratório.

MREMrocementos.

CNPq, FACEPE

[^282]
Simulação ab initio da influência da espessura de MgO na adsorção de CO em $\mathrm{MgO} / \mathrm{Ag}(001)$.

R. S. Alvim, D. G. Costa, A. A. Leitão
Departamento de Química - UFJF

A. A. Leitão, R. B. Capaz, L. G. Dias, H. Niehus, C. A. Achete

Divisão de Metrologia de Materiais - INMETRO
R. B. Capaz

Instituto de Física - UFRJ
H. Niehus

Institut fur Physik, HU-Berlin

Um campo emergente na catálise heterogênea são as camadas ultrafinas de óxido suportadas em superfícies metálicas muito bem reconstruídas e preparadas. A densidade eletrônica muda de acordo com a variação do número de mono-camadas de óxido e o principio de todo o processo catalítico, a adsorção de moléculas.

Moléculas simples, com o CO , são utilizadas para o estudo inicial da superfície catalítica, que lhe proporcionará um melhor reconhecimento para futuras adsorções com moléculas específicas e complexas. Dentre os vários modelos óxido/metal propostos atualmente o $\mathrm{MgO} / \mathrm{Ag}$ (001) foi selecionado pela compatibilidade entre os parâmetros de rede do MgO e da Ag , que facilita muito a construção de um modelo teórico consistente com o material obtido experimentalmente. Foi utilizado cálculo ab initio DFT, aproximação generalizada do gradiente (GGA) para correção de correlação de troca,
pseudopotenciais de Troullier- Martins para elétrons do núcleo e ondas planas, enquanto a base se ajustou para elétrons de valência. O suporte metálico se apresenta com 3 mono-camadas de Ag , variando o número das mono-camadas de MgO em 1 , 2 e 3 , que se encontram otimizadas.

Uma camada de vácuo de $15^{\circ} \mathrm{A}$ será colocada entre cada bulk para a adsorção das moléculas. Além de resultados da energia de adsorção das moléculas de CO foram analisados alguns parâmetros, como as distância dC-O, rumpling $\mathrm{Mg}-\mathrm{Mg}$, rumpling $\mathrm{Mg}-\mathrm{O}, \mathrm{dMgO}-\mathrm{MgO}$, dCO-MgO e dMgO-Ag (interface). De acordo com o modelo teórico proposto e os resultados obtidos, pode-se observar uma boa convergência dos mesmos com relação a variação da espessura de MgO e ao procedimento experimental.

ESTUDO DE INTERMEDIÁRIOS DA SÍNTESE DO SISTEMA METALIÓXIDO A PARTIR DE COMPOSTOS TIPO HIDROTALCITA.

Florence P. Novais ${ }^{* 1}$ (IC), Viviane da S. Vaiss ${ }^{1}$ (PG), Kátia R. Souza ${ }^{2}(\mathrm{PQ})$, Lúcia G. Appel ${ }^{2}(\mathrm{PQ})$, Alexandre A. Leitão ${ }^{1}(\mathrm{PQ})$.

1. Grupo de Físico-Química de Sólidos e Interfaces, GFQSI-UFJF
2. Laboratório de Catálise, LACAT, Instituto Nacional de Tecnologia
*flornovais@yahoo.com.brPalavras Chave: hidrotalcita, catálise, intermediário, hidróxidos mistos

Os compostos tipo hidrotalcita têm grande importância em catálise, visto que além de catalisadores, são também precursores e suportes para os mesmos. Também chamados de HDL (hidróxidos duplos lamelares), são precursores do sistema metal/óxido.

O objetivo do trabalho é estudar intermediários formados na reação de síntese do sistema metal/óxido a partir de compostos tipo hidrotalcita com Zn^{2+} e Cu^{2+}. É importante estudar esses intermediários de reação pois as características físico-químicas dos precursores influenciam nas propriedades dos catalisadores. Além disso, com esse estudo, visa-se explicar o efeito memória, que é o retorno do material calcinado ao material precursor.

Foi usado cálculo ab initio,com condições periódicas de contorno, Teoria do Funcional de Densidade (DFT) com potencial de troca e correlação GGA e LDA e pseudopotencial Troullier-Martins.

Foram geradas células unitárias pela substituição de Mg^{2+} por Cu^{2+} e Zn^{2+}, em diversas proporções e configurações, e otimizadas, para calcular a energia total e encontrar o intermediário mais estável.

Foi feito também estudo de outros intermediários já com a forma do sistema metal/óxido. Foi encontrado um intermediário e sua geometria foi otimizada.

Figura 1: Energia de formação de intermediários de hidróxidos mistos
Figura 2: Intermediário mais próximo do sistema metal/óxido.

(Goh ci MLOAS

Foi obtido o intermediário mais estável do ponto de vista energético, com 25% de zinco na estrutura. Além disso, foi obtido também um intermediário com a estrutura mais próxima do sistema metal/óxido, com variação de energia de $41,1 \mathrm{Kcal} / \mathrm{mol}$, que é consistente com estruturas de produtos de calcinação.

Agradecemos ao CNPQ, PBIC-UFJF e ao LACAT.

[^283]
Cálculos ab initio da energia de formação de compostos tipo-brucita.

Deyse G. Costa ${ }^{1}$ (PG)*, Alexandre B. Rocha ${ }^{2}$ (PQ), Sandra S. X. Chiaro ${ }^{3}$ (PQ), Wladmir F. Souza ${ }^{3}$ (PQ),
Alexandre A. Leitão (PQ) ${ }^{1}$.

* deysegc@yhaoo.com.br

1- UFJF, 2 - UFRJ, 3 - Cenpes.
Palavras Chave: ab initio, compostos tipo-brucita, compostos tipo-hidrotalcita, energia de formação, HDL . mistura sugeriu que a formação de compostos tipobrucita $\mathrm{Cu}-\mathrm{Mg}$ e $\mathrm{Zn}-\mathrm{Mg}$. A razão preferencial do $\mathrm{Cu} / \mathrm{Mg}$ e do $\mathrm{Zn} / \mathrm{Mg}$ foram 1:1. Há indicações de que os compostos $\mathrm{Mg}_{x} \mathrm{Zn}_{1-x}(\mathrm{OH})_{2}$ sejam desordenados, enquanto os compostos $\mathrm{Mg}_{x} \mathrm{Cu}_{1-x}(\mathrm{OH})_{2}$ sejam organizados quanto à distribuição dos cátions nas lamelas. Foi previsto que a formação de compostos mistos $\mathrm{Ca}_{x} \mathrm{Mg}_{1-x}(\mathrm{OH})_{2}$ não deve acontecer, uma vez que não são energeticamente favorecidas. Todos os resultados teóricos estão que acordo com as indicações experimentais levantadas na literatura.

Con Misoes

Conclui-se deste trabalho, que diferentes cátions proporcionam características peculiares aos compostos mistos, dependendo dos elementos que constituem o hidróxido. E ainda, a dependência em tal composição e estrutura precisa se analisada para cada combinação de cátion. Não há uma regra genérica. O modelo construído para estudar as propriedades lamelares foi preditivo e consistente com as observações experimentais.

AGMogechinctos

UFJF, Cenpes.

Oxidação de sulfetos por oxo diperoxo complexos de molilbdênio contendo os ligantes $2,2^{\prime \prime}=$ bipiridina e \mathbb{N}, \mathbb{N}^{\prime}-dioxido- $2,2^{\prime}$ 'lbipiridina

Renato Fonseca Dias ${ }^{1}$ (IC) e Fabrício Ronil Sensato ${ }^{1, *}$ (PQ)
Centro Universitário Fundação Santo André, Departamento de Engenharia Materiais, Av. Príncipe de Gales, 821, Santo
André, 09060-650. e-mail: fabrício.sensato@fsa.br
Palavras Chave: Oxo diperoxo de molibdênio, transferência de oxigênio, sulfeto, abnitio, DFT, complexos de Mimoun

Oxo diperoxo complexos de metais de transição do grupo VI , de fórmula geral $\mathrm{MO}\left(\mathrm{O}_{2}\right)_{2} \mathrm{~L}_{1} \mathrm{~L}_{2}$ ($\mathrm{M}=\mathrm{Mo}$ ou We L_{1}, L_{2} são ligantes eletrodoadores) e conhecidos como complexos de Mimoun são compostos empregados na oxidação ambientalmente benigna, catalítica ou estequiométrica, de uma ampla variedade de substratos orgânicos, tais como, alquenos, aminas, sulfetos, entre outros. Em particular, o uso destes complexos para a oxidação de sulfetos tem despertado grande interesse, uma vez que se conjetura que o processo possa ser acompanhado de transferência de informação estereoquímica quando da presença de ligantes apropriados.
Em estreita colaboração com o grupo de síntese orgânica da Prof ${ }^{\text {a }}$ Dr. Quézia Cass [1] do DQUFSCar, nós investigamos teoricamente o mecanismo molecular de transferência de oxigênio de complexos de Mimoun contendo ligantes 2,2'bipiridina e $\mathrm{N}, \mathrm{N}^{\prime}$-dioxido-2,2'-bipiridina a uma variedade de sulfetos funcionais.

RGSURG60S G DisMIESGM

Os oxo diperoxo complexos de molibdênio investigados são aqueles representados na Figura 1. Estruturas de equilíbrio e mecanismos reacionais foram caracterizados empregando-se cálculos de estrutura eletrônica em nível DFT/B3LYP e teoria de estado de transição. O átomo de molibdênio foi descrito por um conjunto de base desenvolvido pelo método da coordenada geradora [2], enquanto o conjunto de base $6-311+G(2 d f, 2 p)$ foi utilizado para descrever os demais átomos

a)

Figura 1. Molecular descrição dos oxo-diperoxos complexos contendo ligantes bidentados a) $2,2^{\prime}$-bipiridina e b) $\mathrm{N}, \mathrm{N}^{\prime}$-dioxide-2,2'-bipiridina ($\mathrm{X}=\phi$ (sem substituinte), $\mathrm{NO}_{2}, \mathrm{Cl}, \mathrm{OCH}_{3}$)

Os parâmetros estruturais calculados para o complexo $\mathrm{MoO}\left(\mathrm{O}_{2}\right)_{2}\left(2,2^{\prime}\right.$-bipirina) reproduzem satisfatoriamente bem aqueles determinados experimentalmente. Por outro lado, nenhuma determinação estrutural da série $\mathrm{MoO}\left(\mathrm{O}_{2}\right)_{2}\left(\mathrm{~N}^{\prime}, \mathrm{N}^{\prime}-\right.$ dioxido-2,2'-bipiridina) foi previamente realizada experimentalmente e, assim, o presente estudo teórico proporciona a primeira determinação estrutural da série supracitada.
Em particular, a análise da composição orbital, via análise de decomposição de carga (CDA), associada aos respectivos estados de transição revela que o processo pode ser descrito como uma transferência de carga entre o orbital s do enxofre e o nível $\sigma^{*}(\mathrm{O}-\mathrm{O})$ associado ao grupo peroxo atacado, em consonância com prévio estudo baseado no simples modelo teórico $\mathrm{MoO}\left(\mathrm{O}_{2}\right)_{2} \mathrm{OPH}_{3}$ [2-3]. A dependência entre as energias do nível $\sigma^{*}(\mathrm{O}-\mathrm{O})$ do oxidante com a energia de ativação da reação foi perscrutada. Para tal, incluiu-se neste estudo outros complexos utilizados na oxidação de sulfetos, com características distintas, segundo o número de coordenação do átomo de molibdênio (seis ou sete), carga do ligante (se aniônico ou neutro) e força básica do ligante, a saber, pirazol; N-óxidopiridina; $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{NCO}_{2}^{-} ; \mathrm{N}, \mathrm{N}$-dimetillactamida. Uma linear correlação entre a energia de ativação e o nível de energia do nível $\sigma^{*}(\mathrm{O}-\mathrm{O})$ foi obtida.

As estruturas de equilíbrio dos oxo-diperoxos complexos de molibdênio contendo ligantes $2,2^{\prime}$ bipiridina e $\mathrm{N}, \mathrm{N}^{\prime}$-dioxido- $2,2^{\prime}$-bipiridina substituídos foram determinadas por cálculos de estrutura eletrônica. A energia de ativação para a oxidação de sulfetos diminui com a diminuição da energia do nível $\sigma^{*}(\mathrm{O}-\mathrm{O})$ do peroxo complexo.

\rightarrow CNPq (FRS); Programa de Incentivo à Iniciação Científica (PIIC)Fundação Santo André (RFD)

[^284]
INDO/S Spectra of Compounds Used as Photosensitizers for Photodynamic Therapy.

Cristina A. Setúbal ${ }^{1}$ (PG)* and Joaquim D. Da Motta Neto ${ }^{1}$ (PQ). crissetubal@uol.com.br
${ }^{1}$ Departamento de Química, Universidade Federal do Paraná, Centro Politécnico, Jardim das Américas, Curitiba, Paraná, CEP 81531-990.

Keywords: INDO/S, AM1, DFT, phthalocyanine, porphyrin, photodynamic therapy

Photodynamic Therapy (PDT) is a modality to treatment of diseases as cancer. PDT uses light, oxygen and a photosensitizer to induce tumour cells necrosis. The research about new photosensitizers has been intense in recent years. Most of the known photosensitizers are porphyrin and phthalocyanine derivatives [1].
In this work our objective was to validate a methodology that allows the proposal of new photosensitizers for use in Photodynamic Therapy. The main requirement for a good photosensitizer is a strong absorption in the region of red: bands of low-lying energy must have $\lambda_{\text {máx }}>650 \mathrm{~nm}$ [2].
The molecules studied herein include porphyrins, chlorins, bacteriochlorins, phthalocyanins and etiopurpurin derivatives. Geometries were optimized at semiempirical AM1 [3] and ab initio B3LYP/6-31G(d) $[4,5]$ levels. Spectra of optimized geometries were obtained using INDO/S [6,7].
Results and Discussion
Calculated results allowed us to establish two kinds of correlations about band positions and intensities of low lying bands of studied photosensitizers. Our results are summarized in Figures 1 and 2 below.

Figure 1. $\lambda_{\text {calcd }}$ at optimized geometries and $\lambda_{\text {exptt }}$.

Figure 2. Oscillator strengths (f) calculated at optimized geometries vs. observed ε.

Conc Mistors

Geometry optimizations at level B3LYP/6-31G(d), plus spectral calculations using INDO/S provide an adequate methodology to correctly describe the spectra of this kind of compound. AM1 geometries are not significantly different from B3LYP/6-31G(d) geometries. Even though they present larger errors in $\lambda_{\text {calcd. }}$, the ordering of the bands in the spectra is correctly described for all studied compounds.
It is possible to propose new photosensitizers based in structural modifications of this set of compounds, such as changing the metal used (Al and Zn) for Ru and Si .

CAS would like to thank CAPES for financial support.

[^285]
Defeitos do tipo Frenkel em nanotubos de $\mathbb{Z n O}$

Eduardo de Moraes ${ }^{1}(\mathrm{PG})^{*}$,José Divino dos Santos ${ }^{1}(\mathrm{PQ})$, João B. L. Martins ${ }^{2}(\mathrm{PQ})$, Elson Longo ${ }^{3}(\mathrm{PQ})$ eduquimica2003@yahoo.com.br

1- Universidade Estadual de Goiás, CP 459, Anápolis, GO, 75001-970
2- Universidade de Brasilia, IQ, CP 4478, Brasília, DF, 70904-970
3-Unesp,Química,Araraquara, SP.

Palavras Chave: nanotubo, ZnO , defeitos, semi-empírico

intiorduceto

Materiais de ZnO tem sido de grande interesse devido ao uso potencial em eletrônica e mecânica. ZnO é um material semicondutor (banda de $3,37 \mathrm{eV}$). Nanoestruturas de ZnO tem sido utilizadas em diversas aplicações como, por exemplo, armazenagem de H_{2}, sensor de H_{2} e etanol [1], fotocatalisadores e células fotoelétricas [2]. Defeitos em nanocristais de ZnO está diretamente relacionado com o band Gap dessas estruturas, influenciando nas suas propriedades condutoras [3]. Nanotubos de ZnO tem sido preparados por diversos métodos como decomposição térmica, síntese hidrotermal, transporte por fase vapor [4].

Resuluros eligcurseo

A partir de cálculos semi-emíricos AM1 utilizando-se o programa MOPAC 7.0, obteve-se a energia e o gap (Homo-Lumo) para o nanotubo de ZnO com 9 niveis e 10 unidades de ZnO por nível (180 átomos) para o estado singlet. Realizou-se então defeitos do tipo Frenkel (figura 1), onde moveu-se um átomo de Zn da sua posição inicial para uma região intersticial do nanotubo e comparou-se os resultados.

Figura 1. (a) Nanotubo vista lateral onde o Zn 1 e posicionado na região intersticial desligado dos O 2,20 e 21.(b) Nanotubo vista frontal. (c)

Nanotubo vista frontal e lateral com a vacância de Zn.

A variação de energia do nanotubo tipo armchair segundo a expressão:

$$
\mathrm{ZnO}(10,10)_{9} \rightarrow \mathrm{ZnO}(10,10)_{8} \mathrm{ZnO}(9,10)+\mathrm{Zn}_{i}^{2+}+V_{Z n}^{\prime \prime}
$$

foi aproximadamente +10 eV para várias posições do Zn intersticial. Esta barreira de potencial pode ser alcançada considerando as variações de temperatura submetidas no processo de síntese de nanotubos [4]. No entanto, o valor do gap do nanotubo $\mathrm{ZnO}(10,10)_{9}$ variou de $9,08 \mathrm{eV}$ para aproximadamente 3 eV nas várias posições onde o Zn intersticial foi colocado. Este valor corresponde ao valor da banda de condução do ZnO.

- Womalusors

Método semi-empírico AM1 apresentou uma variação de energia de 10 eV para a formação de um defeito de Frenkel em nanotubos de ZnO tipo armchair. Esta variação de energia e acompanhada com a variação de gap para valores próximos a 3 eV para cada estrutura. Este valor está de acordo com as propriedades elétricas do material.

Agliferminionios

CAPES, CNPq

Referência:

[^286]
Análise Conformacional Comparativa do Grupo Funcional $\mathbf{S O}_{2} \mathbf{N H}_{2}$ em Sulfonamidas

Francisco C. Lavarda (PQ)*, Ignez Caracelli (PQ)
Grupo de Biomoléculas e Materiais, Departamento de Física, Faculdade de Ciências de Bauru, Universidade Estadual Paulista - UNESP (lavarda@fc.unesp.br).
Palavras Chave: sulfonamidas, cálculo semiempírico, cálculo ab initio, análise conformacional.

Este estudo tem por objetivo comparar dados experimentais com resultados teóricos provindos de métodos de cálculos de orbitais moleculares nos níveis semiempírico e ab initio de teoria para a conformação molecular do grupo funcional $-\mathrm{SO}_{2} \mathrm{OH}$ das sulfonamidas. Surgiu da necessidade de determinarmos o método mais adequado para o cálculo da estrutura eletrônica de famílias de sulfonamidas que possuem atividade antimalarial e em vista do fato da valência do átomo de enxofre no grupo funcional (perfazendo um total de quatro ligações) em que supostamente os orbitais d desempenham um papel importante nas ligações químicas. Não sabíamos se os métodos semiempíricos mais comumente adotados seriam capazes de reproduzir adequadamente a geometria de equilíbrio, uma vez que estes se utilizam de uma base mínima de orbitais atômicos do tipo s e p. Então realizamos este estudo para comparar dados experimentais com resultados dos métodos semiempíricos mais empregados atualmente, com um método semiempírico e outro $a b$ initio que incluem os orbitais d na base.
A molécula cuja conformação molecular é investigada pelos métodos teóricos é a ciclohexanosulfonamida (Fig.1). Os dados experimentais da geometria de diversas moléculas que contém como parte de sua estrutura a ciclohexanosulfonamida foram obtidos do banco de dados Cambridge Structural Database.

Figura 1. A molécula estudada: ciclohexanosulfonamida.

Para o cálculo da estrutura eletrônica no nível de teoria semiempírico, usamos três métodos presentes no pacote Mopac: MNDO (Modified Neglect of Differential Overlap), AM1 (Austin Model 1) e PM3 (Parametric Method 3). Todos eles empregam uma base de orbitais atômicos s e p. Ainda no nível semiempírico, o método MNDO/d é uma modificação do método MNDO em que se passa a empregar também os orbitais d na base de orbitais atômicos. Os cálculos foram feitos com o programa Cache 5.0. Para o nível de teoria ab initio, usamos o pacote Gamess em um cálculo empregando a teoria do funcional da densidade com o funcional híbrido B3LYP e a base extensa e polarizada $6-31 \mathrm{G}^{*}$.

WRESUHEMDS G DISOMSGag

Em termos de comprimentos de ligação (CL), podemos dizer que os mais importantes a serem avaliados são as ligações do átomo de enxofre S-C, S-N e S-O. Para estes CLs, o método que apresenta, em média, o menor erro é o AM1. Se considerarmos todos os CLs presentes no grupo -SO2NH2, mantém-se esta tendência do AM1 apresentar o melhor resultado médio.
Os ângulos O-S-C apresentam bons valores para todos os métodos, sendo que a menor diferença á apresentada pelo método AM1.
A análise dos resultados não mostrou entre os métodos semiempíricos a esperada superioridade do MNDO/d. Isto parece demonstrar que os orbitais d não desempenham um papel central nesta configuração do átomo de enxofre.

Colicmuces

Comparando-se todos os dados, concluímos que pode-se empregar o método semiempírico AM1 para o cálculo da estrutura eletrônica de sulfonamidas.

AbIregodingitos

Agradecemos ao Laborátório de Cristalografia, Estereodinâmica e Modelagem Molecular (UFSCar) e ao Grupo de Sólidos Orgânicos e Novos Materiais (UNICAMP).

Electronic structure and antimalarial activity of alkoxylated and hydroxylated chalcones.

Augusto Batagin-Neto (PG) ${ }^{1,2_{*}^{*}}$, Francisco C. Lavarda (PQ) ${ }^{1}$
${ }^{1}$ Grupo de Biomoléculas e Materiais, Departamento de Física, Faculdade de Ciências de Bauru, Universidade Estadual Paulista - UNESP. ${ }^{2}$ PosMat, UNESP. (netobat@fc.unesp.br).

Keywords: antimalarials, chalcones, electronic structure, molecular modeling

$$
\begin{aligned}
& +148.080 \mathrm{BO}_{\left(9-11^{\prime}\right)}+146.651 \mathrm{CHAR}_{(7)} \\
& +118.771 \mathrm{CHAR}_{(8)}
\end{aligned}
$$

The descriptors involved are bond order (BO) and charge (CHAR).
The DF's cutoff is 0.294: to each compound, if DF ≥ 0.294 the compound is predicted to be active; otherwise the compound is predicted to be nonactive. This function presents a statistical significance higher than 99.99% (Wilk's Lambda $=$ 0.671 , Chi-square $=40.088$ with 5 degrees of freedom, and $p=0.000$). Approximately 81% of the 105 molecules are correctly classified with this model. Leave-one-out cross validation (in which each molecule is tested with a model derived from all the other molecules) present 76.2% of correctly classified molecules.

Although the DF is an excellent mean of testing the tendency of activity of an already synthesized molecule, it is interesting to have clues to develop new active compounds. It's possible to see that there are many ways to combine the descriptors to accomplish high activity. However, we focused our attention to the three regions of the basic molecule defined by the five descriptors: bonds $9-1$ ' 2 ', bond $4-5$, and charges $7+8$. Supported by another series of LDA studies, we can conclude that the first two regions are of essential importance to determine the degree of activity of new compounds.

Promemsion:
In order to achieve high antimalarial activity, the substitutions to ring A should induce a weak bond between carbons 4 and $5\left(\mathrm{BO}_{(4-5)}\right.$ should be as low as possible), and the substitutions to ring B should induce a strong bond between carbons 9 and 1^{1} ($\mathrm{BO}_{\left.(9-1)^{1}\right)}$ should be as high as possible) and a weak bond between carbons 1^{\prime} and $2^{\prime}\left(\mathrm{BO}_{\left(1-2^{\prime}\right)}\right.$ should be as low as possible).

C Aranomeoramenis

We would like to thank FAPESP Foundation for financial support.

Estabilização de pares quark-antiquark na presença de matéria atômica

Cristiano C. Bastos (PG)*, Antonio C. Pavão (PQ), Joacy V. Ferreira (PG)

Departamento de Química Fundamental, Universidade Federal de Pernambuco, Recife, PE, Brasil, 50.670-901
*cristianobastos@ufpe.br
Palavras Chave: quarks livres , cálculos HF

flioe Mrato

Embora quarks livres ainda não tenham sido identificados, variadas pesquisas desde os anos 1970 têm considerado esta possibilidade ${ }^{1-4}$. No presente trabalho apresentamos um aspecto ainda inexplorado sobre a possível estabilização de pares quark-antiquark na presença da matéria atômica.

MResulfioms el bovesto

Seguindo a dependência da energia com Z^{2} no átomo de hidrogênio, fitamos a curva mostrada na Fig. 1 de acordo com a equação $E=-k Z^{\alpha}$.

Figura 1. Fitting da energia eletrônica para átomos com $Z \pm 1 / 3 \mathrm{e} Z \pm 2 / 3$

No vácuo, o estado condensado de quaks e glúons pode ser representado pelas equações:

$$
\begin{align*}
& \text { glúon } \rightarrow q+q \tag{1}\\
& q+\underline{q} \rightarrow \text { glúon } \tag{2}
\end{align*}
$$

Consideremos o processo acima descrito acontecendo na presença de matéria atômica e admitamos a formação de átomos quarkônicos de acordo com a equação:

$$
\begin{equation*}
A+A+q+q \rightarrow A q+A q+\Delta E \tag{3}
\end{equation*}
$$

Como a dependência da energia com Z é nãolinear, a reação 3 será exotérmica. A tabela 1 mostra alguns resultados HF para a interação de diferentes átomos com quarks $u(+2 / 3)$ ed $(-1 / 3)$.

Tabela 1. Cálculo de $\Delta E(e V)$ para a equação 3

Átomo	$\mathrm{q}=\mathrm{d}, \mathrm{q}=\underline{\mathrm{d}}$	$\mathrm{q}=\mathrm{u}, \mathrm{q}=\underline{\mathrm{u}}$
H	$-3,02$	$-12,09$
B	$-7,95$	$-24,63$
O	$-8,72$	$-37,54$
Ca	$-14,30$	$-66,07$

Mesmo sabendo que a energia de interação de cor de um sistema quark-núcleo é bem superior à energia de interação eletrônica, podemos afirmar que ocorre uma estabilização do par quarkantiquark quando na presença da matéria atômica. Uma conseqüência dessa estabilização do par em relação ao estado condensado de glúons é que a presença da matéria atômica irá favorecer a formação da matéria hadrônica, isto é, a presença da matéria atômica induz à formação de mais matéria. A tabela também mostra que a estabilização do par é tanto maior quanto maior é a carga nuclear. Esse resultado está de acordo com Rújula et al ${ }^{4}$ que, a partir de cálculos de eletrodinâmica quântica, encontra uma preferência dos quarks livres para se ligarem a núcleos mais pesados.

Momicusoos
Admitindo a formação de átomos com carga nuclear fracionária concluímos que a matéria atômica pode representar um meio estabilizante do par quark-antiquark. Também observamos que existe uma preferência dos quarks livres de se ligarem a núcleos pesados, em detrimento de núcleos mais leves.

Agradecmantos

Agências CNPq e Capes pelo suporte financeiro.

[^287]
The isotopic dipole moment of HD averaged over vibrational wave functions

Aline Viol (IC), Denise Assafão (PG), Leonardo Diniz (PG), José R. Mohallem(PQ)
Laboratório de Átomos e Moléculas Especiais, Departamento de Física, ICEx Universidade Federal de Minas aviol@fisica.ufmg.br, rachid@fisica.ufmg.br isotopic dipole moment, vibrations

1nTL010 CUTGI

The dependence of the static isotopic dipole moment of HD with interatomic distance is already known [1]. In our laboratory a method and a program (ISOTOPE [2]) have been developed to generate adiabatically corrected electronic wavefunctions as well as potential energy curves and surfaces. With this it becomes possible to evaluate the vibrational effects on this quantity, without resorting to the Born-Oppenheimer approximation to these states, but without the need of unfeasible full nonadiabatic calculations as well. In this work we calculate the averaged isotopic dipole moment of HD over some of its low-lying vibrational states. We expect to perform better match between theoretical and experimental results, as well as to develop further this approach in the prediction of isotopic dipole moments of more complex isotopic molecules, with a special interest in HDO [3].

Bractirs

With the Cl method and a basis set specially designed [3] to reproduce the HD dipole moment at equilibrium geometry, we obtained the potential energy curve from $R=0.20 a_{0}$ to $3.0 a_{0}$, with a grid of 0.01 spacing. Evaluating the dipole moment at the minimum of the curve, $R=1.456 a_{0}$, the resulting dipole moment is $\mu=8.180 \mathrm{E}-4$ Debye. Solving the Schrödinger equation for nuclear motion and using the resulting $v=0$ vibrational wavefunction, we averaged the dipole moment $\mu(R)$ over this wavefunction, obtaining $\mu=8.441 \mathrm{E}$ 4 Debye. Further results for this and other vibrational states will be shown in the poster.

1- Drscussiom

The results obtained so far deserve further checking and improvement. They show, however, a remarkable concordance with nonadiabatic calculations of the HD dipole moment, which yields $\mu=8.5 \mathrm{E}-4$ Debye, in the ground state. Involvement of higher excited states will allow us to perform comparison with experimental results. This procedure seems to be unfeasible in full nonadiabatic calculations, so that it appears as the most promising feature of this work.

- AGHOMEOGGMGMts

Supported by Fapemig and CNPq.

1. Ford A. L. and Browne J. C., Phys. Rev A. 16 (1977) 1992.
2. Gonçalves C. P. and Mohallem J. R. J. Comput. Chem. 25 (2004) 1736. 3. Assafrão D. and Mohallem J. R., J Phys B: At. Mol. Opt. Phys. 40 (2007) F85.
3. Cafiero M. and Adamowicz L., Phys. Rev. Lett. 89 (2002) 073001.

ESTUDO TEÓRICO DO MECANISMO DE POLPAÇÃO ORGANOSSOLVE

Marcelo M. Tusi ${ }^{1}$ (PG), Eduardo Santos de Araujo ${ }^{2}$ (PQ), Julio M. Trevas dos Santos ${ }^{2}$ (PQ)*
${ }^{1}$ IPEN - Instituto de Pesquisas Energéticas e Nucleares; Programa Célula a Combustível; São Paulo - SP
${ }^{2}$ UNICENTRO - Universidade Estadual do Centro-Oeste; Departamento de Química; Guarapuava - PR. *e-mail: trevas@unicentro.br

Palavras Chave: Lignina; Polpação Organossolve; AM1.

Os processos de deslignificação, nos quais buscase a separação da lignina da celulose e hemiceluloses, são de grande importância industrial. Dos diferentes processos conhecidos, o organossolve é um dos mais promissores considerando as vantagens econômicas e redução de impacto ambiental. Contudo, o mecanismo de deslignificação neste processo ainda não está bem esclarecido.

Estudos da cinética de polpação organossolve em sistemas tamponados $[1,2]$ indicaram a ocorrência de um mecanismo de reação catalisada por ácido do tipo geral (Figura 1).

Figura 1. Mecanismo proposto para uma catálise especifica e geral.

Portanto, o objetivo deste trabalho foi estudar o mecanismo de polpação organossolve proposto nos estudos experimentais, procurando desvendar possíveis peculiaridades do mesmo e observando a coerência entre dados experimentais e teóricos.

O trabalho dividiu-se em três partes: estudo dos modelos de lignina (Figura 2), estudo dos precursores da reação e estudo dos intermediários da reação.

Todo o estudo teórico foi desenvolvido em ambiente FreeBSD (Unix Freeware para IBM PC's e compatíveis). Foram utilizados os programas opensource Viewmol, VEGA, GAMESS 98 e Molden. No GAMESS 98 foram efetuados os cálculos HartreeFock AM1 com otimização de geometria. O programa VEGA foi utilizado para conversão de formato e os softwares Viewmol e Molden para visualização e alteração de geometria.

I	II	III

Figura 2. Álcoois precursores da lignina: (I) álcool pcumarilico; (II) álcool trans-coniferilico; (III) álcool transsinapílico.

Como era esperado a adição de grupos metóxi, ligados ao anel aromático, confere uma maior estabilidade ao composto. Portando, a ordem de estabilidade dos precursores de lignina é álcool p-cumarílico < álcool trans-coniferílico < álcool trans-sinapílico.

O estudo teórico, em fase gasosa, permitiu observar que a reação, energeticamente, tem como rota principal a Rota 1 da Figura 1, identificada como sendo uma catálise geral. Através dos cálculos também foi possível concluir que o ataque nucleofílico dá-se preferencialmente no carbono alfa, que é o mais deficiente de elétrons.

Comicisoyes

Os métodos usados neste estudo foram bastante satisfatórios uma vez que os resultados deste estudo são concordantes com aqueles encontrados pelo estudo experimental.

[^288]Análise da diferença HOMO-LUMO, das cargas, e da estabilidade de modelos de [$\left.\left(\mathrm{MgF} 2_{2}\right)_{\mathrm{n}}\right]_{\mathrm{m}}$, com métodos PM3 e Hartree-Fock com a base de Huzinaga; $n=6,8,10$, $12,14,16,18,20$ e $30 ; m=1,2,3$; .
Ferreira, M. D. ${ }^{(1)^{*}}$, Santos, J. D. ${ }^{(1)}$, Martins, J.B.L ${ }^{(2)}$, Longo, E ${ }^{(3)}$, Taft, C.A ${ }^{(4)}$

* UEG - Universidade Estadual de Goiás, UnUCET - Química, madouquim@yahoo.com.br, jdsantos@ueg.br.
* UEG - Universidade Estadual de Goiás, UnUCET - Química, madouquim@yahoo.com.br, jdsantos@ueg.br.
(1) UNB - Universidade de Brasília - Química - lopes@unb.br.
(2) UNESP - Araraquara - Química - elson@iq.unesp.br.
(3) CBPF - Centro Brasileira de Pesquisas Físicas-
catff@terra.com.br
keywords: Nanotubes, semi-empirical, homo-lumo, huzinaga.

Thiopricsal

Nanoestruturas (one-dimensional (1D)), tem um potencial de aplicações em eletrônicos construídos em nanoescala. Enquanto parte de um vasto trabalho focado em materiais de carbono, metais e óxidos e considerável estudo sobre nanoestruturas de fluorídricos[1].

Figura 1: Modelos para [(MgF2)n]m

Foram feitos modelos, figura 1, e cálculos semiempíricos, método PM3 e cálculo ab-initio, com método Hartree-Fock e base Huzinaga, resultando na otimização das três distãncias: $\mathrm{d}_{\mathrm{Mg}}-\mathrm{Mg}$, $d_{F-F} e^{d_{M g-F}}$. Os valores de GAP(eV) na tabela1 e figura2 para MgF_{2}.

Tabela 1: GAP(eV) para $\left[(\mathrm{MgF} 2)_{\mathrm{n}}\right]_{\mathrm{m}}$. Cálculo SemiEmpírico método PM3.

$\left[(M g F 2)_{n}\right]_{2}$	d Mg-Mg	d F-F	d Mg-F
$n=6$	9,16981	9,35976	10,10558
$n=8$	9,66728	10,16541	10,38209
$n=10$	9,86718	10,29056	10,48701
$n=12$	10,0322	10,32913	10,54110
$n=14$	10,06393	10,37026	10,57337
$n=16$	10,08458	10,39732	10,59428
$n=18$	10,15847	10,41606	10,60862
$n=20$	10,16914	10,42967	10,61892
$n=30$	10,13408	10,40654	10,64357

Figura 2: GAP(eV) para [(MgF2)n]m

Conchisoes

O crescimento dos nanotubos de $\left[\left(\mathrm{MgF}_{2}\right)_{\mathrm{n}}\right]_{\mathrm{m}}$ levam a resultados que mostram uma estabilização das estruturas, conforme ocorre uma a maior complexidade destes clusters cilíndricos.

Valfageraniontos

A Universidade Estadual de Goiás, a UnB, e ao LiECUFSCar - CNPq

References

[1] Miinhua Cao, et.al. Elsevier. Journal Solid Satate Chemistry. 177(2004)2205-2209.
[2] Ruppalt, L.B, Albrecht P.M, Lyding, J.W. Deposition and STM investigation of single-walled carbon nanotubes on GaAs. Nanotechnology 2004; 10.1109 .

Computational study of $\left[\left(\mathrm{SnO}_{2}\right)_{n}\right]_{m}$ nanotubes

Santos, J. D. ${ }^{(1)^{*}}$,Ferreira, M. D. ${ }^{(1)}$, Martins, J. B. L. ${ }^{(2)}$, Longo, E. ${ }^{(3)}$ and Taft C. A. ${ }^{(4)}$
(4) *UEG, Universidade Estadual de Goiás, UnUCET, Química, madouquim@yahoo.com.br, jdsantos@ueg.br.
(5) Universidade de Brasília, Instituto de Química, LQC, CP 4478, Brasília, DF, 70904970, Brazil, lopes@unb.br.
(6) UNESP, Instituto de Química, LIEC, CEP 14801-907, Araraquara, SP Brazil, elson@iq.unesp.br.
(7) Centro Brasileiro de Pesquisas Físicas, DMF, R. Xavier Sigaud, 150, Rio de Janeiro, R.J. 22290-180, Brazil catff@terra.com.br.
keywords: Nanotubes, $\mathrm{SnO2}$, clusters, semiempirical methods

1/Th ox Mealo

Nanotubes of tin oxide have been widely studied. SnO_{2} are known for different applications, e.g., gas sensors,and solar cells [1,2].

Presmis f discusson

We have build the geometries for the $\left[\left(\mathrm{SnO}_{2}\right)_{\mathrm{n}}\right]_{\mathrm{m}}$ nanotubes using the structure of rutile crystal lattice, (Figure 1).

Figure 1: $\left[\left(\mathrm{SnO}_{2}\right)_{\mathrm{n}}\right]_{\mathrm{m}}$ Models
The semi-empirical MNDO was used in order to optimize the interatomic distances. The minimum energy (eV) corresponding to the structures are presented on Table 1.The Figure 2 presents the gap (HOMO-LUMO) for the variation of three distances for each unit number of $\left[\left(\mathrm{SnO}_{2}\right)_{n}\right]_{2}$.

Table 1: $\left[\left(\mathrm{SnO}_{2}\right)_{n}\right]_{2}$ MNDO method.

$\left[(\mathrm{SnO} 2)_{n}\right]_{\mathrm{m}}$	$d_{\mathrm{Sn}-\mathrm{Sn}}$	$d_{\mathrm{O}-\mathrm{O}}$	$d_{\mathrm{Sn-O}}$
$\mathrm{n}=6$	3.368	2.288	2.120
$\mathrm{n}=8$	3.402	2.287	2.080
$\mathrm{n}=10$	3.434	2.287	2.080
$\mathrm{n}=12$	3.452	2.287	2.000
$\mathrm{n}=14$	3.462	2.287	2.080
$\mathrm{n}=16$	3.469	2.287	2.080

$n=18$	3.474	2.243	2.080
$n=20$	3.477	2.287	2.120
$n=30$	3.593	2.287	2.080

SnO_{2} unit number

$$
\rightarrow-\mathrm{dSn}-\mathrm{Sn} \rightarrow-\mathrm{dO}-\mathrm{O} \rightarrow \mathrm{dSn}-\mathrm{O}
$$

Figure 2: Gap $\left[\left(\mathrm{SnO}_{2}\right)_{\mathrm{n}}\right]_{2}$

Gomelisions

In conclusion, the distances for atoms have values $3,4 \mathrm{~A}, 2,28 \mathrm{~A}, 2,08$ corresponding to the distances $\mathrm{Sn}-\mathrm{Sn}, \mathrm{O}-\mathrm{O}, \mathrm{Sn}-\mathrm{O}$, in the structures. The gap (HOMO-LUMO) has the variation of $2,8 \mathrm{eV}$ of the $\left[\left(\mathrm{SnO}_{2}\right)_{n}\right]_{2}$ nanotubes.

rathownedremenis

CNPq, CAPES, QTEA-UEG, UnB, LIEC-UFSCar

[^289]
Estudo Teórico do Mecanismo de Alquilação Friedel-Crafts

Alline V. B. de Oliveira (IC) ${ }^{*}$, Fernanda G. Oliveira (PG), Pierre M. Esteves (PQ)
alinevbo@yahoo.com.br
Instituto de Química, Universidade Federal do Rio de Janeiro
Palavras Chave: Carbocátion, mecanismo SET, complexo sigma, complexo pi, alquilação.

Thinooncele

Reações de substituição eletrofílica aromática (SEA) são responsáveis por uma série de transformações em química orgânica sintética, bem como na indústria. Reações de nitração aromática, acilação e alquilação Friedel-Crafts são exemplos destas reações. O mecanismo mais aceito para as reações de SEA se baseia na adição de um eletrófilo ao anel aromático, substituindo um de seus átomos de hidrogênio.

Estudos tanto teóricos quanto experimentais sobre nitração aromática ${ }^{1}$ e acilação de Friedel-Crafts ${ }^{2}$ sugerem um mecanismo diferente do encontrado nos livrostexto. Este, se baseia na transferência de um elétron (SET, Single Electron Transfer) do anel aromático para o eletrófilo, formando um cátion radical do composto aromático e uma molécula do eletrófilo. Após a transferência estes se recombinariam formando o intermediário complexo sigma.

Estes resultados colocam em cheque o mecanismo aceito para todas as reações de SEA. Neste contexto, este trabalho tem como objetivo investigar o mecanismo da reação de alquilação de Friedel-Crafts através de metodologia teórica baseada na teoria do funcional da densidade (DFT - density functional theory).

Como modelo para o estudo da reação de alquilação de Friedel-Crafts foi utilizado o benzeno, como substrato aromático, e carbocátions metilico, primário (etila), secundário (isopropila) e terciário (terc-butila). Foram realizados cálculos do funcional da densidade em nível B3LYP/6-31++G(d,p).

A reação do benzeno com a terc-butila passa por dois intermediários, sendo eles o complexo sigma e o complexo pi (mostrados a seguir). Este último é mais estável que o complexo sigma por $7,8 \mathrm{Kcal} / \mathrm{mol}$. A maior
estabilidade do complexo pi pode ser explicada pela estabilidade do carbocátion terciário, a manutenção da aromaticidade do sistema além da interação entre a nuvem eletrônica do anel aromático e um hidrogênio da metila voltada para o anel.

Complexo sigma

Complexo pi

Os carbocátions metílico, primário e secundário se mostraram mais reativos, não passando pelo complexo pi e formando como único intermediário o complexo sigma. A maior reatividade destes carbocátions já era esperada e a não formação do complexo pi apenas reflete a menor estabilidade destes carbocátions.
concliseces
De acordo com os resultados obtidos pode-se concluir que a estabilidade do carbocátion influencia na formação do intermediário pi.

O mecanismo SET não parece estar envolvido na reação de alquilação de FriedelCrafts.

Outros substratos aromáticos estão sendo investigados para que seja possível verificar a influência de sua variação no mecanismo.

Fantronemingios

CNPq, CAPES

[^290]
Otimização de Potenciais Efetivos para Descrição de interações Fracas na Teoria do Funcional Densidade.

Maurício D. Coutinho-Neto ${ }^{1}(P Q)^{*}$, I-Chun $\operatorname{Lin}^{2}(P G)$, Otto A. von Lilienfeld ${ }^{3}(P Q)$, Ivano Tavernelli ${ }^{2}(P Q)$, Enrico Tapavizca² ${ }^{2}(\mathrm{PG})$, Ursula Röthlisberger ${ }^{2}(\mathrm{PQ})$. mauricio.neto@ufabc.edu.br
${ }^{1}$ Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Rua Santa Adélia, 166 Santo André. São Paulo, Brazil 09.210-170.
${ }^{2}$ Ecole Polytechnique Fédérale de Lausanne (EPFL), Laboratoire de Chimie et Biochimie Computationelle, CH-1015 Lausanne, Switzerland.
${ }^{3}$ Sandia National Laboratories, PO Box 5800, Mail Stop 1322, Albuquerque, New Mexico 87185-1322, USA.
Palavras Chave: Dispersion, van der Waals, London forces, QM/MM, ab-initio molecular dynamics.

IhMoervodo

A limitação da Teoria do Funcional Densidade na aproximação GGA (TFD-GGA) em descrever interações inter-moleculares fracas (van der Waals) é contornada com o uso de potenciais atômicos não locais (DCACPs, do inglês Dispersion Corrected Atom Centered Potentials). Neste procedimento, o potencial não local é obtido a partir da calibração individual de componentes atômicas. O objetivo desta comunicação é o de apresentar novos parâmetros dos potenciais não locais utilizando cálculos $\operatorname{CCSD}(\mathrm{T})$ como referência parar os átomos de H,C,N,O, He, Ne, Ar e Kr. Resultados da teoria aplicada à complexos de bases de DNA na forma empilhada e na forma de pares de Watson e Crick, bem como resultados para complexos de hidrocarbonetos serão analisados.

Resultabos cherusszo

Figura 1. Configurações utilizadas no cálculo da interação de empilhamento entre bases de DNA usando o método DCACP.

Tabela 1. Interação entre bases de DNA pelo método DCACP utilisando as orientações assinaladas na Fig1. Valores em kcal/mol.

Bases	A.....T	G....C	U...U	C $\ldots . . \mathrm{C}$
BLYP	1.2	-7.4	-0.2	-0.3
DCACP- BLYP	-9.5	-14.6	-7.8	-8.8
Ref $^{\prime}$	-11.6	-16.9	-10.3	-9.9

comerisors

Os resultados obtidos para a interação de van der Waals quando comparados a valores de referência demonstram a excelente precisão do método DCACP.

O método DCACP utiliza a mesma forma funcional dos pseudo-potenciais analíticos de Goedecker-Teter-Hutter ${ }^{2}$. Desta forma, o uso da correção DCACP de potenciais efetivos em cálculos TDF-GGA possiblilita uma melhora significativa na precisão do cálculo de energias de interação inter-moleculares sem entretanto acarretar em custos computacionais elevados.

Agradecemos ao CNPq e a Swiss National Science Foundation.

[^291]
Estudo da Complexação dos íons metálicos cálcio, magnésio e zinco no plasma sangüíneo utilizando redes neurais artificiais (RNAs)

Júlio César Dillinger Conway* $(\mathbb{P G})^{1,2}$, Stefänia Neiva Lavorato(IC) ${ }^{1}$
José Rogério de Oliveira Jr. (IC) ${ }^{1}$, Jadson Cláudio Belchior(PQ) ${ }^{1}$
${ }^{1}$ Departamento de Química - ICEx, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, Pampulha,(31.270901) Belo Horizonte, Minas Gerais, Brasil
${ }^{2}$ Pontifícia Universidade Católica de Minas Gerais, Av. Dom José Gaspar 500, Coração Eucarístico, (30.535-901) Belo Horizonte, Minas Gerais, Brasil
*conway@pucminas.br
Palavras Chave: redes neurais artificiais - íns metálicos - zinco - cálcio - magnésio - plasma sangüíneo.

Figura 1. RNA utilizada para analisar os efeitos do pH e da temperatura, nas concentrações de cálcio, magnésio e zinco.
Complexos formados por íons metálicos e ligantes são importantes em muitos processos bioquímicos e fisiológicos. Íons metálicos, tais como $\mathrm{Ca}^{2+}, \mathrm{Mg}^{2+}$ e Zn^{2+} desempenham um papel importante no equilíbrio do plasma sangüíneo. Alterações nesse equilíbrio podem contribuir para o surgimento de doenças, tais como hipertensão, osteoporose e doenças cardíacas. Além disso, fatores tais como pH e temperatura podem afetar o equilíbrio entre estes íns e os complexos formados com ligantes de baixo peso molecular.

O objetivo deste trabalho é estabelecer um modelo do equilíbrio entre os íons metálicos $\mathrm{Ca}^{2+}, \mathrm{Mg}^{2+}$ e Zn^{2+} e os complexos formados por estes íns e ligantes, tais como alanato, glicinato, carbonato e citrato. Este modelo baseia-se em uma rede neural artificial (RNA) mostrada na Figura 1, que considera também os efeitos do pH e da temperatura. Os dados para o treinamento da RNA serão obtidos de um modelo do plasma sangüíneo amplamente utilizado ${ }^{1}$. As medidas experimentais de Huskens e colaboradores ${ }^{2}$ serão utilizados para validação da RNA.

fresulfiolos el Discussalo

Os resultados preliminares da validação da rede neural artificial com dados experimentais ${ }^{1}$ mostraram que a RNA proposta conseguiu prever as concentrações livres do magnésio com erros inferiores a 3%. Além disto, foi possível prever que o cálcio e o magnésio diminuem com o aumento tanto do pH quanto da temperatura. Os dois resultados são validados por experimentos descritos na literatura que apontam esta mesma relação inversa.

Foi desenvolvida uma metodologia para estudos dos processos químicos envolvidos na complexação do $\mathrm{Ca}^{2+}, \mathrm{Mg}^{2+}$ e Zn^{2+} no plasma sangüíneo, levando em consideração efeitos da temperatura e do pH . Os estudos realizados até o momento, mostraram que a RNA conseguiu mapear corretamente a influência do pH e da temperatura nas concentrações dos íons metálicos estudados. Dessa forma, em principio, as redes neurais artificiais podem ser aplicadas eficientemente como uma ferramenta complementar no estudo da complexação de íons metálicos, e em particular, na análise do equilíbrio do plasma sangüíneo.

Maldocelmentos

Agradecemos ao CNPq e a FAPEMIG pelo suporte financeiro. JCDC agradece a PUCMG.

Influência da forma de simulação do solvente no cálculo das constantes de blindagem em compostos orgânicos naturais.

Moacyr Comar Jr. ${ }^{1, *}$ (PQ), Jamal da Silva Chaar ${ }^{1}$ (PQ), Saulo L. da Silva ${ }^{1}$ (PQ), Kelson Mota T. de Oliveira ${ }^{1}$ (PQ)
${ }^{1}$ Universidade Federal do Amazonas, Dep. de Química, Setor Sul, Av. Gen. Rodrigo Otávio Jordão Ramos, 3000, Manaus
*moacyr@ufam.edu.br
Palavras Chave: RMN, solventes, iridóides, DFT

A descrição teórica das constantes de blindagem tem recebido grande atenção nos últimos anos e muitos trabalhos têm sido escritos sobre ela ${ }^{1}$. De qualquer forma, o cálculo teórico de tais constantes é uma desafiadora tarefa, que envolve vários passos. Somado a isso, uma outra fonte de pesquisa que tem chamado a atenção dos pesquisadores é a forma de descrever os efeitos de solventes em todas as áreas da Química Teórica².

Um dos melhores métodos para se calcular os deslocamentos químicos é o GIAO (Gauge Invariant Atomic Orbital). Aliado a este método, este trabalho simulou dois tipos de solventes, a água e o metanol, para o cálculo dos desvios químicos nos átomos de carbono e hidrogênio de quatro moléculas isoladas da flora amazônica. A simulação dos solventes pode ser feita por meio de vários métodos, entre eles o ASC (Aparent Charge Surface), que pode apresentar as formulações CPCM, IEFPCM, COSMO. Uma outra forma de simulação do solvente é o DIPOLE, que simula o solvente da maneira proposta por Onsager.

RGSMHEOS CHISGUSSAM

As quatro moléculas estudadas são compostos isolados da flora amazônica. Suas estruturas geométricas foram otimizadas sem a influência dos solventes, utilizando a metodologia DFT, através de dois funcionais, B3LYP e PW91, aliada à base 6$31 \mathrm{G}(\mathrm{d}, \mathrm{p})$. Os solventes usados na determinação experimental do espectro de RMN foram água deuterada e metanol deuterado. Teoricamente, os solventes foram simulados através de quatro formulações diferentes: CPCM, IEFPCM, COSMO e DIPOLE.

Os resultados obtidos mostram que, dentre esses quatro métodos, o DIPOLE é o que mais se distancia dos resultados experimentais, embora desvios consideráveis aconteçam com todos os outros métodos. Além disso, verificou-se que a descrição dos desvios dos átomos de carbono distanciam-se mais do experimental que os dos átomos de hidrogênio, como se pode ver nos gráficos 1 e 2

Figura 1 - Variação entre os valores experimentais e calculados. Solvente água.

Figura 2 - Variação entre os valores experimentais e calculados. Solvente água.

0% ohmisous

A simulação dos efeitos de solvente nos cálculos teóricos das constantes de blindagem pode fornecer informações valiosas a respeito de como o solvente interage com os átomos em uma moilécula. Nos resultados obtidos nesse trabalho, verificam-se algumas maneiras de simulação, aliadas a métodos ab initio de cálculo com respeito a moléculas orgânicas de produtos naturais.

Aroldegliminios

FAPEAM, CNPq

[^292]
Estudo teórico para a classificação de moléculas antimalariais de sulfonamidas

Nélio Henrique Nicoleti (PG) ${ }^{1 *}$, Francisco Carlos Lavarda (PQ) ${ }^{1}$.
${ }^{1}$ Universidade Estadual Paulista - UNESP, POSMAT, Campus Bauru. E-mail: nelionic@fc.unesp.br Palavras Chave: Modelagem Molecular, Estrutura Eletrônica.

classificar as moléculas de sulfonamidas quando a sua atividade antimalarial, para uma molécula apresentar uma alta probabilidade de ser ativa é preciso que a Equação 1 resulte em um valor maior ou igual a 0,174 .

$$
\left.Z=3,747 \cdot 10^{-4}\left(E_{E L E T}\right)+10,4701 \quad \text { (Equação } 1\right) .
$$

Através dos dados coletados e a análise da equação 1, podemos especular que novos compostos com alta atividade antimalarial deverão preferencialmente:

1. Apresentar no substituinte $\mathrm{NR}_{1} \mathrm{R}_{2}$ (Figura 1) cadeias com o menor número possível de átomos.
2. Possuir substituintes que apresentem átomos com poucos elétrons na camada de valência.
3. Caso os átomos a serem empregados em um determinado substituinte possuam o mesmo número de elétrons na camada de valência optar pelo de menor número atômico.

Conichropes

O modelo proposto neste trabalho é distinto, mas de fácil aplicação. Com base nessa regra é possível à separação das sulfonamidas, considerando a sua atividade. Estas regras possibilitam sintetizar derivados dessas moléculas de maneira a apresentarem uma maior probabilidade de possuírem elevada atividade antimalarial. Isto abre perspectivas para a pesquisa e desenvolvimento de novas moléculas proveniente dessa família, com a possibilidade de aplicação como fármaco antimalarial.

Agradecimentos ao Laboratório de Cristalografia, Estereodinâmica e Modelagem Molecular (UFSCar). Agradecimentos também ao Grupo de Sólidos Orgânicos e Novos Materiais (UNICAMP).

[^293]
Correlação da estrutura eletrônica com a atividade antimalarial de derivados de aniliquinolinas

Nélio Henrique Nicoleti ${ }^{1}$ (PG) ${ }^{*}$, Francisco Carlos Lavarda ${ }^{1}$ (PQ).
${ }^{1}$ Universidade Estadual Paulista - UNESP, POSMAT, Campus Bauru. E-mail: lavarda@fc.unesp.br Palavras Chave: Estrutura Eletrônica, Antimalarial, Anilinoquinolinas.

representa a molécula de cloroquinolina e será representada pela sigla CIQ.

A Equação 1, apresentada a seguir, foi obtida através do método estatístico Análise Discriminante Linear (LDA), sendo um instrumentos valiosos para o desenvolvimento de novos fármacos, tendo em vista que fornecem indicações quantitativas para a classificação das moléculas quanto a atividade antimalarial apresentada pelas anilinoquinolinas estudadas.
$Z=-8,328(P E T(18))+7948,578\left(\right.$ PE $\left._{H}(18)\right)-2,324$
A partir da análise do modelo, podemos especular que novos compostos com elevada probabilidade de apresentarem propriedades antimalariais deverão preferencialmente apresentar uma estrutura com substituintes (Figura 1) com maior afinidade eletrônica, de maneira a colaborar com a diminuição da PET (densidade eletrônica) no átomo da posição 18.

ConelHSOES

Os resultados desses estudos mostraram que os descritores de maior peso na classificação são: a população eletrônica total do átomo 18 (PET (18)) e a população eletrônica parcial desse mesmo átomo referente ao orbital molecular mais alto ocupado ($P E P_{H}(18)$), ou seja, a propriedade física referente à densidade de elétrons presente nesse sítio é um fator importante na determinação da atividade antimalarial dessas moléculas. Nos estudos de LDA, onde se empregam somente estes descritores ($P E T$ (18), $P E P_{H}$ (18)), nota-se um razoável sucesso de predições (82,6 \%).

Δ VItaleghing ios

Agradecimentos ao Laboratório de Cristalografia, Estereodinâmica e Modelagem Molecular (UFSCar). Agradecimentos também ao Grupo de Sólidos Orgânicos e Novos Materiais (UNICAMP).

[^294]
A Monte Carlo study of the structure of stearic acid Langmuir films

André Farias de Moura (e-mail: andre@dq.ufscar.br)

Departamento de Química - UFSCar - Rodovia Washington Luiz km 235-CP 676-13565-905 - São Carlos - SP
Keywords: Monte Carlo methods, Langmuir films, stearic acid, surface pressure, surface area, relaxation.

Molecular dynamics (MD) simulations were employed in recent years to study complex liquid system, including anionic micelles ${ }^{1}$ and Langmuir films ${ }^{2}$. Nonetheless, the relaxation timescales may be too large to be feasible to equilibrate such model systems, possibly leading to meta-stable states. Monte Carlo (MC) methods may overcome this difficulty due to their ability to sample regions in phase space that are not necessarily time contiguous.

To investigate this issue, a systematic study of stearic acid Langmuir films using both MD simulations and MC methods was started, aiming at the development of an efficient simulation protocol. The results of a MC simulation of this model system at a surface pressure of $20 \mathrm{mN} / \mathrm{m}(\mathrm{T}=298 \mathrm{~K})$ are reported below.

Resullis anmo incussiom

Stearic acid molecules were assembled in a twodimensional hexagonal lattice compatible with the available experimental data. Two replica of this molecular film were placed on the top/bottom of a 60 A-thick water slab, with the carboxylic headgroups facing the aqueous environment, while the space below/above the hydrophobic tails was left empty. The potential energy surface was described using the OPLS-AA parameters for the stearic acid molecules and the SPC water model. The surface area in the $x y$ plane was allowed to vary, including a surface areasurface pressure term into the Boltzmann factor used for the Metropolis sampling. This is necessary to fully characterize the ensemble employed, but it should be noted that the change in energy due to surface area amounts to only $0.1 \mathrm{kcal} \mathrm{mol}^{-1}$ during a MC area movement, while the change in the intermolecular energy may reach several $\mathrm{kcal} \mathrm{mol}^{-1}$. To relax the structure, an annealing from 398 to 298 K was employed, decreasing the temperature at 10 K intervals and performing $5 \times 10^{5} \mathrm{MC}$ movements at each new temperature. The simulation at 298 K is still in progress and has reached nearly $3 \times 10^{8} \mathrm{MC}$ configurations at present. The major concern at this point is to make a picture as clear as possible of the efficiency with which the MC method can sample the phase space. For this purpose, the average surface area occupied by each stearic acid molecule and the average energy per molecule (Figure 1) were
monitored. The dashed vertical lines show four different regions along the trajectory: (i) the annealing
and the initial relaxation of repulsive contacts; (ii) the expansion of the films; (iii) and (iv), the possible equilibrium states of the system. The average area per molecule after 1.5×10^{8} configurations differs from the experimental value by less than 5%, whereas the area obtained from a 2.5 ns MD simulation differed by more than 10% (results not shown here). Further simulations will be necessary to confirm that these large scale fluctuations are representative.

Figure 1. Area per molecule for stearic acid (upper panel) and the total energy of the system per molecule (lower panel).

The simulation of Langmuir films using realistic model systems may be tackled using MC methods. Nonetheless, several lengthy trajectories are necessary to characterize the equilibrium states, being necessary to take into account the effects of the starting configuration.

The author acknowledges FAPESP for the financial support.

[^295]
Multidimensional Quantum Dynamics in Polyatomic Molecules

Roberto Marquardt *

Laboratoire de Chimie Quantique - UMR 7177 CNRS/ULP
Université Louis Pasteur - F-67000 Strasbourg
Molecular structure and dynamics are strongly related to molecular spectroscopy and chemical reaction kinetics and have become measurable in real time with the advent of femtosecond lasers [1]. While experimental techniques have improved considerably, the theoretical approach to the understanding of the underlying processes is hampered by the complexity of the quantum nature of molecular motion. In this paper, we shall focus on recent advances in the area of molecular quantum dynamics and give examples related to the representation of potential energy surfaces and the calculation of the quantum dynamics in polyatomic molecular systems in terms of the propagation of multidimensional wave packets.

One example is ammonia. Ammonia is a prototype molecule for large amplitude nuclear motion. Stereomutation in general and the inversion motion of ammonia in particular have been extensively studied for almost one century.

Studies of the explicit time-dependent multidimensional quantum wavepacket dynamics under laser excitation [2] allow to conclude that inversion in ammonia is governed by a multidimensional tunneling mechanism, even if the vibrational energy available after excitation largely exceeds the barrier for tunneling.

For these studies, the time dependent Schrödinger equation was solved by expansion of the multidimensional wavefunction in a large basis of spectroscopic states within the URIMIR program package [3].

MCTDH [4] is an alternative method for calculating both the time dependent and time independent quantum dynamics of ammonia. In the present paper we shall address some of the results from our previous work and report on ongoing calculations using a recently developed potential energy surfaces $[5,6]$ and MCTDH.

In a second example, we address the ab initio calculation of potential energy surfaces (PES) relevant for molecular adsorption processes on
metal surfaces. In a recent work, new results were reported for the two perpendicular COsubstrate geometries in the absorption process $\mathrm{CO}+\mathrm{Cu}(100)=\mathrm{CO} / \mathrm{Cu}$ [7]. Here, we focus on the PES for the large amplitude lateral motion along the substrate and discuss results obtained from several cluster models as well as slab type calculations.

* (PQ) roberto.marquardt@chimie.u-strasbg.fr

1
J. Manz and L. Wöste, editors.

Femtosecond Chemistry. Proc. Berlin Conf. Femtosecond Chemistry, Berlin, March 1993. Verlag Chemie, Weinheim, (1995).

2
R. Marquardt, M. Quack, I. Thanopulos, and D. Luckhaus, J. Chem. Phys., 118, 643-658 (2003). 3
M. Quack and E. Sutcliffe, QCPE Bulletin, 6, 98 (1986);
R. Marquardt, M. Quack, and J. Stohner, in preparation.

4

H.-D. Meyer, U. Manthe, and L. S. Cederbaum, Chem. Phys. Lett., 165, 73 (1990); M. H. Beck, A. Jäckle, G. A. Worth, and H.-D. Meyer, Phys. Rep., 324, 1 (2000).

5
R. Marquardt, K. Sagui, W. Klopper, and M. Quack, J. Phys. Chem. B, 109, 8439-8451 (2005).

6
R. Marquardt, K. Sagui, F. Mariotti, M. Quack, J. Zhen, W. Thiel, and D. Luckhaus, in preparation.

7
S. Hervé and R. Marquardt, Mol. Phys., 103, 1075-1082 (2005).

BuildQSAR 2007 - A Computational Tool for QSAR Analysis

Anderson Coser Gaudio (PQ) - acgaudio@gmail.com

Physics Department, Federal University of Espírito Santo - Av. Fernando Ferrari, 514 - Goiabeiras 29075-910 Vitória, ES, Brazil.

Keywords: quantitative structure-activity relationships, qsar, software

ITHTODTGion

The first version of BuildQSAR ${ }^{1}$ was released in year 2000. This is a software designed to help the QSAR (quantitative structure-activity relationships) practitioner on the task of building and analyzing quantitative models through statistical methods. Originally written in Delphi, it has been well accepted by the community. However, many problems have been detected over the years, mainly in its graphical interface. Another problem was the lack of chemometric analysis. Attempts to make the appropriate corrections have failed due to serious problems in the original code. Therefore, the only way to improve the software and prepare it to grow further in the upcoming versions was to rebuild it from scratch. BuildQSAR 2007 was written in Visual Studio 2005 environment ${ }^{2}$, using full object-oriented programming language.

ResUISFIMODISGUSSIOM

The main part of the program is the data set spreadsheet, in which the user can enter with one or more types of biological activity values (Y variable) and many physicochemical properties (X variables). The program has an interface for multiple single documents (MSDI), which means that one or more data sets can be handled at the same time, but in different sections (threads). The program has a data bank, which includes the values of many known substituent parameters. The common tasks that can be performed by the program are: (a) linear, quadratic and bilinear models; (b) graphics analysis; (c) correlation analysis and; (d) hypothesis testing. BuildQSAR can also: (e) build subsets of the data set that include groups of compounds chosen by the user; (f) create new variables, derived from the existing ones, and create many types of indicator variables; (g) build data sets directly from the data bank by selecting the substituents and the variables therein; (h) perform variable selection
by systematic search and genetic algorithm; (i) perform cross-validation; (j) eliminate outliers and analyze the resulting model; and others. The new features of BuildQSAR are: (k) principal

ETildgeth = [ipoinoriol bif							
File Edit Yew Dataset							
$\square \Gamma 913 \square 13$							
\vdots PATH: C:'Documents and SettingstAndersoniMeus documentos							
	ID	Structure	Comment	$\log (1 / 1 / C 50)$	PMIC	MW	Los ${ }^{\text {a }}$
- 1	E¢91\%	H		-0,477	0,176	268,314	3,32
2	C-02	$3-\mathrm{CH} 3$		-0,477	-0,176	268,314	2,8\%
3	C-03	$4 \cdot \mathrm{~F}$		-0,176	-0,796	328,367	2,8
4	C.04	3 Cl		-0,477	-1,699	252,315	4.58
5	C.05	4 Br		-1,699	-0,477	253,259	3,48
6	C.06	2-Bra- 4		-1,398	-0,477	277.15	$3.48=$
7	C-07	$2 \mathrm{CH} 3 \cdot 4 \cdot \mathrm{Cl}$		-1,398	-0,176	238,288	3,76
8	C.08	2,4-1		-0,176	-0,477	340,075	3,35
9	C.09	2,4-([H3)2		-0,176	-0,477	512.403	3,3:
10	C-10	2 OCH 3		-0,796	-0,796	586,533	3,3:
11	C-11	40 CH 3		-1,699	-1,699	268,314	3,07
12	C-12	2-CH3;4-0CH3		-0,477	-1,398	268.314	3,9e
13	C. 13	$2 \mathrm{Cl}, 4-\mathrm{OCH} 3$		-0,477	-1,398	328,367	4,16
14	C. 14	2.4 Cl		-0,176	-1,398	252,315	$3.61 \times$
Cl				- $\quad+\quad 1$			31
Activities $=2$ Descriptors $=4$ Compounds $=15$							

component analysis and partial least squares analysis. A user manual is also available in Portable Document Format (PDF). The program was coded in Visual Basic and runs in Win32/64 environments.

Figure I. Graphical user interface of BuildQSAR.

Tomiclusion

BuildQSAR 2007 is available in two compilations: Light and Professional. The Light compilation is a freeware. It can handle datasets of limited number of biological activities, descriptors and compounds. The Professional compilation is a shareware and it can handle datasets of any size, being limited only by the computer memory.

[^296]
CONVERGÊNCIA DO MÉTODO GSA PARA PARÂMETROS $Q_{A}, Q_{V} E Q_{T}$ INDEPENDENTES.

Micael Dias de Andrade* ${ }^{1,2}$ (PG), Kleber Carlos Mundim ${ }^{3}$ (PQ), Luiz Augusto Carvalho Malbouisson ${ }^{1}$ (PQ).

micael@ufba.br
${ }^{1}$ Universidade Federal da Bahia, ${ }^{2}$ Universidade Federal do Recôncavo da Bahia, ${ }^{3}$ Universidade de Brasilia. Palavras Chave.. Generalized Simulated Annealing, Mínimo Absoluto, Prova de Convergência

O problema de otimização global é um assunto de interesse corrente em uma variedade de campos, tais como a recuperação de informação degradada, o desenho de circuitos microprocessadores e análise conformacional de proteínas [1], dentre outros.

O método Monte Carlo (MC) foi um dos primeiros métodos estocásticos aplicados em problemas de Física. Este método foi proposto separada e independentemente por J. E. Mayer no estudo de líquidos ${ }^{1}$, e por Metropolis e Ulam [2], que o apresentaram como uma ferramenta de propósitos gerais. Metropolis e colaboradores [3] propuseram uma versão mais eficiente deste algoritmo (método de Metropolis), para o cálculo de integrais multidimensionais.

Um procedimento estocástico de otimização global, chamado Simulated Annealing (SA), foi proposto por Kirkpatrick e colaboradores [4]. O algoritmo SA é também referido na literatura como SA clássico (CSA) e sua função de distribuição de visitação é uma função gaussiana, isto é, $g(\mathbf{x}) \propto e^{-\mathbf{x}^{2} / T_{1}(t)} / T_{1}(t)$. Geman e Geman [1] mostram que a condição necessária e suficiente para que o algoritmo CSA finalize o processo no mínimo global, é que $T_{1}(t)$ diminua logaritmicamente com t, isto é, $T_{1}(t)=T_{0} / \log (1+t)$.

Szu e Hartley propuseram uma modificação no algoritmo CSA que consiste na utilização de uma função de distribuição de visitação tipo CauchyLorentz, $g(\mathbf{x}) \propto T_{2}(t) /\left(T_{2}(t)^{2}+\mathbf{x}^{2}\right)^{\frac{D+1}{2}}$, em lugar da função de distribuição de visitação gaussiana [5]. Esse outro algoritmo é referido na literatura como SA rápido (FSA). Na referência [5] mostra-se que, para uma função de distribuição de visitação tipo CauchyLorentz, o processo finalizará em um mínimo global se $T_{2}(t)$ diminuir inversamente com t, isto é, $T_{1}(t)=T_{0} /(1+t)$.

O método estocástico Generalized SA (GSA), proposto por Tsallis e Stariolo [6], generaliza as funções de distribuição de visitação, de probabilidade de aceitação e temperatura dos procedimentos CSA e FSA, contendo-as como casos particulares.

De forma similar à prova da convergência do CSA e FSA para o mínimo absoluto apresentada por Szu
e Hartley [5], na referência [6], é estabelecida a prova da convergência do algoritmo GSA para o mínimo absoluto.

Na forma original [6], o GSA foi definido com dois parâmetros independentes, q_{a} e q_{v}, usados na definição das funções probabilidade de aceitação, $A_{a c c}\left(q_{a}\right)$, distribuição de visitação, $g_{q_{v}}$, e temperatura, $T_{q_{v}}$. Nas aplicações, todavia, outro parâmetro independente, q_{T}, foi introduzido no algoritmo em lugar de q_{v}, na definição da função temperatura, tornando-o mais eficiente e permitindo a convergência com menor número de ciclos. Contudo, a prova da convergência do algoritmo GSA para o mínimo absoluto, estabelecida na referência [6], abrange somente o caso de dois parâmetros independentes, q_{a} e q_{v}.

Neste trabalho, usando uma forma modificada da função de distribuição, $g_{q_{v}, q_{T}}$, na formulação do algoritmo,
$g_{q_{v}, q_{T}}(\mathbf{x})=\left(\frac{q_{v}-1}{\pi}\right)^{D / 2}\left[\Gamma\left(\frac{a}{q_{v}-1}\right) / \Gamma\left(\frac{a}{q_{v}-1}-\frac{D}{2}\right)\right]$
$\times{ }^{\left[T_{q_{T}}(t)\right]^{-\frac{D}{2 a-D\left(q_{v}-1\right)} q_{q_{T}-1}}}$

com $a=1+\frac{D+1}{4}\left(q_{v}+q_{T}-2\right)$,
é apresentada uma prova da convergência do método GSA para o mínimo absoluto, definido com os três parâmetros independentes, q_{a}, q_{v} e q_{T}.

[^297][^298]
ESTUDO TEÓRICO DE COMPOSTOS AROMÁTICOS EM RELAÇÃO À TOXICIDADE AQUÁTICA POR MEIO DE MECÂNICA QUÂNTICA E QUIMIOMETRIA.

Aline Thaís Bruni*1 (PQ), Fernanda Ferraz ${ }^{2}$ (IC), Ana Luiza Bonvino Saraiva ${ }^{2}$ (IC).
*atbruni@gmail.com
${ }^{1}$ Centro Universitário de Rio Preto (UNIRP). Rua Yvette Gabriel Atique, 45. Boa Vista São. José do Rio Preto, SP.
${ }^{2}$ Departamento de Química e Ciências Ambientais, IBILCE-UNESP. Rua Cristóvão Colombo, 2265. Jardim Nazareth. São José do Rio Preto, SP.

Palavras Chave: aromáticos, QSPR, CONAMA357/05

Throodrede

Neste trabalho estão sob investigação compostos aromáticos que possuem atividade tóxica em ambientes aquáticos e, portanto, possuem controle em relação ao lançamento nos recursos hídricos. A legislação brasileira tem como diretrizes para tais recursos a Política Nacional de Recursos Hídricos (Lei $n^{\circ} 9.433$ de 1997) e o estabelecimento da Resolução CONAMA n ${ }^{\circ} 357$ de 2005. Neste estudo serão avaliadas 23 substâncias comumente presentes em diversos processos da atividade industrial brasileira, das quais 14 delas estão apresentadas na Tabela 1. Os dados toxicológicos são fornecidos em função de organismos representativos do meio ambiente aquático (algae, Daphnia e fish) e foram retirados da literatura ${ }^{1}$. No entanto, apenas a toxicidade relacionada a Fish está apresentada na Tabela 1. O objetivo é criar um modelo para a previsão de novos compostos que, apesar estarem na legislação internacional, não constam da legislação brasileira. Também se pretendem comparar as características pertinentes aos valores máximos presentes na Resolução CONAMA 357/05. Para o estudo teórico, todos os compostos foram otimizados pelo semi-empírico AM1 (Gaussian 98-CENAPAD-SP). Em seguida foi utilizado o método ab-initio HF/6-31G** (Spartan) para o cálculo das propriedades referentes a cada composto. A análise quimiométrica utilizou os programas Matlab e Pirouette.

Diversos descritores teóricos foram calculados: valor da entalpia, dipolo, log_P, cargas parcias de Mülliken e eletrostáticas, energias de HOMO e LUMO, volume, área, ovalidade, entre outros. A PCA (Principal Componente Analysis) foi conduzida sobre os dados e a classificação resultante para o organismo fish está apresentada na Tabela 1 e foi comparada com a obtida na literatura ${ }^{1}$. As classificações para os outros organismos apresentaram resultados similares.

Tabela 1. Sistema de Estudo

Estruturas	Log 1/C mmol L'(fish)	PCA	PCA
Benzeno			
Benzo[a]antraceno	1.194	1	1
Benzo[a]pireno	3.57	3	3
Benzo[b]fuoranteno	3.84	3	3
2,3 Dicloronitrobenzeno	3.96	3	3
2,4-Diclorofenol	1.681	2	2
Etilbenzeno	1.513	1	2
Fluoranteno	0.88	1	1
Hexaclorobenzeno	3.005	2	3
Hexacloroetane	3.455	3	3
Parathion	2.347	2	3
Pentaclorofenol	2.288	2	3
2,4,5-T	3.425	3	3
1,2,4-Triclorobenzeno	1.453	2	2

* Classificação apresentada na literatura. ${ }^{1}$

remintivesos

Observa-se que há ligeira diferença entre os valores obtidos pelos descritores teóricos daqueles apresentados pela literatura. Os loadings mostraram que para as classes 1 e 3 propriedades eletrostáticas são importantes enquanto para a classe 2 também as estruturais apresentam influência. Um modelo PLS está sob investigação.

Ao CENAPAD-SP e ao Prof. Dr. Vitor Barbanti Pereira Leite pelos equipamentos e programas utilizados nos cálculos.

[^299]
Estudo teórico de compostos aromáticos em relação à toxicidade aquática por meio de mecânica quântica e quimiometria.

Aline Thaís Bruni* ${ }^{* 1}$ (PQ), Fernanda Ferraz ${ }^{2}$ (IC), Ana Luiza Bonvino Saraiva ${ }^{2}$ (IC). *atbruni@gmail.com
${ }^{1}$ Centro Universitário de Rio Preto (UNIRP). Rua Yvette Gabriel Atique, 45. Boa Vista São. José do Rio Preto, SP.
${ }^{2}$ Departamento de Química e Ciências Ambientais, IBILCE-UNESP. Rua Cristóvão Colombo, 2265. Jardim Nazareth. São José do Rio Preto, SP.

Palavras Chave: aromáticos, QSPR, CONAMA357/05

Neste trabalho estão sob investigação compostos aromáticos que possuem atividade tóxica em ambientes aquáticos e, portanto, possuem controle em relação ao lançamento nos recursos hídricos. A legislaçã̃o brasileira tem como diretrizes para tais recursos a Política Nacional de Recursos Hídricos (Lei $\mathrm{n}^{\circ} 9.433$ de 1997) e o estabelecimento da Resolução CONAMA n ${ }^{\circ} 357$ de 2005. Neste estudo serão avaliadas 23 substâncias comumente presentes em diversos processos da atividade industrial brasileira, das quais 14 delas estão apresentadas na Tabela 1. Os dados toxicológicos são fornecidos em função de organismos representativos do meio ambiente aquático (algae, Daphnia e fish) e foram retirados da literatura'. No entanto, apenas a toxicidade relacionada a Fish está apresentada na Tabela 1. O objetivo é criar um modelo para a previsão de novos compostos que, apesar estarem na legislação internacional, não constam da legislação brasileira. Também se pretendem comparar as características pertinentes aos valores máximos presentes na Resolução CONAMA 357/05. Para o estudo teórico, todos os compostos foram otimizados pelo semi-empírico AM1 (Gaussian 98-CENAPAD-SP). Em seguida, foi utilizado o método ab-initio HF/6-31G** (Spartan) para o cálculo das propriedades referentes a cada composto. A análise quimiométrica utilizou os progrảmas Matlab e Pirouette.

Resurndose Discussao

Diversos descritores teóricos foram calculados: valor da entalpia, dipolo, log_P, cargas parcias de Mülliken e eletrostáticas, energias de HOMO e LUMO, volume, área, ovalidade, entre outros. A PCA (Principal Componente Analysis) foi conduzida sobre os dados e a classificação resultante para o organismo fish está apresentada na Tabela 1 e foi comparada com a obtida na literatura ${ }^{1}$. As classificações para os outros organismos apresentaram resultados similares.

Estruturas	Log $1 / \mathrm{C} \mathrm{mmol} \mathrm{L}{ }^{-1}$ (fish)	PCA	PCA *
Benzeno	1.194	1	1
Benzo[a]antraceno	3.57	3	3
Benzo[a]pireno	3.84	3	3
Benzo[b]fuoranteno	3.96	3	3
2,3 Dicloronitrobenzeno	1.681	2	2
2,4-Diclorofenol	1.513	1	2
Etilbenzeno	0.88	1	1
Fluoranteno	3.005	2	3
Hexaclorobenzeno	3.455	3	3
Hexacloroetane	2.347	2	3
Parathion	2.288	2	3
Pentaclorofenol	3.425	3	3
2,4,5-T	1.453	2	2
1,2,4-Triclorobenzeno	3.414	3	2

* Classificação apresentada na literatura. ${ }^{1}$

Conorysocs

Observa-se que há ligeira diferença entre os valores obtidos pelos descritores teóricos daqueles apresentados pela literatura. Os loadings mostraram que para as classes 1 e 3 propriedades eletrostáticas são importantes enquanto para a classe 2 também as estruturais apresentam influência. Um modelo PLS está sob investigação.

Agradgalmentos

Ao CENAPAD-SP e ao Prof. Dr. Vitor Barbanti Pereira Leite pelos equipamentos e programas utilizados nos cálculos.

[^300]Tabela 1. Sistema de Estudo

The use of density functional theory and statistical methods in metabolites cannabinoids

Tânia B. e Silva ${ }^{1,2}$; Mariano A. Pereira ${ }^{2}$; Valéria S. Malta ${ }^{2}$; Carlton A. Taft ${ }^{3}$; Miguel A. San-Miguel ${ }^{4}$
(1) Universidade Estadual de Santa Cruz/UESC, Campus Soane Nazaré de Andrade, Rodovia llhéus-Itabuna, km 16,
llhéus/BA, Brasil. taniauesc@hotmail.com /(2) Universidade Federal de Alagoas/UFAL, Campus A.C. Simões, BR 104 Norte, Km 97, Tabuleiro dos Martins, Maceió/AL, Brasil. map@qui.ufal.br (3) Centro Brasileiro de Pesquisas Físicas (CBPF) Rua Dr. Xavier Sigaud, 150, Urca, Rio de Janeiro/RJ, Brasil. (4) Universidad de Sevilla,
Facultad de Química. Departamento de Química Física. Campus Reina Mercedes, 41012, Sevilla, Spain.

Computational studies have been carried out in order to better understand the relationship between the chemical structure and the biological activity of cannabinoid compounds. Some of the cannabinoids have shown anti-hemetic, anti-cancer, anti-tumoral, anti-inflamatory, anti-oxidant, anaesthetic and analgesic effects [1]. The structure variations of these metabolites occur at the side chain connected to ring A in groups R_{2} and R_{1} for C_{11} in ring C (Figure 1). R_{1} is hydroxylated in the active metabolite 11-hydroxy- ${ }^{9}$-tetrahydrocannabinol ($11-\mathrm{OH}-\mathrm{THC}$), and oxidized in the inactive

11-nor-9-carboxy-0 ${ }^{9}$ tetrahydrocannabinol (9-COOH-THC) (Figure 1)[2]. Different molecular properties for a set of 30 cannabinoid metabolite derivatives have been determined from density functional theory calculations (table 1). The use of Chemometrics methods including Principal Component Analysis (PCA), Hierarchical

Figure 1. General structure and numbering used in the cannabinoids.

References

[1] Tanda, G.; Goldberg, S. R. (2003) Cannabinoids: reward, dependence, and underlying neurochemical mechanisms-a review of recent preclinical data Psychopharmacology (Berl), 24-30. [2] Honório, K. M.; Da Silva, A. B. F. (2005) A study on the influence of molecular properties in the psychoactivity of cannabinoid compounds. Journal Modelling Molecular, 11(3): 200-209. And references cited.
[3] Silva T. B.; Pereira M. A.; Malta V. S; Bento E. S.; San-Miguel M. A.; Zioli R. L.; Martins J. B. L.; Sih A.; Taft C. A.(2007) A chemometrics study of cannabinoid metabolites from density functional theory calculations. Submitted article

Cluster Analysis (HCA) and Nonhierarchical Cluster Analysis (K-means), Nearest Neighbor (KNN) and Artificial Neural Networks (ANN) have allowed to classify the compounds into pshychoactive, moderately psychoactive and psychoinactive groups in good agreement with the experimental evidences for the derivatives already characterized[3].

$\underset{H}{E}(\mathrm{HOMO})$	Energy of the highest occupied molecular orbital.
$\begin{aligned} & \mathrm{E}(\mathrm{HOMO}-1) \\ & \mathrm{H}-1 \end{aligned}$	Energy of the next lowest occupied molecular orbital.
$\begin{aligned} & \text { E LUMO } \\ & \text { L } \end{aligned}$	Energy of the lowest unoccupied molecular orbital.
$\begin{aligned} & \text { (LUMO }+1 \text {) } \\ & \mathrm{L}+1 \end{aligned}$	Energy of the next lowest unoccupied molecular orbital.
η	Hardness, index of the molecular chemical reactivity, $=1 / 2(E($ LUMO $)-E(H O M O))$
$\log P$	n-octanol/water partition coefficient
Pol	Polarizability
E. H.	Hydration Energy
V	Molecular Volume
M	Molecular weight
	Dipole moment
A	Surface Area
R	Molar Refractivity
T1	Dihedral Angle (C1-C10b-C10a-C10)
T2	Dihedral Angle (H-O-C1-C2)
T3	Dihedral Angle (O-C1-C2-C3)
T4	Dihedral Angle (C1-C2-C3-C1)

Estudo teórico e simulação numérica do uso de pulsos curtos de laser aplicados ao aumento da probabilidade de reações químicas.

Freddy F. Guimarães ${ }^{1,2, *}$ (PQ), Yasen Velkov ${ }^{2}$ (PG), Viviane C. Felicíssimo ${ }^{2}$ (PQ), Katia J. de Almeida ${ }^{2}$ (PG), Faris Gel'mukhanov ${ }^{2}$ (PQ) e Hans Ågren ${ }^{2}$ (PQ)
freddy@ufmg.br
${ }^{1}$ Departamento de Quimica, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, CEP-31270-901, Belo Horizonte, Minas Gerais, Brazil.
${ }^{2}$ School of Biotechnology, Royal Institute of Technology, S-106 91 Stockholm, Sweden.
Palavras Chave: Controle Quântico de reações químicas,fenômenos físicos ultra rápidos e Dinâmica quântica.

Abstract

O uso da luz monocromática na síntese de produtos químicos é um desafio que vem aguçando a curiosidade da comunidade científica moderna desde a descoberta dos lasers na década de 60. A interação de feixes ultracurtos de laser com a matéria proporciona a criação de pacotes de onda, que são superposições coerentes de estados quânticos ${ }^{1}$. Devido ao pacote de onda ser coerente, ele apresenta fenômenos de interferência que, em princípio, podem ser utilizados para suprimir ou maximizar a obtenção de um ou mais produtos de uma reação química ${ }^{2}$. Este trabalho apresenta resultados de estudos teóricos que evidenciam a viabilidade do uso de lasers de curta duração, no aumento do rendimento de reações químicas. Os resultados teóricos são baseados na teoria quântica dependente do tempo. O conceito de pacotes de onda é usado para descrever a interação do sistema molecular com pulsos de radiação eletromagnética monocromática e coerente, assim como, o processo de espalhamento atômico/molecular. As simulações numéricas são feitas com o programa eSPec ${ }^{3}$ que está sendo desenvolvido no nosso grupo de pesquisa.

Resilin os chroussao

O sistema químico protótipo escolhido para os estudos teóricos é a ativação do metano:

$$
\mathrm{CH}_{4}(v=0,1,2)+\mathrm{H} \rightarrow \mathrm{H}_{2}\left(v^{\prime}=0,1\right)+\mathrm{CH}_{3},
$$

o qual tem uma grande importância econômica do ponto de vista de geração de energia. As simulações numéricas do espalhamento de Hidrogênio pelo metano mostram que a excitação de estados vibracionais v é mais efetiva na formação do produto H_{2} que o aumento da energia de colisão entre as partículas (ver Fig. 1). Esse resultado está de acordo com resultados experimentais ${ }^{4,5}$ obtidos para outros sistemas químicos.
A comparação dos produtos das reações considerando ou não a inclusão da interação com pulsos de laser mostra que há a formação H_{2} em níveis vibracionais v, com diferentes proporções. Para colisões considerando a ligação C-H no nível vibracional fundamental $((=0$, tem-se apenas a formação de $\mathrm{H} 2 \mathrm{em}(=0$. Já os produtos de espalhamento partindo de $\mathrm{C}-\mathrm{H}$ em $(=1 \quad((=0)$ mostram a formação de H 2 na proporção de 2:1 respectivamente nas frequências vibracionais 0 e 1 .

As simulações numéricas mostram que a formação de uma superposição coerente, marcada por $\varphi^{\text {WP }}$ na Fig. 1, leva a um aumento extra da probabilidade de reação. O pacote de
onda $\varphi^{W P}$ formado tem a composição de 82% do níve $v=0$ e 18% de $v=1$. A linha com triângulos mostra : diferença de probabilidade de reação entre o pacote dt onda e uma superposição de estados quântico incoerente.

Figura 1. Probabilidade de reação $P(t)$ dependente dc tempo partindo de diferentes níveis vibracionais da ligação C-H.

- 0 HC M SOES

Pulsos de laser podem ser usados para aumentar a probabilidade de reação. A formação de umá superposição coerente pela interação com o laser leva a um aumento extra da probabilidade de reação. O؛ resultados teóricos obtidos são encorajadores ϵ fornecem subsídios para estudos futuros tanto teóricos quanto experimentais.

Este trabalho foi desenvolvido com o apoio do CNPq STINT e Carl Tryggers Stiftelse foundation.

[^301]
Molecular Dynamics study of the Benzocaine in water

Ricardo Gobato (PG) ${ }^{1 *}$, André T. Ota (PQ) ${ }^{1}$, Pedro G. Pascutti (PQ) ${ }^{2}$, Rafael C. Bernardi (PG) ${ }^{2}$
${ }^{\prime}$ Departamento de Física - Universidade Estadual de Londrina, Brazil
${ }^{2}$ Instituto de Biofísica Carlos Chagas Filho - Universidade Federal do Rio de Janeiro, Brazil
*ricardogobato@hotmail.com

Key-words: Hydrophobicity, Local Anesthetics, Molecular Modeling, Molecular Dynamics.

hruroducero

The mechanism of how the local anesthetics (LA) penetrates in cellular membrane is not well known. Generally, the theories affirm that the ionic type "opens" the membrane and the neutral one penetrates to cellular interior. But, in physiological media, the benzocaine (BZC), generic name of ethyl 4 -aminobenzoate, has only one chemical type, a neutral one. But it has the same activity of others LAs. Clearly, this fact is in contradiction with generally accept theory. To answer to the question: why it acts in the same way that the another LAs, we do molecular dynamics (MD) calculations in water environment. We do $g(r)$ function analysis (radial distribution function) that shows us that BZC presents a remarkable hydrophobicity that is very close to the values of the others caines that we studied. More high the function $\mathrm{g}(\mathrm{r})$, more hydrophilic is the molecule, otherwise it is hydrophobic. The force of interaction with the molecules is the negative inverse of $g(r)$ function. The BZC structure presents a possibility of cluster formation. We analyzed BZC clusters with two, four and eight BZCs molecules in water environment. The data results were analyzed with $g(r)$ function again, and now, more BZC molecules, less hydrophobic are the BZC molecules.

The initial structure and charges of BZC were obtained after ab-initio calculation using Onsager Reaction Field for to avoid solvent effects. The method used were DFT/B3LYP with the basis set 6$31 \mathrm{G}^{* *}$ and with ChelpG method to charge calculations. The data so obtained were used for to create a specific force field to BZC to use in Gromacs Program. To study a single molecule, we put it in a cubic box containing 3822 water molecules, and we choose the NPT ensemble with pressure of 1 bar and temperature of 300 K . The water model were the SPC-216 with periodic conditions to avoid surface problems. After 0.5 ns of optimization, we done MD calculations of 20.0 ns . The Coulomb interactions were limited at 1.4 nm and the Van der Waals interactions at 1.2 nm with Ewald sum. We put two molecules inside this water box after done a
rotation and a translation with BZC molecules. These two operations generate a pair of BZC with amino
group in front of ethyl group. With this criteria, we construct the others clusters, with no water inside them.

Figure 1. Graph for Analysis $g(r)$ in the clusters.

Concluclons

The $g(r)$ analysis indicates that BZC are hydrophobic, but more molecules of it, less hydrophobic they are. Or, in other words, BZC molecule acts in clusters, and in this case, their activity is more intensive than single molecule activity. Other result of this analysis is that there is a number limit to form BZC clusters. We interpret this result as the greater is the cluster more easily is to water molecule penetrates inside it, because the space between the BZC molecules is more and more great.

7: Whowrarmans

The authors are grateful for the support from CAPES and UFRJ.

[^302]
A Theoretical Study on the Nature of the Active Site in bis(imino)Pyridil Iron Polymerization Catalysts.

Jorge Martinez ${ }^{1 *}$, Victor Cruz ${ }^{2 *}$, Javier Martinez-Salazar ${ }^{3}$, Javier Ramos ${ }^{4}$, Soledad Gutiérrez-Oliva ${ }^{5}$ and Alejandro Toro-Labbé ${ }^{6^{*}}$
${ }^{1}(P G),{ }^{5,6}$ (PQ) QTC, Departamento de Química Física, Facultad de Química, Pontifícia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Casilla 306, Correo 22, Santiago, Chile.
${ }^{2-4}$ (PQ) GEMPPO, Departamento de Física Macromolecular, Instituto de Estructura de la Matéria, Consejo Superior de Investigaciones Cientificas (CSIC), Serrano 113-bis. 28006-Madrid, España.
${ }^{1}$ imartiar@uc.cl ${ }^{2}$ victor.cruz@iem.cfmac.csic.es ${ }^{6}$ atola@uc.cl
Polymerization, Catalysts, Conceptual DFT, Dual Descriptor.

Ilificodrade

The dual descriptor $\Delta f(\mathbf{r})^{1,2}$ of chemical reactivity and selectivity is used in order to shed light on the active species which begins the polymerization process through olefin coordination. Motivated by two experimental studies that show controversy on the nature ferrous or ferric of the active site in bis(imino) pyridyl iron, in the present work, it is shown that the dual descriptor allows one to identify the active species. Our results support the idea about the alternative nature of the active species for these catalysts, although an specific active species is suggested here.

R- Resulf and Discussions

Figure 1. d^{6}-high-spin Fe^{+2}. catalyst system. A 3-D map of $\Delta f(r)$ is shown.

Red color indicates that nucleophilic attacks are favorable and yellow color indicates that electrophilic attacks are favorable. The region around the iron atom for d^{6}-high-spin Fe^{+2} shows a yellow color indicating that this species does not show catalytic capability, however, ${ }_{3}$ experimental results indicates the contrary situation ${ }^{3}$.
On the other hand, the d^{5}-high-spin Fe^{+3} species does show a region in red color around the iron metal thus favoring nucleophilic attacks on the iron metal which is supported by experimental results ${ }^{4}$. In order to reach more realistic results,
the same reactivity was explored after taking into account the cocatalyst. Models for MAO were including in theoretical calculations.

Dual descriptor $\Delta f(\mathbf{r})$, excluding co-catalysts, indicates that the intrinsic reactivity of d^{5}-high-spin Fe^{+3} favours any nucleophilic attack over iron atom thus allowing a favourable coordination of an olefin molecule; whereas the intrinsic reactivity of d^{6}-highspin Fe^{+2} does not show a catalytic behavior because $\Delta f(r)$ indicates that any nucleophilic attack over iron is not favorable.

New theoretical calculations by taking into account the co-catalysts MAO change the former theoretical results in such a way that d^{5}-high-spin Fe^{+3} and d^{6} -high-spin Fe^{+2} show favourable catalytic behaviors according to those values given by $\Delta f(r)$ which is supported by the experimental results mentioned above. Then $\Delta f(\mathbf{r})$ distinguishes how the active sites into a catalyst can be modified when a cocatalyst is considered explicitily in theoretical calculations.

The autors wish to thank financial support from project FONDECYT No. 1060590 and project FONDAP No. 11980002 (CIMAT: Centro para la Investigación Interdisciplinaria Avanzada en Ciencias de los Materiales), Chile and Ministerio de Educación y Ciencia, Grant No. MAT2006-0400, the Comunidad de Madrid, and Repsol-YPF for useful discussions about structure and experimental information, Spain.

[^303]
Sistema artificial inteligente para análise de reações metabólicas

Geison Voga Pereira ${ }^{1 *}$ (PG), Jadson Cláudio Belchior ${ }^{1}$ (PQ)
gpvoga@gmail.com.
${ }^{1}$ Departamento de Química-ICEx, Universidade Federal de Minas Gerais, Pampulha, 31.270-901, Belo Horizonte, MG, Brasil. Palavras Chave: regras heurísticas,metabolismo
\section*{ImMordrate}
tais como, identificar funções químicas e propor mecanismos de reação.

A simulação computacional de sistemas biológicos exige a aplicação de conceitos tais como a vida artificial, que propṍe a construção de sistemas inteligentes capazes de simular estruturas complexas providas de propriedades dinâmicas e formadas por diversos componentes autônomos. Este estudo tem como objetivo propor um sistema especialista baseado em regras heurísticas e lógica fuzzy para mapear rotas metabólicas, relacionadas principalmente ao processo de respiração celular, no interior das mitocôndrias. O desenvolvimento teórico do sistema especialista é apresentado a seguir juntamente com os resultados preliminares.

Resmindoselliculsero

A base de conhecimento do sistema especialista proposto (Fig 1) é formada por uma série de grafos [1] que descrevem moléculas, estes são construídos a partir de um conjunto de regras heurísticas que definem os tipos de ligação entre os átomos [2]. O processo de inferência de mecanismos de reações metabólicas é realizado por uma rede semântica, que utiliza regras heurísticas para descrever diversos mecanismos de reação (por exemplo, $\mathrm{S}_{\mathrm{N}} 1$ e $S_{N} 2$), algumas rotas metabólicas (reagentes e produtos) e as moléculas representadas por grafos [2].

Figura X . Esquema geral do sistema especialista implementado.

As regras heurísticas que descrevem os mecanismos de reação e avaliam os grafos (moléculas) proporcionam ao sistema especialista propriedades cognitivas semelhantes a um químico,

Para ilustrar o processo de representação de estruturas químicas, a molécula do ácido cítrico, presente no processo de respiração celular (Fig 2) é representada por um conjunto de fatos [2], formada pelos átomos envolvidos na ligação com os respectivos índices numéricos e o tipo de ligação envolvida, como por exemplo:

Ligação(C4, O2, simples).
Ligação(C4, O3, dupla).

Figura X. Molécula de ácido cítrico com os átomos numerados.

A organização das regras heurísticas em árvores de busca possibilita ao sistema a compreensão e definição de possíveis isômeros funcionais ou constitucionais, como, por exemplo, o ácido ascórbico isômero constitucional do ácido cítrico.
MOonclisces
Os testes preliminares demonstram a
aplicabilidade do sistema especialista na
compreensão de estruturas químicas extensas
indicando inclusive a existência de isômeros
funcionais e constitucionais. A estrutura de grafos
possibilita a implementação de regras heurísticas
baseadas no formalismo da matemática lógica [1, 2],
permitindo a transcrição do conhecimento químico
para uma forma computacional que pode ser
executada em toda a extensão das estruturas
metabólicas presentes na base de conhecimento.

Os autores agradecem as agencias CNPq , Fapemig e Capes pelo financiamento.

[^304]
Energia e Propriedades a um-elétron no Estado Fundamental usando o Método MRHFCI.

${ }_{1,3}$ Antonio Moreira de Cerqueira Sobrinho ${ }^{1}(\mathrm{PQ})^{*}$, Marco Antonio Chaer Nascimento ${ }^{2}$ (PQ), Micael Dias de Andrade ${ }^{1,3}$ (PG), Luiz Augusto Carvalho Malbouisson ${ }^{1}$ (PQ). moreira@ufba.br
${ }^{1}$ Instituto de Física da UFBa, ${ }^{2}$ Instituto de Química da UFRJ, ${ }^{3}$ Centro de Formação de Professores da UFRB

PALAVRAS-CHAVES: Múltiplas soluções Hartree-Fock, CI Multi-Referência, Propriedades a um Elétron

Métodos de interação de configurações (C/) multi-referência têm sido desenvolvidos e usados em anos recentes no cálculo de propriedades. Variáveis dinâmicas não-variacionais não exibem o comportamento monotônico decrescente da energia com a ampliação do domínio de busca dos extremos do funcional energia, ao contrário, apresentam um comportamento irregular. Isso introduz dificuldades na determinação de propriedades não-variacionais no âmbito de métodos aproximativos variacionais.
Em trabalho anterior [1] estudou-se o momento de dipolo elétrico permanente de alguns sistemas AH e $\mathrm{H}_{2} \mathrm{O}$ com a base STO-6G padrão (bm) e LiH na base double-zeta (dz), usando um novo método de interação de configurações ($C l$) multireferência, baseado em múltiplas referências Hartree-Fock (MRHFCI). Determinou-se em todos os casos, com um reduzido número de configurações na base Cl , o dipolo elétrico próximo do resultado experimental.
No método MRHFCI em lugar de uma única referência, o estado fundamental HF, são utilizados diversos extremos HF (múltiplas soluções HF) como referências para expandir as funções de estado. Assim, para cada sistema estudado, são geradas diversas soluções HF com as adequadas características de simetria de ponto e spin do estado de interesse. Com a $\omega^{\text {esina }}$ solução HF e seus respectivos orbitais virtuais, pode-se construir o conjunto de todas as configurações da $\omega^{\text {esima }}$ solução HF com as características de simetria de ponto e spin do estado de interesse, isto é, uma base, \mathbb{B}^{ω}, do espaço Cl completo do sistema molecular. A reunião das bases \mathbb{B}^{ω} é um sistema de geradores, G, do espaço Cl completo. Embora as bases \mathbb{B}^{ω} gerem o mesmo espaço Cl completo, as correspondentes configurações destas bases têm distintos conteúdos de informação quantomecânica. Este último aspecto é o que fundamenta e sugere o uso de bases 'misturadas' na formulação do problema Cl, isto é, bases multireferência HF (MRHF) formadas a partir de G, que
incluem configurações oriundas de diferentes soluções HF.
As funções de estado MRHFCI são então escritas como,

$$
\left.\left.\left.\left.\Psi_{M R H F}\right\rangle=\sum_{0} C_{0}^{\bullet} 0^{\bullet}\right\rangle+\sum_{S} C_{S}^{\bullet} S^{\bullet}\right\rangle+\sum_{D} C_{D}^{\bullet} D^{\bullet}\right\rangle+\ldots
$$

onde o símbolo " \oplus " indica a multiplicidade de referências na formação da base MRHF. A equação de condição necessária para a determinação dos extremos em um problema C/ não-ortogonal qualquer é uma equação de autovalor generalizada. Para o problema MRHFCI, no subdomínio definido pela expressão acima da função de estado MRHFCl, a equação de condição necessária é escrita como,

$$
\mathbf{H}^{\circ} \mathbf{C}^{\bullet}=\lambda \mathbf{S}^{\circ} \mathbf{C}^{\circ}
$$

onde o menor dos autovalores λ é a energia eletrônica do estado fundamental e o correspondente autovetor \mathbf{C}° representa o estado fundamental $\left.\Psi_{\text {MRHF }}\right\rangle$ na base MRHF. H° é a representação matricial na base MRHF de H, o hamiltoniano sem spin do sistema molecular na aproximação de BornOppeinheimer e \mathbf{S}°, é a matriz de superposição da base MRHF. Uma grandeza qualquer W do sistema é então calculada com a expressão,

$$
\begin{aligned}
& \langle W\rangle=\left\langle\Psi_{\text {MRHF }}\right| W\left|\Psi_{\text {MRHF }}\right\rangle=\sum_{0^{0^{\prime}}} C_{0^{\prime \prime}}^{\bullet} C_{0^{\circ}}\left\langle 0^{0^{\prime \prime}}\right| W\left|0^{0^{\circ}}\right\rangle+ \\
& +\sum_{S^{\prime \prime} S^{\prime}} C_{S^{\prime \prime}}^{\bullet} C_{S^{\prime}}^{\bullet}\left\langle S^{\bullet^{\prime \prime}}\right| W\left|S^{\bullet^{\prime}}\right\rangle+\sum_{D^{\prime \prime} D^{\prime}} C_{D^{\prime \prime}}^{\bullet} C_{D^{\prime}}^{\bullet}\left\langle D^{0^{\prime \prime}}\right| W\left|D^{\circ^{\prime}}\right\rangle+\ldots
\end{aligned}
$$

Os elementos de matriz de $\mathbf{H}^{\bullet}, \mathbf{W}^{\bullet}$ e $\mathbf{S}^{\bullet},\left.\left\langle{ }^{\circ}\right| H\right|^{\left.0^{\circ}\right\rangle}$, $\left.\left.\left\langle{ }^{\circ "}\right| W\right|^{\circ}\right\rangle$ e $\left\langle 0^{\prime \prime} \mid 0^{\prime}\right\rangle$, são calculados de duas maneiras: i) se $\left.\left.{ }^{\circ}\right\rangle e^{\bullet "}\right\rangle$ originam-se da mesma referência $H F$ usa-se as regras de Condon-Slater; ii) se $\left.{ }^{\circ}\right\rangle$ e $\left.{ }^{\bullet "}\right\rangle$ originam-se de distintas referências HF usa-se as expressões gerais para elementos de matriz em bases C/ não-ortogonais.
Neste trabalho, aplicamos o método MRHFCI a alguns dos sistemas calculados na referência [1] em outras bases atômicas e a novos sistemas também constituídos de átomos da primeira linha.

[^305]
Estudo Teórico da ligação química do estado fundamental das espécies iônicas, $\mathrm{CuX} X^{+}$e $\mathrm{CuX}^{-}(X=B, C, N, O$ e F)

Luiz F. A. Ferrão ${ }^{1}$ (PG)* (ferlfa@ita.br), Orlando Roberto-Neto ${ }^{2}$ (PQ), Francisco B. C. Machado ${ }^{1}$ (PQ).
${ }^{1}$ Departamento de Química - Instituto Tecnológico de Aeronáutica - São José dos Campos - SP.
${ }^{2}$ Divisão de Aerotermodinâmica e Hipersônica - Instituto de Estudos Avançados - São José dos Campos - SP. Palavras Chave: Constantes Espectroscópicas, Moléculas Diatômicas, Metais de transição, ab initio.

1/HOMMTME

A compreensão da natureza da ligação química e da estrutura eletrônica envolvendo metais de transição é muito importante para várias áreas do conhecimento científico, como por exemplo, química de organometálicos, estudos de superfícies, catálises, reações em alta temperatura, astrofísica, entre outras. Este trabalho consiste na caracterização teórica do estado fundamental das espécies iônicas CuX^{+}e $\mathrm{CuX}^{-}(\mathrm{X}=\mathrm{B}, \mathrm{C}, \mathrm{N}, \mathrm{O}$ e F) utilizando os métodos B3LYP, CCSD(T) e MRCI. Em estudo anterior, realizou-se uma análise comparativa da ligação química das moléculas neutras utilizando métodos do funcional da densidade (B3LYP, BPV91, BP86) e o método coupled cluster ($\operatorname{CCSD}(\mathrm{T}))^{1}$. Desde então, o foco do estudo foi melhorar e fazer análise comparativa da descrição da ligação química através da utilização de outros métodos, como o método MRCI e estudos das espécies iônicas. As funções de base atômica utilizadas foram cc-pVTZ e aug-cc-pVTZ para os átomos do segundo período (B, C, N, O e F) e a base de Wachters + f para o átomo de Cu.

- Presultedre e piscurcelo

Cálculos foram realizados para as espécies iônicas $C u X^{+}$e $\mathrm{CuX}^{-}(X=B, C, N$, O e F) utilizando os métodos B3LYP e CCSD(T). Nossos resultados estão em boa concordâncias com resultados anteriores obtidos com base semelhante e utilizando métodos do funcional da densidade com os funcionais B3LYP e BPW91 ${ }^{2-4}$. Os principais resultados obtidos encontram-se sumarizados na Tabela ao lado. Das espécies estudadas, somente para o ion CuO^{-}encontrou-se resultados experimentais na literatura ${ }^{5}$. Os resultados calculados, tanto para Re como para ω_{e} estão em boa concordância. Os resultados DFT também estão em boa concordância com os obtidos com o método $\operatorname{CCSD}(\mathrm{T})$. Cálculos CASSCF/MRCI também mostram resultados semelhantes, mas eles dependem do espaço ativo utilizado. Numa primeira etapa, utilizamos somente os orbitais e elétrons de valência e numa outro, incluímos os elétrons e os orbitais d do cobre. Esta mudança, aumenta significativamente o numero de configurações e a matriz MRCI a ser diagonalizada, aumentando
consideravelmente o tempo computacional, mas os resultados são significativamente sensíveis com a inclusão dos elétrons e orbitais d. No entanto, nosso próxima objetivo de estudo é a caracterização de estados excitados e certamente o método CASSCF/MRCI deve ser empregado.

Tabela. Resultados propriedades, distâncias em \AA e freqüência $\mathrm{em} \mathrm{cm}{ }^{-1}$.

	Molécula	CuB^{-}	CuC^{-}	CuN^{-}	CuO^{-}	CuF
Re	B3LYP	1,952	1,848	1,757	1,700	1,869
	$\operatorname{CCSD}(\mathrm{T})$	1,926	1,836	1,736	1,692	1,851
	Teoria ${ }^{\text {a }}$	1,958	1,824	1,847	1,705	
	Exp ${ }^{\text {b }}$				1,670	
	B3LYP	467	527	615	712	447
ω_{e}	$\operatorname{CCSD}(\mathrm{T})$	489	528	637	704	465
	Teoria ${ }^{\text {a }}$	461	575	499	701	
	Exp. [5]	739	
	Molécula	CuB^{+}	CuC^{+}	CuN^{+}	CuO^{+}	CuF^{+}
Re	B3LYP	1,942	1,839	1,796	1,790	1,743
	$\operatorname{CCSD}(\mathrm{T})$	1,978	1,840	1,774	1,835	1,710
	Teoria ${ }^{\text {a }}$	1,944	1,811	1,860	1,777	
	B3LYP	495	607	603	527	605
ω_{e}	$\operatorname{CCSD}(\mathrm{T})$	436	585	626	369	574
	Teoria ${ }^{\text {a }}$	494	628	433	553	

${ }^{a}$ CuB B3LYP, Ref. [2]; CuC BPW91, Ref. [3]; CuN B3LYP, Ref. [4]; CuO B3LYP Ref. [3].

Condusoes

Cálculos B3LYP e $\operatorname{CCSD}(\mathrm{T})$ e MRCI foram realizados para o estado fundamental das espécies espécies iônicas CuX^{+}e $\mathrm{CuX}^{-}(\mathrm{X}=\mathrm{B}, \mathrm{C}, \mathrm{N}, \mathrm{O}$ e F) com resultados semelhantes e em concordância com resultados experimentais existentes. Como é sabido, o custo computacional é bem menor utilizando o método B3LYP.

CNPq, FAPESP, CAPES e CENAPAD-SP

[^306]

A

A. A. Leitão 336
A. B. F. da Silva 311
A. Fazzio 333
Ademir João Camargo 64
Ademir Neves 104, 111, 112
Adilson Beatriz 97
Adoniel Welder Saraiva Antunes 170
Aguinaldo R. de Souza 284
Alan B. de Oliveira $20:$
Albérico B. F. da Silva 77, 78
Albérico Borges Ferreira da Silva 94, 215, 293
Alejandro Toro-Labbé 364
Alessandra F. A. Vilela 200
Alessandra F. Albernaz Vilela 314
Alessandra N. Baraúna 310
Alessandra Sofia Kiametis 171
Alex Freitas Ramos 142
Alex G. Taranto 118
Alex G. Taranto 119
Alexander Martins da Silva 149, 204, 205
Alexandre A. A. de Paula 173
Alexandre A. Leitão 208, 337, 338, 292
Alexandre A. Maciel 299
Alexandre B. da Rocha 210
Alexandre B. Rocha 181, 338
Alexandre Carli de Freitas 62
Alexandre de A. Maciel. 100, 273, 301
Alexandre N. M. Carauta 41
Alfredo M. Simas 220, 230
Alfredo R.M. Oliveira 42
Aline Barbizan 279
Aline Thaís Bruni 127, 279, 359
Aline Viol 345
Alline V. B. de Oliveira 349
Ana Carla P. Bitencourt 283
Ana Carolina Furlan 159
Ana Carolina Roma 104
Ana Claudia G. Malpass 71
Ana Cláudia M. Carvalho 55
Ana Elizabete de A. Machado 25, 26
Ana Elizabete de Araújo Machado 327
Ana L. L. Lordello 32
Ana Luiza Bonvino Saraiva 359
Ana M. L. Agüera 34
Ana Paula Souza 5
Ana Paula Souza Santos 185
Anderson Coser Gaudio 357
Anderson M. Marques 29, 301
Andrana K. Calgarotto 42
André A. S. T. Ribeiro 318
André Farias de Moura 355
André G. H. Barbosa 158, 160
André T. Ota 319, 363
Andréa D. Quintão 135
Andrey N. Enyashin 19, 20
Anivaldo Xavier de Souza 85
Anselmo Elcana de Oliveira 224
Antonio B. Carvalho 287
Antonio C. Pavão 344
Antonio C.O. Guerra 113, 116, 117
Antônio Canal Neto 15, 22
Antonio Carlos Borin 125, 126
Antonio Carlos Pavão 23, 24, 26
Antônio Carlos Pavão 222
Antonio da S. Florencio 139
Antonio E. H. Machado 330
Antônio F. C. Alcântara 189
Antonio F. de Figueiredo 100, 195, 196, 273, 297, 301, 305, 332
Antonio F. Figueiredo 39, 298, 299
Antônio Flávio de C. Alcântara 3
Antonio G. S. Oliveira Filho 6
Antônio J. N. Fernandes 189
Antônio J. R. da Silva 333
Antonio L. A. Fonseca 184
Antônio M. Da Silva Jr 55
Antônio M. J. Chagas 316
Antonio Moreira de Cerqueira Sobrinho 366
Antônio R. S. Alves Bosso 286
Armstrong M. Vilar 174
Arquimedes M. Pereira 108, 174
Augusto Batagin-Neto 343
Augusto F. Oliveira 10
Aurélio B. Buarque Ferreira 65

B

Benedetta Mennucci 95
Benedito J. Costa Cabral. 307
Bernadete A. Roberto 75
Bernardo Assis 134
Bernardo Laks 79
Björn O. Roos 126
Brenda B. Moreira 36
Bruno A. C. Horta 186
Bruno A. C. Horta 318
c
C. A. Lucas 181
C.S. Barbosa 1
Camila R. Campos 47. 58
Carla Sirtori 34
Carlos A. Achete 292
Carlos A. Fuzo 98
Carlos E. Bielschowsky 181, 208, 210
Carlos Henrique B. Cruz 334
Carlos M. R. Sant'Anna 80
Carlos Mauricio R. Sant'Anna 85
Carlos O. Hokka 71
Carlos Roberto Ribeiro Matos 187
Carlos. A. Fuzo 151
Carlton A. Taft 319, 361
Cássia C. Turci $113,116,117$
Catarina Baldissera 321
Cesar T. Campos 87
Charles M. Aguilar 40
Cinara Lopes 213
Cinthia Santos Soares 67
Cíntia Beatriz de Oliveira 60
Cíntia C. Vequi-Suplicy 7
Clarissa O. da Silva $65,68,80,95$
Clarissa Oliveira da Silva 67
Clarisse Gravina Ricci 206
Claudia de F. Braga 302
Claudia F. Braga 43, 287
Cláudia Z. Oseguera 47, 58
Claudio A. Soto 209
Cláudio Nahum Alves 63, 290, 291
Cleber P. A. Anconi 115,212
Clebio S. Nascimento, Jr 115, 212
Clebson L. Veber. 42
Cleuton de S. Silva 21
Cleydson B. R. dos Santos. 273, 305, 332,
Cleydson B. R. Santos 29, 299
Cleydson B. Rodrigues dos Santos 301
Cleydson Breno Rodrigues dos Santos 297
Conny C. Ferreira 47, 58
Cristiano C. Bastos 344
Cristiano Legnani 292
Cristina A. Setúbal 340
D
D. G. Costa 336
Dalva E. C.Ferreira 285
Daniel G. Lago 134
Daniel L. Nascimento 184
Daniela Josa 74, 132, 133
Daniela Nadvorny 106, 335
Danilo Rodrigues 109
Deise T. Cavalcante 184
Denis da Silva Corrêa 84
Denis J. Gulin 32, 34
Denise Assafão 345
Denise Assafrao 18
Denise de A. Souza 139
Deyse G. Costa 338
Diego E. B. Gomes 319
Diego F. da S. Paschoa 12
Diesley M. S. Araújo 330
Dorila Piló-Veloso 163
Douglas Henrique 130
E
E. Borges 198
E. Orestes 311
Eder Severino Xavier 30
Edilson B.A. Filho 221
Edílson Clemente da Silva 35, 76, 110
Edson B. da Costa 75
Edson Barbosa da Costa. 71, 72, 73
Edson F. da Silva 289
Edson F. V. de Carvalho 216
Eduardo A. Ribeiro 98
Eduardo B. Neves 207
Eduardo Borges de Melo. 13
Eduardo C. Aguiar 105, 106, 335
Eduardo de Faria Franca 17
Eduardo de Moraes 341
Eduardo F.F. Rodrigues 33
Eduardo Hollauer 114
Eduardo L. de Sá. 32, 33, 34
Eduardo Lemos de Sá 62
Eduardo Santos de Araujo 346
Elaine F. F. da Cunha 74, 131, 133
Elaine Fontes Ferreira da Cunha 132
Elaine Rose Maia 69
Elierge B. Costa. 39, 100, 298, 332, 273
Elisa S. Leite 43
Elisangela A. y Castro 157
Elizabete R. M. Bezerra 320
Elizandra C. S. Elias 41
Elizandra S. Guimaräes 176
Elizete Ventura $174,288,324,325,306$
Elmar de Oliveira Uhl. 181
Elson Longo 341
Elton A. S. Castro 61, 276
Elton J. F. Carvalho 161
Eluzir P. Chacon 154
Eluzir Pedrazzi Chacon 304
Elvis S. Böes 300
Emilio Borges 86, 197
Eneida de Paula 194
Ênio Dikran V. Bruce 309
Enrico Tapavizca 350
Érica Cristina Moreno Nascimento 275
Érica T. Prates 183
Erika C. A. N. Chrisman 41
Ernesto R. Caffarena 289
Eudes E. Fileti 4
Eugenio F. Souza 131
Eugenio F. Souza 134
F. Napole 181
Fabiana Pereira de Sousa 303
Fabiane R. Rebello 289
Fábio Barboza Passos 294
Fábio Filocomo 151
Fábio J. B. Cardoso 39, 100, 298
Fábio Javaronia 65
Fabio L. P. Costa 202, 203, 316
Fabio M. Rosa 29, 39, 100, 273, 299, 305
Fábio Mota Rosa 297
Fábio Pedruci 17
Fábio V. Moura 200
Fabricio Ronil Sensato 339
Faris Gel'mukhanov 362
Felipe P. Fleming 158, 160
Felipe R. Souza 14
Felipe T. D. de Lima1 320
Fernanda Ferraz 359
Fernanda G. Oliveira 349
Fernanda M. Mazzé 165
Fernanda Marur Mazzé 143, 164
Fernando de Brito Mota 11
Fernando Rei Ornellas 6, 81, 128
Fernando S. da Silva 61
Fernando T. S. Vaz 229
Ferreira, M. D 347, 348
Flávia da Silva Pereira. 193, 322
Flávia P. Rosselli 292
Flávia Pirola Rosselli 293
Florence P. Novais 337
Francisco B. C. Machado $153,190,213,216,223,310,367,328,329$
Francisco C. Lavarda 342, 343
Francisco Carlos Lavarda 354, 353
Francisco E. Jorge. 57, 152, 22, 87, 89
Francisco Elias Jorge 15
Francisco Franciné Maia Júnior 50
Frank Wilson Fávero 159
Freddy F. Guimarães 362
G
G. G. B de Souza 181
G. Mohamad 1
Gabriel do Nascimento Freitas 225
Gabriel L. C. de Souza 157
Geison Voga Pereira 365
Geórgia M. A. Junqueira 55
Geraldo Magela e Silval 169, 177, 178
Gerd B. da Rocha 220
Gerd B. Rocha 221, 230
Gernot Frenking 120
Gilberto F. de Sá 66
Gilmar.G.Ferreira 197
Giovana Gioppo Nunes 62
Giovanni F. Caramori 120
Giuseppi G. Camilett 22, 57, 89
Gláucia M. da Silva 151
Glauciete S. Maciel 283
Glaucio B. Ferreira $113,114,116,117$
Gloria I. Cárdenas-Jirón 31
Gotthard Seifert 19, 20
Graciela Arbilla 35, 76
Grisset Faget O. 209
Guilherme Ferreira de Lima 27, 28
Guilherme P. Silva 296
Gunar V. da Mota 203, 316
Gustavo de Castro 280
Gustavo G. de Castro Amorim 312
Gustavo H. P. Luz 134
Gustavo Martini Dalpian 331
Gustavo Pierdominici-Sottile 317
H
H. Boechat-Roberty 181
Hans Agren 362
Harley de P. Martins Filho 78, 179, 180
Harry Pearson 69
Heitor Avelino de Abreu. 2, 3
Helena M. Petrilli 147
Helieverton G. Brito 29, 39, 273, 298, 299, 100
Hélio A. Duarte 10, 19, 20, 47, 58
Hélio Anderson Duarte 3,...2, 27, 28
Hélio Chacham 93
Hélio F. Dos Santos 12
Hélio F. Dos Santos $55,115,303,323,111,112,212,285$
Higo L. B. Cavalcanti 220
Hubert Stassen 300
Hugo B. Suffredini 46
I
I-Chun Lin350
Ignez Caracelli $48,51,53,54,84,342$
Igor D. Reva 325
Igor Polikarpov 182
Ilson P. Baptista 41
Ilza Damázio 27
Inês Sabioni Resck 69
lone Iga. 138, 191, 192, 219
Ionel Haiduc 53
Isabelle N. Peixoto. 302
Italo C. dos Anjos 221
Itamar Borges Jr 149, 150
Ivan Milas 205
Ivana P. Sanches 191
Ivana P. Sanches 192
Ivana Pereira Sanches 138
Ivano Tavernelli 350
Izandina Aparecida S. Lago 3
J
J. Daniel Figueroa-Villar 130
J. P. Braga 198
J.B. Hanai 1
Jacques F. Dias 136
Jadson Cláudio Belchior 351, 365
Jaísa Fernandes Soares 62
Jakelyne V. Coelho 14
Jamal da Silva Chaar 352
Jamal S. Chaar 38, 42
James L. Wardell 114
Janaina de L. Pereira 288
Jardel P. Barbosa 195, 298, 301, 305
Jardel Pinto Barbosa 297, 332
Javier Martinez-Salazar 364
Javier Ramos 364
Joacy V. Ferreira 344
Joana M. Santos 130
Joanna Maria Ramos 209
João B. L. Martins 173, 276, 61, 341,
João B. Lopes Martins 101
João B. P. da Silva 309, 105
João Batista Lopes Martins 275
João Bosco P. da Silva 106, 334, 335
João E. V. Ferreira 39, 301, 305, 332
João M. Marques Cordeiro 286
João P.Braga 86
João Paulo Ataide Martins. 217, 218, 322
João Paulo Barbosa de Almeida 326
João Paulo Gobbo 125, 126
João V. Comasseto 48, 51
João V. da Silva Jr 56
João Viçozo S. Júnior 148
João Vítor B. Ferreira 176
João.P.Braga 197
Joaquim D. Da Motta Neto 340
Joaquim J. S. Neto 171
Jordan Del Nero 36
Jorge Martinez 364
Jorge Ricardo Moreira Castro 214
José A. S. Cavaleiro 330
José A.F.P. Villar 42
José Brito da Cruz 50
José C. Pinheiro $29,39,100,195,196,273,298,299,301,305$
José Carlos Barreto de Lima 99
José Ciríaco Pinheiro 297
José Divino dos Santos 101
José Divino dos Santos 341
José Gluaco R. Tostes 136
José Luiz Martins do Nascimento 290
José Luiz Martins do Nascimento 291
José M. Riveros 8
José Machado Moita Neto 218
José Maria Pires 97
José R. dos S. Politi 296
José R. Mohallem 280, 345
José Rachid Mohallem 18, 155, 312
José Ribamar da Silva Santos 222
José Roberto dos Santos Politi 188
José Rogério de Oliveira Jr. 351
José W. de M. Carneiro 41
José Walkimar de M. Carneiro .. 118, 119, 136, 139, 140, 141, 144, 146, 154, 187, 294, 304Josefredo R. Pliego Jr162, 163
Josenaide Pereira do Nascimento 63
Jucélio P. de Lacerda 174
Judith Felcman 209
Julia Viegas Rymer 294
Juliana F. Lopes 303
Juliana Fedoce Lopes 115
Juliana M. Morbec 16
Juliana Palma 317
Júlio César Dillinger Conway 351
Julio M. Trevas dos Santos 346
Júlio R. Sambrano 284
Júlio Ricardo Sambrano 37, 145
Julio Rodolfo P. Iank 38
Julio Zukerman-Schpecto 48, 51, 53
Juracy R. L. Junior 324, 325
K
K. Capelle 311
K.M.T. Oliveira 42
Kaline Coutinho 7, 307, 315
Karina A. Barros 25, 26
Káthia M. Honório 229
Káthia Maria Honório 94
Kátia Cristina Molgero Westrup 62
Katia J. de Almeida. 362
Kátia R. Souza. 337
Katya Maria de Oliveira Sousa 60
Kele T. Carvalho 131
Kelson C. Lopes 108
Kelson M. T. de Oliveira 21, 38
Kelson Mota T. de Oliveira 352
Kely Ferreira de Souza 70
Kerly F. M. Pasqualoto 172
Kerly Fernanda Mesquita Pasqualoto 193
Klaus Capelle 16, 88
Kleber C. Mundim. 220, 274
Kleber Carlos Mundim 358
Laura Joana Silva Lopes 117
Laurent E. Dardenne 278
Leandro Greff da Silveira 211
Leandro Martinez 182
Lee Mu-Tao 59, 109, 137, 138, 157, 219
Léo Degrève 98, 143, 151, 164, 165, 214
Leonardo Baptista 35
Leonardo Diniz 345
Leonardo Fernandes Fraceto 194
Leonardo G. Diniz. 155
Leonardo Gabriel Diniz 312
Leonardo T. Ueno 330
Leticia Negrão 184
Liana de S. Silva. 287
Lidiane A. Camelo 184
Lilian Tatiane Ferreira de Melo 64
Lilian Weitzel C. Paes 140
Lilian Weitzel C. Paes 141
Lilian Weitzel C. Paes 119
Livia Streit 211
Longo, E 348
Longo, E 347
Lourdes Martins de Morais 274
Luana Quirino de Souza 274
Lucas Colucci Ducati 121
Lucas R. Rosado 130
Lucas R. Salviano 175
Lucas Visscher 77
Lúcia G. Appel 337
Luciana Guimarảes 19
Luciana Guimarães 20
Luciano de Azevedo Soares Neto 326
Luciano N. Vida 103
Luciano N. Vidal $44,45,102,56,124$
Luciano T. Costa 4, 308
Luis Antonio S. Vasconcellos 145
Luis G. Dias 292
Luis Maurício da Silva Soares 187
Luiz Antônio S. Costa 111, 112, 323
Luiz Augusto Carvalho Malbouisson. 358, 366
Luiz Carlos A. Oliveira 131
Luiz Carlos Gomide Freitas 17
Luiz E. Machado 59
Luiz Eugênio Machado 137
Luiz F. A. Ferrão 367
Luiz H. Mazo 46
Luiz M. Brescansin 59
Luiz Marco Brescansin 137
M. C. A. Lopes 181
M. L. M. Rocco 181
Maíra A. Carvalho 75
Manoel Gustavo Petrucelli Homem 219
Marcello F. Costa 12
Marcelo de Sousa 123, 124
Marcelo M. Tusi 346
Márcia C. Barbosa 207
Márcia M. C. Ferreira 172
Márcia Miguel Castro 193
Márcia Miguel Castro Ferreira 13, 217, 218, 322
Márcio Henrique Franco Bettega 168
Márcio S. Farias 195
Marcio Soares Pereira 227, 228
Marco A. C. Nascimento 160
Marco A. Chaer do Nascimento 225
Marco Antonio Chaer Nascimento 226, 227, 228, 366, 204, 205 205292
Marconi Bezerra da Silva Costa 23, 24
Marcos A. B. dos Santos 301, 305, 332, 100
Marcos A. B. Santos 29
Marcos Antonio Barros dos Santos 195, 196
Marcos Brown Gonçalves. 147
Marcos C. Esteves 208, 210
Marcos Eberlin. 38
Marcos M. R. Chagas 203
Marcos R. M. Chagas 316
Marcos S. Amaral 176
Marcus Vinícios P. dos Santos 335
Marcus Vinícius Pereira dos Santos 281, 282
Marcus Vinicius S. de Lima 110
Maria C. dos Santos 189
Maria Cristina dos Santos 161
Maria Cristina R. da Silva 110
Maria D. Vargas 144, 154
Maria da Glória Gomes Cristino 297
Maria das G. F. Vaz 139
Maria de Lara Palmeira de Macedo Arguelho. 97
Maria Domingues Vargas 304
Maria L. Santos 173
Maria Lucília dos Santos 275
Maria Teresa M. Lamy 7
Mariana M. Odashima 88
Mariane Lopes de Paiva 127
Mariano A. Pereira 361
Marilia J. Caldas 147
Marina Pelegrini 153, 223
Marinaldo Sousa de Carvalho 217
Mário L.A.A. Vasconcellos. 221
Mario Sergio Mazzoni 312
Marlei B. Passotto 71
Martha T. de Araujo 118, 119, 41
Martins, J. B. L. 348, 347
Maryene A. Camargo 104
Matheus P. Freitas 14, 129
Matheus P. Lima. 333
Mathias Rapaciloi 20
Maurício Chagas da Silva 90, 91
Mauricio D. Coutinho-Neto 350
Mauricio Tavares de M. Cruz 146, 294
Mauricio Vega-Teijido 48, 53
Mauro B. de Amorim. 202, 203
Mauro Barbosa de Amorim 201
Mauro C. Santos46
Mauro L. Franco 285
Mauro. C. C. Ribeiro 308
Maycon da S. Lobato 100, 273, 301, 305
Maycon da Silva Lobato 297
Maycon S. Lobato 298
Melânia Cristina Mazini 145
Melissa Fabiola S. Pinto 83
Melissa Fabíola Siqueira Pinto 82
Melissa S. Caetano 74, 132, 134
Melissa Soares Caetano 133
Micael Dias de Andrade 358, 366
Michelle Bitencourt 129
Michely Cristina Silveira 127
Miguel A. F. de Souza 306
Miguel A. San-Miguel 361
Milan Trsic $71,72,83,75,82$
Milton Massumi Fujimoto 109
Milton T. Sonoda 183
Mirco Ragni 283
Mirian Pedrosa 143, 164
Moacir Comar Júnior 38, 42, 352, 293
Mônica F. Belian 66
Mónica Pickholz 194
Mozart N. Ramos $108,287,324,325,105,106$
Munir S. Skaf 182, 183
Munir Salomão Skaf 159
N
N. H. T. Lemes 198
Nadia M. Comerlato 114, 116, 117 114, 116, 117
Naiara L. Marana 284
Naiara Letícia Marana 37, 145
Nájla M. Kassab 176
Nei Marçal 79
Nélio Henrique Nicoleti 353, 354
Nelson H. Morgon 9
Nelson H.T. Lemes 86
Nelson Henrique Morgon 90, 91, 99
Newton M. Barbosa Neto 330
Ney V. Vugman 208, 210
Nicolás A. Rey 111, 112
Nilson Tavares Filho 224
Nivan B. C. Junior 230
0
Orlando Roberto-Neto $153,190,213,216,223,310,367,328,329$
Oscar Loureiro Malta 5
Osmarina P. P. Silva 29, 39, 299
Oswald Cezar Viana Silva 304
Oswaldo Treu-Filho 195, 196
Otávio L. de Santana 287
Otto A. von Lilienfeld 350
P
P.B. Lourenço 1
Pablo A. Fiorito 229
Paolo Roberto Livotto 211
Patricia R. P. Barreto 199
Paula Homem de Mello 94, 46, 229
Paulo A. Netz 207
Paulo Augusto Netz 206
Paulo F.B. Gonçalves 300
Paulo J. P. de Oliveira 152
Paulo L. Franzen 330
Paulo Mitsuo Imamura 217
Pedro A. M. Vazquez , 102, 103, 124, 45, 56
Pedro de Lima Neto 50
Pedro G. Pascutti 319, 363
Pedro Henrique de Oliveira Neto 177, 178, 169
Pedro Pascutti 295
Pedro Puppin 209
Peter R. Seidl 136, 41
Philippe H. Hünenberger 43
Pierre M. Esteves 158, 349
Prescila G. C. Buzolin. 284
Priscila V. S. Z. Capriles 278
Priscyla Toscano de Melo Sobreira 326
R
R. Di Felice 147
R. P.G Monteiro 198
R. S. Alvim 336
R.C.O Sebastião 198
Rafael C. Barreto 92
Rafael C. Bernardi 319, 363
Rafael Rodrigues do Nascimento. 127
Rafael S. Margarido 176
Raimundo Braz Filho 187
Raimundo Clecio Dantas Muniz Filho 322
Raimundo D. P. Ferreira 195
Raimundo R. Passos 21
Ramon Araújo Brennand 327
Ranylson Marcello L. Savedra. 73, 83
Regiane C. M. U. Araújo $108,287,288,306,324,325,174$
Regiane de Cássia M. U. de Araújo 302
Reinaldo Centoducatte 15
Renaldo T. Moura Júnior 49
Renan Borsoi Campos 179, 180
Renan M. Mazza 135
Renata A. Toledo. 46
Renato B. Pontes 333
Renato Fonseca Dias 339
Renato Luis Tâme Parreira 313
Renato T. Sugohara 191, 192
Renato Takeshi Sugohara 138
Renato V. da Silva 95
Ricardo B. De Alencastro 186
Ricardo B. De Alencastro 318
Ricardo Celeste. 215
Ricardo Gargano $173,199,170,171,175,200,319,363$
Ricardo L. Longo 43, 104, 49
Ricardo Longo 185
Ricardo Luiz Longo. 277, 282, 321
Ricardo M. de Miranda 100,301
Ricardo M. Miranda 29, 39, 298, 299
Ricardo O. Freire 230
Roberta J. Rocha. 223
Roberta P. Dias 96
Roberto L. A. Haiduke. 34, 148, 77, 78, 33
Roberto Luiz Andrade Haiduke 215
Roberto Marquardt 356
Roberto Rittner 121
Roberto Rivelino 11
Rodinei Augusti 27
Rodrigo B. Capaz 292
Rodrigo de Paula 330
Rodrigo L. O. R. Cunha 51, 48
Rodrigo R. da Silva 130
Rogério Custodio $70,121,142,166,167$
Rogério T. Kondo 195, 196
Rômulo V. Sousa 86
Ronaldo J. C. Batista 93
Rosivaldo dos Santos Borges 290, 291
Roy E. Bruns 102, 103, 148, 56
Rui Fausto 324, 325
Ruth C. O. Almeida 29, 39, 297, 298, 299, 305
Ruth C. O. de Almeida 273
Ruth O. de Almeida 100

s

S. L. da Silva 42
S. Marangoni 42
Sabrina S. Carara 93
Samir A. Carvalho 289
Samuel Anderson Alves de Sousa 218
Samuel Pita 295
Sandra S. X. Chiaro 338
Santos, J. D. 347
Santos, J. D. 348
Saulo L. da Silva. 352
Saulo L. Silva 38, 39
Sérgio C. Zilio 330
Sergio E. Michelin 109
Sérgio Emanuel Galembeck 313
Sérgio H. D. M. Faria 148
Sérgio L.E. Preza 176
Sérgio P. Machado 113
Sergio Ricardo Pizano Rodrigues 54
Severino Alves Jr. 66
Severino Alves Júnior 5
Sidney Ramos de Santana 277
Sidney Ramos Santana 281
Silmar A. do Monte $174,288,324,325,306$
Silvânia M. de Oliveira 335
Simone Souza Ramalho 199
Sixto M. Rodríguez 34
Soledad Gutiérrez-Oliva 364
Sonia Louro 295
Sonia M. C. de Menezes 41
Stefänia Neiva Lavorato 351
Stella Maris Resende 156
Suzana V. da Silva 80
Sydney F. Machado 57, 89
Sylvio Canuto 92, 213, 307
T
Tácito D. F. Leite 101
Tadeu Leonardo Soares e Silva 76
Taft C. A. 347, 348
Tamires C.S. Ribeiro 36
Tania A. Almeida 307
Tânia B. e Silva 361
Tarciso S. de Andrade-Filho 36
Tarsila G. Castro 287
Tatiane F. Moraes 315
Teobaldo Guizado 295
Teodorico C. Ramalho 130, 131, 134
Teodorico de C. Ramalho 74
Teodorico de Castro Ramalho 132, 133
Thaciana Malaspina 4, 8
Thais C. S. Souza 74
Thais Cristina Silva de Souza. 132, 133
Thais P. Fragoso 144
Thiago C. F. Gomes 102, 103
Thiago Corrêa de Freitas 168
Thiago de O. Coura 280
Thiago M. Cardozo 225
Thiago Messias Cardozo 226
Thomas Heine 28, 280, 19, 20
Tiago Vinicius Alves 6350
V
Valdemar Lacerda Júnior 97
Valder Nogueira Freire 50
Valdilei J. Da Silva. 303, 323
Valentim E. U. Costa 136
Valéria S. Malta 361
Valter Paralovo68
Vanessa C. de Medeiros 288
Vani X. Oliveira Junior. 229
Victor Cruz 364
Víctor de S. Bonfim. 188
Victor Maso. 42
Vincenzo Aquilanti. 283
Vitor Barbanti Pereira Leite 279
Viviane C. Felicíssimo 362
Viviane da S. Vaiss. 337
Vladir W. Ribas 328, 329
W
Wagner B. De Almeida $40,111,285,303,112,115,212$
Wagner Batista De Almeida 30
Wagner Fernando Delfino Angelotti 166, 167
Waleria Rodovalho69
Wallace D. Fragoso. 108
Welber G. Quirino 292
Wendel A. Alves 229
Weverson R. Gomes 330
Wiliam Ferreira da Cunha 169, 170, 177, 178
Williams J. C. Macedo 39, 298, 29, 299
Williams J. da C. Macêdo 100, 273
Williams Jorge da Cruz Macedo 297
Willian Hermoso 128
Willian R. Rocha 40, 96, 309
Willian Ricardo Rocha 30
Wladmir F. Souza 338
Y
Yasen Velkov. 362
Yoshiuky Hase 123
Yoshiyuki Hase 107, 124
uji Takahata 122
Yuri Alexandre Aoto81

Palavras-chave

A

AchEI, semi-empírico, modelagem 275
: AFB1, AFG1, PM3 e ZINDO/S 326
ionization potential, hydrazine, ab initio 223
: topologia, campo de força, dinâmica molecular 318
2,2,2-trifluoroethanol, torsional profile, MP2, basis-set extrapolation 201
2 H -tetrazol-MCSCF-Valência-Rydberg-Fotoquímica 306
Ab initio, ácido barbitúrico, desprotonação, ácido tiobarbitúrico 188
ab initio, chemical reaction,solvation 163
ab initio, cinética, mecanismo, química atmosférica, compostos de enxofre. 156
ab initio, cisteína, inibidor de corrosão 50
ab initio, compostos tipo-brucita, compostos tipo-hidrotalcita, energia de formação, HDL 338
ab initio, funções de base, polarizabilidade, hiperpolarizabilidade, momento de dipolo 12
ab initio, IVO, TEY113
ab initio, maltose, conformações, mapa conformacional 68
acetilcolinesterase, Mal de Alzheimer, acetilcolina, inibição enzimática 80
AChE, inibidores e PCA. 173
ácido abiético, DFT, PCA, HCA, KNN 217
Ácido Fómico - dímero, Campo de Força, Analise de Coordenadas Normais, CCSD, Potential Energy Distribution 124
Ácido hipocloroso, ab initio, ozônio 81
ácido salicilico, metabolismo, DFT, citocromo P-450 290
Afinidades eletrônica e por próton, $\operatorname{CCSD}(\mathrm{T})$, bases com pseudopotencial 9
Aglomerados, Estrutura Conformacional, DFT,Estrutura Eletrônica 213
ajuste, superfície de energia potencial, He 3 314
alcalóides aporfinicos, RMN, PCM 32
algoritmo genético, superficie de energia potencial, propriedades dinâmicas quânticas, sistema reativo $\mathrm{Na}+\mathrm{HF}$ 175
Alkoxysilanes, hydrolysis, sol-gel-process 8
Alq3, TDDFT, absorção 292
AM1, PM3, RM1, PM6, RHF, cicloadição 321
Ammonia, Quantum Calculations, Computer simulation, QM/MM 307
Amodiaquina; Reatividade; FMO; MEP 97
anáise coformacional, estirenos, CCSD, aug-cc-pvtz 202
análise conformacional, hiperconjugação, halo-acetonas, halo-tioacetonas 14
Anfetaminas e derivados, MAO B, orbital molecular e atividade biológica 75
Antimalárico, Plasmodium falciparum, Potencial Eletrostático Molecular 29
argamassa de assentamento, alvenaria estrutural, propriedades mecânicas, perda de água, 1confinamento
aromáticos, QSPR, CONAMA357/05 359
Artemisinina, HF/6-31G**, Reconhecimento Padrão, MEP 100
Artemisininas, Malária,Análise Multivariada, MEP, Mapas MEP 298
Aziridina, ligação de hidrogênio 302
BaZrO3, superfícies, DFT, B3PW, CRYSTAL 284
bicamada fosfolipídica, trealose, interação com membranas celulares 67
b-lactamase inhibitors, molecular orbital, charges 71
BTEX, DFT, ab initio, caulinita 276
Buckyballs, hidrogênio, b3lyp, DFT, espectroscopia de massa 38
Butadieno, estados excitados, força de oscilador, seção de choque 181
C
Cálculo das trajetórias, superficie de energia potencial, Algoritmo genético, taxa de reação. 1 170
Cálculos quânticos, simulação computacional, efeito solvente, processo reativo e enantioseletividade 315
cálculos teóricos, transferência de próton, 2-(2-hidroxifenil)benzoxazol 211
calistegina, carbeno, b3lyp, nmr 187
câncer do seio, Indolo, SAR, PCA. 64
Câncer, MEP, HOMO, LUMO 332
Carbocátion, mecanismo SET, complexo sigma, complexo pi, alquilação 349
CASSCF, MRCI, ab initio, molécula CaAl, constantes espectroscópicas 329
CASSCF, MRCI, ab initio, molécula MgS, constantes espectroscópicas 328
Catálise homogênea, hidroformilação, ONIOM 96
catechol oxidase, DFT calculations, spectroscopy 111
cátion metônio, íons carbônio, cátions alila, cátion norbornila, Spin-Coupled 158
CCFDF, QTAIM, intensidades vibracionais 148
$\operatorname{CCSD}(\mathrm{T})$, cinética 6
$\operatorname{CCSD}(\mathrm{T}), \mathrm{IIOOH}-\mathrm{e}$ 27
CFC, Matrices, FTIR, B3LYP, MP2. 325
CFC, ozônio, DFT, MP2, dissociação 288
charge transfer, phthalocyanine, hydrazine, chlorophenol 31
chemical shift, shielding tensors, conformational effects, polycyclic alcohol 136
clorometanos, clorofórmio, ligações de hidrogênio, dímeros, ab initio 296
CO2 Supercrítico, Dinâmica Molecular 159
colisão elétron-molécula, seção de choque 109
Complexos de lantanídeos, catálise, clivagem hidrolítica 104
composto de coordenação, materiais biomiméticos, DFT 229
constante de velocidade, IRC, ab initio 153
Constantes Espectroscópicas, Moléculas Diatômicas, Metais de transição, ab initio 367
Controle Quântico de reações químicas,fenômenos físicos ultra rápidos e Dinâmica quântica 362
Coordenada Geradora Hartree-Fock, Bases Gaussianas, Bases Atômicas 215
correcão de anarmonicidade, ácido fórmico, freqüências harmônicas 123
Correção de auto-interação, DFT, metal de transição 333
correlação eletrônica, densidade de spin, diferenças de densidades 49
Crotalus, miotoxinas, cálculos teóricos sobre crotaminas 189
curva de energia potencial, constantes espectroscópicas vibracionais, sistemas diatômicos 200

(D)

Derivados da dihidroartemisinina, Mapas de Potencial Eletrostático (MEPs) e DockingMolecular297
derivados piridínicos, corrosão, DFT, QSPR 41
227
Desidrogenação, Gálio, SAPO 47
DFT, aluminosilicato, nanotubos, imogolita 304
DFT, equilibrio conformacional, compostos organometálicos
294
294
DFT, hidrogênio, metano , monóxido de carbono, ródio 58
DFT, hidrólise, Al(III)
139
139
DFT, Magnetismo Molecular, Metal-Radical 150
DFT/B3LY, materiais energéticos, expansão multipolar
149
DFT/B3LYP, modelo do catalisador MoS2, expansão multipolar 172
diazoborinas, enoil-acp redutase, Fabl, modelag 282
Diels-Alder, álcool, TST, BOMD, Dinâmica Direta 301
Diidroartemisinina, Antimaláricos, MEPs 273
Diidroartemisinina. Mapas Mep, Orbitais HOMO 101
diiodeto de samário, haloetanos 28
Dinâmica Molecular, DFTB e Angiotensina-(1-7)
Dinâmica Molecular, DFTB e Angiotensina-(1-7)
206
206
Dinâmica Molecular, DNA, conformações A e B do DNA 207
135
Dioxinas, AM1, PM3, B3LYP, toxidade 116
dmit, dmio, dmt, IVO, fotoabsorção 117
dmit, dmio, dmt, IVO, fotoabsorção 114
dmit, dmio, UV-vis 334
DNA, transferência de carga, ab initio, cistosina-guanina
DNA, transferência de carga, ab initio, cistosina-guanina 84
docking, ariloxazinas, glutationa redutase, malária
51
51
docking, cisteíno-protease, catepsina B, telúrio 48
docking, cisteino-proteases, catepsina $\mathrm{B}, \mathrm{Te}(\mathrm{IV})$ 52
docking, planejamento, experimento in silico, estrutura cristalográfica 221
Docking, QM/MM, RM1 89
DZP basis set, Ga to Kr ; BP86 and B3LYP functionals, molecular properties

E

Electron scattering, absorption potential
Electron scattering, Elastic cross sections , IAM... 138
Electron scattering, Elastic cross sections, Free radicals, NH, NH2, NH3137
Epóxidos, DFT, Cargas Atômicas, IRC 322
EPR, DFT, constantes hiperfinas. tensor g , metais de transição 208
EPR, DFT, tensor g, GaAs 210
EPSP sintase do arroz, método semi-empírico, mecanismo catalítico 85
Equação de Schrödinger nuclear, curva de171
espalhamento elástico, método multicanal de Schwinger, pseudopotenciais de normaconservada168
Espectro de Absorção, estireno, TD-DFT 203
Esp
56 56Espectroscopia Raman, Teoria de Resposta Linear, Intensidades Raman, Bandas deCombinação e Overtones, Teoria da Polarizabilidade de Placzek.44
Espectroscopia Vibracional, Raman Ressonante, Intensidades Raman, Termo-A de Albrecht, CASSCF, Teoria da Resposta Linear.
45
estados eletrônicos excitados, SAC-CI, EOM-CCSD
224
224
esterificação, zeólita, ZSM-5, semi-empírico
61
61
estrutura de interação de proteínas, proteina Tsg101, proteína ubiquitina, proteína Gag p6, dinâmica molecular, estrutura de solvatação,
165
165
Estrutura Eletrônica, Antimalarial, Anilinoquinolinas
354
354
Estrutura eletrônica, GVB, correlated-pair, distribuição radial 225
ethilen oxide, ab initio, DFT, electronic struture
30
30
európio, intensidades f-f, Sparkle
európio, intensidades f-f, Sparkle 5
F
$\mathrm{F}+\mathrm{C} 2 \mathrm{H} 6$, energetic, rate constants
190
190
Fenol, Espectro, Método Seqüencial Monte Carlo / Mecânica Quântica
92
92
FERMO, HOMO-LUMO
FERMO, HOMO-LUMO
130
130
flumequina, QTAIM, Superficies de Potencial
34
34
Fosfaferroceno, DFT, Infravermelho, C-H
Fosfaferroceno, DFT, Infravermelho, C-H
309
309
Fullerene, Thermal effects, Band gap, MC/QM simulation
11
11
Funcional da densidade, coordenada geradora, função de onda. 311
G
G3, Barreira de Rotação, ECP, CEP.
121
121
g-alumina, aldehyde, DFT, Pd cluster
146
146
GaN, lasers, wurtizita, zinco-blenda.
145
145
Gaussian-3, pseudopotencial, método composto.
142
142
Geraniol-trans, ozonólises, estudo teórico e TST
76
76
glifosato, EPSP sintase, mecanismo de reação
133
133
Glutationa, QM/MM Seqüencial, Dinâmica Molecular, Calor de Formação, Energia de
17
17 220
GSA, q-Gaussianas, Integrais atômicas, NDDO.
GSA, q-Gaussianas, Integrais atômicas, NDDO.
H
Hamilton-Jacobi equation, helium atom, Hylleraas-like approach
184
184
heterociclos, estudo teórico e espectroscopia de RMN
134
134
hidantoína, Complexo de Hidrogênio, DFT
hidantoína, Complexo de Hidrogênio, DFT
335
335
hidrofobicidade, proteinas, generalized simulated annealing
274
274
hidrotalcita, catálise, intermediário, hidróxidos mistos
337
337
hiperconjugação, orbitais naturais, deslocalização eletrônica
160
160
Hiperpolarizabilidade, materiais ópticos não lineares 327
hiperpolarizabilidade, oligoacenos, AM1/TDHF 23
hiperpolarizabilidade, quimiometria, oligoacenos 24
Hiperpolarizabilidades beg, materiais ópticos não lineares 25
HIV, AIDS, integrase, QSAR, PLS 13
HIV-1 integrase, quercetagetina, mecânica molecular, dinâmica molecular. 63
hydrogen dimer, adiabatic 155
hydrolytic activity, DFT calclations, substrate coordination 112
II
imidazol, GCE, ligação de hidrogênio 147
inibidor mecanosensitivo; análise conformacional; gromacs 176
Intensidades, Infravermelho, CCFDF, CHELPG, QTAIM, fluroclorometanos 102
Intensidades, Infravermelho, CCFDF, CHELPG, QTAIM, fluroclorometanos 103
Interação $\mathrm{S} \times \times \times \mathrm{O}, \mathrm{H} 2 \mathrm{~S},(\mathrm{CH} 3) 2 \mathrm{~S}, \times \mathrm{OH}, \mathrm{NBO}, \mathrm{AlM}$ 313
Isotopic Dipole Moments, Monodeuterated Water 18
L
Ligação de hidrogênio, DFT, mecanismos de reação 287
Lignina; Polpação Organossolve; AM1 346
M
magnetismo, orbitais moleculares, bandas de energia 222
Malária, Artemisinina, MEP, Homo, Lumo 305
Malária, Artemisinina, QSAR, PLS 193
Malária, Tryptanthrins, PCA, Potencial Eletrostático Molecular 299
Maleimida, Complexos de Hidrogênio, DFT 106
MAO B, ONIOM, Ramachandran 73
mecanismo de reação, redução de ácido carboxilico, método CBS-QB3 99
metanol, seção de choque, fluxo relativo 191
Metil-litioterâmero no estado sólido, DFT com onda plana e pseudo-potencial, Análise vibracional 107
Método Monte Carlo, peptídeos, meio não aquoso, NMF, DMSO. 286
MIA-QSAR, regressão PLS, herbicidas 129
modelagem comparativa, Mycobacterium tuberculosis, RNA polimerase 74
Modelagem molecular, arilaminos derivados de naftoquinonas, tautomerismo, energia de orbital, grau de coplanaridade, deslocalização eletrônica 144
Modelagem molecular, dinâmica molecular, docking, hormônio tireóideo, estrógeno, câncer de mama 60
Modelagem Molecular, Estrutura Eletrônica 353
modelagem por homologia, mycobacterium tuberculosis, acetolactato sintase 132
MOF, Acoplamento Magnético, HF, DFT 185
molecular dynamics, ab initio 162
Monte Carlo Quântico Difusão, Separação de Spins, Matriz Densidade 167
Monte Carlo Quântico Variacional, Boys-Handy, Jastrow, Separação de Spins, Matriz Densidade 166
Múltiplas soluções Hartree-Fock, Cl Multi-Referência, Propriedades a um Elétron 366

\mathbb{N}

nanotubo, ZnO , defeitos, semi-empírico 340
nanotubos de carbono, separação por diâmetro, surfactante, dinậmica molecular clássica. 161
Nedaplatina, hidrólise, ab initio 303
nitrogen trifluoride, Transition State Theory, rate constant 199
nitrosaminas, metodos ab-initio e DFT 174
novo conjunto de base, DFT, BLYP 293
0
Oligômeros, Estrutura Eletrônica, Espectro de Absorção Óptica 79
Óptica não linear, hiperpolarizabilidade beg. 26
Orbital Molecular, Antihistamínico H3, Regressão Linear. 72
Otimização, BLAS, ATLAS, ACML 90
Oxidação do DMSO, IEFPCM, termodinâmica, fase-líquida 35
oxidação, nortriptilina, DFT 46
Óxidos de ferro, reação Fenton, química computacional, DFT. 131
Oxo diperoxo de molibdênio, transferência de oxigênio, sulfeto, abnitio, DFT, complexos de Mimoun 339
P
paracetamol, derivados, PM3, atividade biológica 291
Partição de Energia, Ligação Química, GVB, Spin-Coupled 226
PCM, Energia de Hidratação, ECP 91
Peptídeos antimicrobianos, indolicidina, interação com bicamadas de DPPC, simulação molecular 98
Perovskita YTiO3, Método CGHF, Efeito Piezoelétrico 195
peroxides, torsional levels, chirality processes 283
Piezoeletricidade, Método CGHF, Perovskita GdFeO3 196
Pirazolina, Dengue, QSAR. 127
Piroxicam, DFT, QST2/QST3. 70
PLA2; dipyrone; PMP; molecular modeling; OPLS 42
PLS, Fenóis, Toxicidade 279
Polarizable Continuum Model, Acetonitrile, DMF, Formamide, Nitrobenzene, Methanol. 300
Pólarons, Bipólarons, Excitações não-lineares 169
Pólarons, Bipólarons, Excitaçõ̀es não-lineares 177
Porfirinas, eletrocatálise, b3lyp 21
Prilocaine, POPC, molecular dynamics, local anestethetics 194
Prodan, solvatochromismo, efeito de solvente, modelo continuo PCM, modelo discreto, QM/MM 7
Propriedades elétricas, GVB, CPHF,CPGVB, NLO 228
Protegrina, gomesina, peptídeos antimicrobianos 214
proteína viral Gag p6, dinâmica molecular, estrutura de solvatação; ligação de hidrogênio... 143
proteína viral Gag p6, dinâmica molecular, estrutura de solvatação, ligação de hidrogênio 164
proteínas, peptídeos antimicrobianos, interação peptídeo-membrana, simulação molecular 151
proteinas, platina, ONIOM 323
Protoporfirina IX, Grupo heme, Dinâmica Molecular, Ferro - porfirinas, solvatação, Protoporfirina IX 295
Q
QM/MM, bacteriorodopsina, retinais sintéticos, TD-HF, TD-DFT 83
QSAR, PLS, tiossemicarbazonas 218
quarks livres, cálculos HF 344
R
redes neurais artificiais - ions metálicos - zinco - cálcio - magnésio - plasma sangüineo 351
Reforma do CO2 110
regras heuristicas,metabolismo 365
RMN, solventes, iridóides, DFT 352
rotação ótica; sistemas multiquirais 95
S
Seção de Choque, Etanol, Elétrons, Energia, Impacto 192
S-MC/MQ, Espectro Eletrônico, Íons de Metais de Transição 40
sulfonamidas, cálculo semiempírico, cálculo ab initio, análise conformacional 342
sulfonamidas, docking, malária 54
T
TDDFT, Vanádio(IV), Espectro Eletrônico 62
tellurium,lone pair, supramolecular interactions 53
Transition Metal Borides, Rhodium Boride and Diatomics 125
Transition Metal Dimers, Molybdenum dimer, metal-metal multiple bond 126
Trialkylphosphine oxides, ab initio, stability, vibrational frequencies4
z
zeólitas, cálculos DFT, isobutano, metano, reação de troca, complexo de adsorção 204
zeólitas, cálculos DFT, isobutano, metano, reação de troca, reação de nitração, 205
ZnO, DFT, varistor, wurtzita, CRYSTAL 37
$\triangle C E B E$, sI , DFT, cyclohexanes 122

Keywords

A

isotopic dipole moment, vibrations 345
: INDO/S, AM1, DFT, phthalocyanine, porphyrin, photodynamic therapy 340
: Nanotubes, semi-empirical, homo-lumo, huzinaga 347
absolute shielding constant, shielding anisotropy, XZP basis sets, HF and MP2 calculations 15 152
Absorption effects, electron scattering, hydrogen sulphide, cross sections 59
antimalarials, chalcones, electronic structure, molecular modeling 343
ArnH2O van der Waals complexes, Molecular dynamics 197
arsenic, gibbsite, adsorption, DFTB 10
Artemisinin, Hemin, Heme, DFT, Malaria. 119
atomic multipoles, QTAIM, CHELPG charges, electrostatic interaction, electrostatic potentials 33
B
b-Cyclodextrin, Caffeine, Monte Carlo Simulation, DICE program 316
b-cyclodextrin, Inclusion complex; Megazol, Chagas' disease,
Nuclear magnetic resonance, Molecular Dynamics 289
Benchmarking, Gaussian, NWChem, PCA, Bibliotecas 281
Benzazepines, Chemometric methods, ab initio methods 39
Bergenin, DFT, oxidant activity 3
c
C 2 H 5 OH , energetic, transition state 216
Carbon monoxide, adsorption energies, DFT, impurities, cobalt cluster 140
Carbon monoxide, adsorption energies, DFT, impurities, cobalt cluster 141
CH 3 OH , energetic, transition state 310
Conformational population, ab initio, thermal energies, hindered rotation 285
contracted basis set, $\operatorname{CCSD}(\mathrm{T})$, relativistic effect 22
cross section, elastic scattering, amino acid, independent atom model 219
Cyclodextrins, Molecular Tube, Binary Numbers 212
D
DFT, adiabatic correction, isotopic dipole moment 280
DFT, bonding interactions. EDA, CDA, iron carbonyls 154
DFT, cobalt, chemical speciation 2
DFT, electrostatic potentials, hydantoin, crossed aldol condensation 69
Dispersion, van der Waals, London forces, QM/MM, ab-initio molecular dynamics 350
DZP basis set; K to Zn ; BP86 and B3LYP functionals; molecular properties 57
E
excited states, multi-reference calculations, CFC, ozone 324
F
First hyperpolarizability, porphyrin derivatives, HRS, DFT, PM6 330
G
Generalized Simulated Annealing, Mínimo Absoluto, Prova de Convergência 358
graphene, Au nanoparticles, electronic structure of materials 93
H
Hybrid semiconductors, organic, inorganic 331
Hydrophobicity, Local Anesthetics, Molecular Modeling, Molecular Dynamics 363
I
Infrared pectra, Intercalation, Cluster models, Water, Kaolinite 179
Infrared spectra, Intercalation, Cluster models, Formamide, Kaolinite 180
Inorganic Nanotubes, strain energy, DFTB, aluminosilicate, XRD, electronic properties 19
Inverse Problems, Consecutive Kinetics 198
Inverse Problems, Quantum Scattering 86
IRMOF, link, internal rotational barrier, conformational analysis, ONIOM 43
Isotopic Dipole Moments, Water Clusters, DFT 312
K
Kaempferol, Sequential Monte Carlo/quantum mechanical approach,
Solvent effects, Absorption spectrum 36
L
Linkage isomers, FT- infrared spectrum, DFT:B3LYP/6-311G (d) 209
Local Anesthetics, DPPC, Molecular Modeling, Molecular Dynamics. 319
Lutetium, Nuclear Quadrupole Moments, Electric Field Gradients, Diatomic Molecules 77
M
Malaria, Artemisinin, Mechanism of action, DFT, 1,5 hydrogen transfer 118
Maleimide, Vibrational spectrum, Ab Initio 105
Metallic film, Molecular dynamics, Nanoparticles, Silver clustering, Silver diffusion. 277
Molecular Dynamics Simulations, Trypanosoma cruzi, Cruzipains 1 and 2 and Cysteine Proteases 278
Molecular dynamics, homology modeling, protein-protein interactions, VEGF, angiogenesis.Introduction 186
Molecular dynamics, ionic liquids, polymer electrolytes 308
momentum representation, particle in the box. 128
Monte Carlo methods, Langmuir films, stearic acid, surface pressure, surface area, relaxation 355
N
Nanotubes, SnO 2 , clusters, semiempirical methods 348
nucleic acid bases, electric properties, AXZP basis sets, HF and DFT calculations 87
0
Oligofluorenes, Quantum chemical methods, UV spectra 82
optical rotation, density functional theory, Gaussian basis sets 15
P
PLA2; phenolic compounds; molecular modeling 320
polarons, bipolarons and photo-excitations 178
Polymerization ,Catalysts, Conceptual DFT, Dual Descriptor 364
Protein Thermal Diffusion, Signaling, Folding Stability, Thyroid Hormone Receptors, Nuclear Receptor. 182
Protoimogolite, Imogolite, SCC-DFTB, M.O. and geometry optimization 20
©
quantitative structure-activity relationships, qsar, software 357
R
Ruthenium nitrosyl complexes, cyclam, AIM, NBO, and energy decomposition analysis EDA120
S
Self Assembly, Cyclodextrins, Basis Set 115
Sparkle model, lanthanide complexes, semiempirical, AM1, PM3 230
stretching frequencies, $a b$ initio, chemometric techniques. 108

XIV Simpósio Brasileiro de Química Teórica (SBQT)

W
Water dynamics, biomolecules, carbohydrate solutions, hydrogen bonding dynamics 183

X
xenon fluorides, noble gas compounds, relativistic effects,
four-component methods, anharmonicity .. 78

[^0]: ${ }^{1}$ De Abreu, H. A.; Guimarães, L. and Duarte, H. A. J. Phys. Chem. A 2006, 110, 7713.
 ${ }^{2}$ Guimarães, L.; De Abreu, H. A. and Duarte, H. A. Chem. Phys. 2007, 333, 10.

[^1]: ${ }^{1}$ Miyamoto, K.; Murayama, T.; Hatano, T.; Yoshida, T.; Okuda, T.; Basic Life Sci. 1999, 66, 643.
 ${ }^{2}$ Madusolumuo, M. A.; Okoye, J. S. C.; Med. Sci. Res. 1995, 23, 443.
 ${ }^{3}$ Lago, I.A.S, De Abreu, H. A., Duarte, H. A. and Alcântara, A.F.C. in preparation.

[^2]: ${ }^{1}$ Paiva A P and Malik P, J.Radioanal.Nucl.Ch. 261, 485 (2004).
 ${ }^{2}$ Lorenz J K and Ellis A B, J.Am.Chem.Soc. 120, 10970 (1998).

[^3]: 'Sá, G. F.; Malta, O. L.; Donegá, C. M.; Simas, A. M.; Longo, R. L.; Santa-Cruz, P. A.; Silva Jr., E. F. Coord. Chem. Rev. 2000, 196, 165195.
 ${ }_{2}^{2}$ R. O. Freire, G. B. Rocha, A. M. Simas, Inog. Chem. 2005, 44, 3299.
 ${ }^{3}$ J. E.Ridley, M. C. Zerner, Theor. Chim. Acta 1976, 42, 223.

[^4]: ${ }^{a}$ Incluindo a energia do ponto zero a $\operatorname{CCSD}(T) / c c-p V D Z$
 ${ }^{b}$ Incluindo a energia do ponto zero a $\operatorname{CCSD}(T) / c c-p V T Z$

[^5]: ${ }^{1}$ Y. L. Yung, M. Allen, J. P. Pinto, Astrophys. J. Suppl. Ser., 55, 465 (1984).
 ${ }^{2}$ A.Cimas, A. Largo, J. Phys. Chem. A, 37, 110 (2006).
 ${ }^{3}$ G. Marston, F. L. Nesbitt, D. F. Nava, W. A. Payne, L. J. Stief, J. Phys. Chem. 93, 5769 (1989).

[^6]: ${ }^{1}$ Morgon, N. H. Intern. J. Quantum Chem. 2006, 103 (13), 2658.
 ${ }^{2}$ Morgon, N. H. J Phys Chem A 1995, 99, 17832.
 3http://www.msg.ameslab.gov/GAMESS
 http://www.gaussian.c

[^7]: ${ }^{1}$ Frauenheim, T.; Seifert, G.; Elstner, M.; et al. J. Phys.: Condens. Matter 2002, 14, 3015.
 ${ }^{2}$ Aradi, B.; Houradine, B.; Koehler, Ch. and Fruenheim, Th. J. Phys. Chem. A 2007, to be published.
 ${ }^{3}$ Ladeira, A. C. Q. and Ciminelli, V. S. T. unpublished results.

[^8]: Rivelino, R.; Maniero, A. M.; Prudente, F. V.; Costa, L. S. Carbon 2006, 44, 2925.
 ${ }^{2}$ Rivelino, R.; de Brito Mota, F. Nano Lett. 2007, 7, 1526.
 ${ }^{3}$ Scharff, P.; Risch, K.; Carta-Abelmann, L.; Dmytuk, I. M.; et al. Carbon 2004, 42, 1203.
 ${ }^{4}$ Sayes, C. M.; Fortner, J. D.; Guo, W.; Lyon, D.; Boyd, A. M.; et al. Nano Lett. 2004, 4, 1881.

[^9]: ' Maroulis, G.; Journal of Molecular Structure, 2003, 633, 177-197.
 ${ }^{2}$ Costa, M. F.; Ribeiro, M. C. C., Quím. Nova, 2006, Vol. 29, No. 6, 1266-1269.

[^10]: ${ }^{1}$ Melo, E. B. et al. Quím. Nova. 2006, 29, 555.
 ${ }^{2}$ Petrocchi, A. et al. Bioorg. Med. Chem. Lett. 2007, 17, 350.
 ${ }^{3}$ Arquivo DOTRUZ. In Cambridge Structural Database. Versão 5.27 (novembro de 2005) + 1 atualização.
 ${ }^{4}$ Barreca, M.L. et al. ARKIVOC 2006, 7, 224.
 ${ }^{5}$ Parril, A. L. et al. In Cundari, T.R. (Ed). Computational Organometallic Chemistry. 2001; New York: Marcel Dekker.

[^11]: ${ }_{2}^{1}$ Frisch, M. J. et al. Gaussian 03W, Gaussian Inc., Pittsburgh PA, 2003.
 ${ }^{2}$ Glendening, E. D.; Reed, A. E.; Carpenter, J. E.; Weinhold, F. NBO Version 3.1.

[^12]: ${ }^{1}$ Stephens, P. J.; Devlin, F. J.; Cheeseman, J. R. and Frisch, M. J. J. Phys. Chem. A 2001, 105, 5356.
 ${ }^{2}$ Autschbach, J.; Patchkovskii, S.; Ziegler, T.; van Gisbergen, S. J. A. and Baerends, E. J. J. Chem. Phys. 2002, 117, 581.
 ${ }^{3}$ Canal Neto, A.; Muniz, E. P.; Centoducatte, R. and Jorge, F. E. J. Mol. Structure (Theochem) 2005, 718, 219.
 ${ }^{4}$ Grimme, S. Chem. Phys. Lett. 2001, 339, 380.

[^13]: ${ }^{1}$ von Barth, U.; Hedin, L. J. Phys. C 1972, 5, 1629.
 ${ }^{2}$ Ebert, H.; Strange, P.; Gyorffy, B. L. J. Phys. F 1988, 18, L135.
 ${ }^{3}$ Brooks, M. S. S. Physica B 1985, 130, 6.
 ${ }^{4}$ Eriksson, O.; Johansson, B.; Brooks, M. S. S. Phys. Rev. B 1990, 41, 7311.
 ${ }^{5}$ Vignale, G.; Rasolt, M. Phys. Rev. Lett.1987, 59, 2360.
 ${ }^{6}$ Vignale, G.; Rasolt, M. Phys. Rev. B 1988, 37, 10685.
 ${ }^{7}$ Kohn, W. Rev. Mod. Phys. 1999, 71, 1253.
 Racah, G. Phys. Rev. 1942, 42, 438.

[^14]: ' 'Biochemistry", L. Stryer, W.H. Freeman, NY (1988) 'GROMAS, http://www.gromacs.org;
 ³ OPLS, http://zarbi.chem.yale.edu
 "AMSOL, http:// comp.chem.umn.edu/amsol/

[^15]: ${ }^{1}$ Gonçalves, C. P. and Mohallem, J. R., J. Comput. Chem., 25 (2004) 1736.
 ${ }^{2}$ Assafrão D. and Mohallem J. R., J Phys B: At. Mol. Opt. Phys. 40 (2007) F85.
 ${ }^{3}$ Thorson W R, Choi J H and Knudson S K Phys. Rev. A 31 (1985) 22
 ${ }^{4}$ Ford A L and Browne J C Phys. Rev A 16 (1977) 1922
 ${ }^{5}$ Coutinho K, Guedes R C, Costa Cabral B J and Canuto S Chem. Phys. Lett 369 (2003) 345

[^16]: ${ }_{2}^{1}$ Cradwick et al., Nature, 1972, 187
 ${ }_{2}$ Mukherjee et al, Chem. Mat., 2005, 4900.

[^17]: ${ }_{2}^{1}$ Cradwick et al., Nature, 1972, 187.
 ${ }^{2} \mathrm{Ji} \mathrm{Hu}$ et al., J. Non Cry. Sol., 2004, 224.

[^18]: ${ }^{1}$ Douglas, M.; K. and Kroll, N. M. Ann. Phys. (N.Y.) 1974, 82, 89.
 ${ }^{2}$ Hess, B. A. Phys. Rev. A 1986, 33, 3742.
 ${ }^{3}$ Canal Neto, A.; Muniz, E. P.; Centoducatte, R. and Jorge, F. E. J. Mol. Structure (Theochem) 2005, 718, 219.
 ${ }^{4}$ Barbieri, P. L.; Fantin, P. A. and Jorge, F. E. Mol. Phys. 2006, 104, 2945.
 ${ }^{5}$ Camilleti, G. G.; Machado, S. F. and Jorge, F. E. 2007, submitted for publication.
 ${ }_{6}^{6}$ De Jong, W. A.; Harrison, R. J. and Dixon, D. A. J. Chem. Phys. 2001, 114, 48.
 ${ }^{7}$ Moore, C. E. Ionization potentials and ionization limits derived from the analyses of optical spectra, NSRDS-NBS 34, National Bureau of Standards,

 Washington,
 1970.

[^19]: ${ }^{1}$ Champanhe, B. e Kirtman, B. Handbook of Advanced Electronic and Photonic Materials and Devices Vol.9: Nonlinear Optical Materials, Chapter 2, Academic Press, 2001.
 ${ }^{2}$ Machado, A.E. de A. e da Gama, A.A.S. Int. J. Quantum Chem. 2005, 103, 625.
 ${ }^{3}$ Brédas, J.L.; Adant, C.; Tackx, P. e Persoons, A. Chem. Rev. 1994, 94, 243.
 ${ }^{4}$ Kanis, D.R.; Ratner, M.A. e Marks, T.J. Chem. Rev. 1994, 94, 195.
 ${ }^{5}$ Santos, M. C. Physical Review B 2006, 74, 45426.
 ${ }^{6}$ Stewart, J. J. P. MOPAC2000 Manual, Fujitsu Limited, Tokyo, Japan
 (1999).

[^20]: ${ }^{1}$ Kanis, D. R.; Ratner, M. A.; Marks, T. J. Chem. Rev. 1994, 94, 195
 ${ }^{2}$ Facchetti, A.; Annoni, E.; Beverina, L.; Morone, M.; Zhu, P.; Marks, T. J.; Pagani, G. A. Nature Materials 2004, 3, 910.
 ${ }^{3}$ Stewart, J. J. P. MOPAC2000 Manual, Fujitsu Limited, Tokyo, Japan
 (1999).

[^21]: ${ }^{1}$ A.E. de Machado, A.A.S. da Gama, Intern. J. Quantum Chem. 103, 625, 2005; J. Comp. Meth. Sci. Eng. 4, 267, 2004; J. Mol. Struct. (THEOCHEM) 620, 21, 2003; Chem. Phys. Lett. 356, 451, 2002.
 ${ }^{2}$ R.R. Tykwinski, U. Gubler, R.E. Martin, F. Diederich, C. Bosshard, P. Günter, J. Phys. Chem. B, 102, 4451, 1998.
 ${ }^{3}$ M.J.S. Dewar, E.G. Zoebisch, E.F. Healy, J.J.P. Stewart, J. Am. Chem. Soc. 107, 3902, 1985.
 ${ }^{4}$ S.P. Karna, M. Dupuis, J. Comp. Chem. 12, 487, 1991.

[^22]: ${ }^{\text {la }}$.A.E. de A. Machado, A.A.S. da Gama, Int. J. Quantum Chem.,2005, $103,625 .,{ }^{16}$ Struct. (THEOCHEM) 620, 21, 2003;
 ${ }^{2}$ R.R..Tykwinski, U. Gubler, R. E. Martin, F. Diederich, C. Bosshard and P. Günter, J. Phys. Chem. B, 1998, 4451-4465, 102.
 ${ }^{3}$ M.J.S. Dewar, E.G. Zoebisch, E.F. Healy, J.J.P. Stewart, J. Am. Chem. Soc. 107 1985) 3(902).
 ${ }^{4}$ S.P. Karna, M. Dupuis, J. Comp. Chem. 12 (1991) 487.
 ${ }^{5}$ Machado. A.E de Araújo. 2001. Hiperpolarizabilidades Semiempiricas de Sistemas Orgânicos Doador-Recpetor. Estado de Pernambuco. Dissertação de Doutorado. Universidade Federal de Pernambuco, Recife.

[^23]: ${ }^{\text {Prolitzer, P.; Truhlar, D. G. (Eds.), In: Chemical Applications of Atomic }}$ and Molecular Eletrostatic Potentials, Plenum, New York, 1981.
 ${ }^{2} \mathrm{P}$. N. Oneill et al, J. Med. Chem. 42, 1999, 5487-5493.
 ${ }^{3} \mathrm{P}$. N. Oneill et al, J. Med. Chem. 44, 2001, 58-68.

[^24]: ${ }^{1}$ Martins, 1., Cardoso, D., Quim. Nova,. 2005, 28(2), 264.

[^25]: ' Paredes-García, V.; Cárdenas-Jirón, G. I.; Venegas-Yazigi, D.; Zagal, J. H.; Páez, M.; Costamagna, J. J. Phys. Chem. A, 2005, 109, 1196
 ${ }^{2}$ Cárdenas-Jirón, G. I.; Paredes-García, V.; Venegas-Yazigi, D.; Zagal, J. H.; Páez, M.; Costamagna, J. J. Phys. Chem. A, 2006, 110, 11870
 ${ }^{3}$ Berríos, C.; Cárdenas-Jirón, G. I.; Marco, J. F.; Gutiérrez, C.; Ureta-Zañartu, M. S. J. Phys. Chem. A, 2007, 11, 2706.
 ${ }^{4}$ Berrios, C.; Doctorate Thesis, USACH, 2007, CHILE.

[^26]: Zuschneid, T.; Fischer, H.H.; Handel, K.A.; Hafelinger, G. Z. Naturforsh, 2004, p. 1153.
 ${ }^{2}$ Gulin, D. J.; Lordello, A. L. L.; Sá, E. L. de . Livro de Resumos do XIII Simpósio Brasileiro de Química Teórica (SBQT), 2005, p. 31.

[^27]: ${ }^{1}$ Bader, R.F.W.; Atoms in Molecules: a Quantum Theory, Clarendon Press: Oxford, 1990; Bader, R.F.W.; Acc. Chem. Res. 1985, 18, 9.
 ${ }^{2}$ Haiduke, R.L.A. e Bruns, R.E. J. Phys. Chem. A 2005, 109, 2680.

[^28]: ${ }^{\text {}}$ DRLICA, K; ZHAO, X.; Micr. Mol. Bio. Rev.. 1997, 61, 377.
 ${ }^{2}$ BADER, R.F.W.; Atoms in Molecules: a Quantum Theory, Clarendon Press: Oxford, 1990; Bader, R.F.W.; Acc. Chem. Res. 1985, 18, 9.
 ${ }^{3}$ http://www.cmbi.ru.nl/molden/molden.html

[^29]: a) S. M. Resende, J. C. de Bona, P. S. Sombrio, Chemical Physics, 2005, 309, 283; b) N. González-García, A. González-Lafont, J. M. Lluch, J. Phys. Chem. A, 2006, 110, 798

[^30]: ${ }^{\top}$ Gronbaek, M.et all., Brit. Med. J. 1995, 310, 1165.
 ${ }^{2}$ Fang, F. et al. Food Chemistry. 2007, 101,428.
 ${ }^{3}$ Frisch, M.J. et al. GAUSSIAN 98, Revision A.11.2, Gaussian Inc., Pittsburgh PA, 1998.
 ${ }_{5}^{4}$ Coutinho, K. et al. J. Chem. Phys. 113, 9132 (2000).
 ${ }^{5}$ Coutinho, K., Canuto, S. DICE: A Monte Carlo Program for Molecular Liquid Simulation, University of São Paulo, 1997.

[^31]: ${ }^{1}$ Kohan, A. F., G. Ceder, et al. (2000). "First-principles study of native point defects in ZnO ." Physical Review B 61(22): 15019 15027.
 ${ }^{2}$ Beltran, A., J. Andres, et al. (2001). "Theoretical study of ZnO (10(1)over-bar-0) and $\mathrm{Cu} / \mathrm{ZnO} \quad(10(1)$ over-bar- 0) surfaces." Chemical Physics Letters 338(4-6): 224-230.

[^32]: Komatsu, K; Murata, Y.; Murata, M. J. Am. Chem. Soc. 2003, 125, 7153
 Schur, D.V.; Tarasov, B.P.; Shulga, Y.M.; Zaginaichenko, S.Y.; Matysina, Z.A. e Pomytkin, A.P.; Carbon 2003, 41, 1331
 Bhattacharya, S; Kimura, T; Komatsu, N; Chem. Phys Letters, 2006, 430,

[^33]:

 ## CNPq and CAPES

 ${ }^{1}$ Smith, B. M . et al.; Bioorg. Med. Chem. Let..2005, 15, 1467.
 ${ }^{2}$ Cardoso, F. J. B . et al.; Internet Eletronic Jornal of molecular Design, 2007, 6,00
 ${ }^{3}$ Cardoso, F. J. B . et al.; Journal of Molecular Modeling ,2007,In press.

[^34]: ${ }^{1}$ Thompson, K. H. e Orving, C. Science, 2003, 300, 936.
 ${ }^{2}$ Coutinho, K.; Canuto, S. Adv. Quantum Chem. 1997, 28, 89.
 ${ }^{3}$ Stratmann, R. E.; Scuseria, G. E.; Frisch, M. J. J. Chem. Phys., 1998, 109, 8218.
 ${ }^{4}$ Cotton, F.A.; Meyers, M. D. J. Am. Chem. Soc., 1960, 82, 5023.

[^35]: ${ }^{1}$ Vidal, L. N.; Vazquez, P. A. M.; Quim. Nova. 2003, 26, 507.
 ${ }^{2}$ Vidal, L. N.; Vazquez, P. A. M.; Int. J. Quantum Chem. 2005, 103, 632.
 ${ }^{3}$ C. Domingo; R. Escribano; W. F. Murphy; S. Montero; J. Chem. Phys., 1982, 77, 4353.

[^36]: 1 Albrecht, A. C. J. Chem. Phys. 1961, 34, 1476.

[^37]: ${ }^{1}$ Toledo, R.A. et al. manuscrito em preparação.
 ${ }^{2}$ Homem-de-Mello, P et al., Theor. Chem. Accounts. 2005, 113, 274.

[^38]: ${ }^{1}$ Mukherjee et al, Chem.Mat., 2005,4900
 ${ }^{2}$ Ohman, Lars-Olof, Forsling, Wilis, Acta Chemica Scandinavica A 35 195-802 (1981).
 ${ }^{3}$ Exley, C.; Schneider C. e Doucet F.J. Coord. Chem. Rev. 2002, 228, 127.

[^39]: ${ }^{1}$ a) Cunha, R.L.O.R.; Urano, M.E.; Chagas, J.R., Almeida, P.C.; Bincoletto, C.; Tersariol, I.L.S. e Comasseto, J.V.; Bioorg. Med. Chem. Lett. (2005) 15: 755. b) Albeck, A.; Weitman, H.; Sredni, B. e Albeck. M.; Inorg. Chem. (1998) 37: 1704.
 ${ }^{2}$ Programa GOLD: www.ccdc.cam.ac.uk/products/life_sciences/gold/
 ${ }^{3}$ Protein Data Bank. http://www.rcsb.org/pdb/home/home.do
 ${ }^{4}$ Vega-Teijido, M.A.; Zukerman-Schpector, J.; Ventura, O.N.; Camill. R.L.; Caracelli I.; Guadagnin, R.C.; Braga, A.L. e Silveira, C.C. $\%$ Kristallogr. (2004) 219: 65 .

[^40]: ${ }^{1}$ Cruz J.; Pandiyan T. e García-Ochoa, E. J. C. J. Electroanal. Chem. 2005, 583, 8.
 ${ }^{2}$ Bouklah, M.; Benchat, N.; Aouniti, A.; Hammouti, B.; Benkaddour, M.; Lagranée, M.; Vezin, H.; Bentiss, F. Prog. Org. Coat. 2004, 51, 118.
 ${ }^{3}$ Segall, M. D.; Lindan, P. L. D.; Probert, M. J.; Pickard, C. J.; Hasnip, P. J.; Clark, S. J.; Payne, M. C. J. Phys.: Cond. Matt. 2002 14, 2717.

[^41]: ${ }^{1}$ Albeck, A.; Weitman, H.; Sredni, B. e Albeck, M.; Inorg. Chem. (1998) 37: 1704.
 ${ }^{2}$ Cunha, R.L.O.R.; Zukerman-Schpector, J., Caracelli, I.. e Comasseto, J.V. J. Organometallic Chem. (2006), 691, 4807-4815
 ${ }^{3}$ Cunha, R.L.O.R.; Urano, M.E.; Chagas, J.R., Almeida, P.C.; Bincoletto, C.; Tersariol, I.L.S. e Comasseto, J.V.; Bioorg. Med. Chem. Lett. (2005) 15: 755.

[^42]: ${ }^{1}$ Vega-Teijido, M.; Caracelli, I.; Zukerman-Schpector, J. J. Mol. Graph. Model. (2006), 24, 349-355.
 ${ }^{2}$ Cunha, R.L.O.R.; Zukerman-Schpector, J.; Caracelli, I.; Comasseto, J.V.J. Organometallic Chem. (2006), 691, 4807-4815.
 ${ }^{3}$ Oliveira, C. B. ; Caracelli, I. ; Trsic, M. Materials Chem. Phys., (2003), 80, 457-460.
 ${ }^{4}$ Constantino, C. J. L. ; Antunes, P. A. ; Oliveira, C. B. ; Trsic, M. ; Caracelli, I. ; Aroca, R. F. J. Analytical Science Spectroscopy, (2004), 49, 64-72.
 http://www.rcsb.org/pdb/home/home.do

[^43]: ${ }^{1}$ J. Zukerman-Schpector and I. Haiduc: Phosphorus, Sulfur, Silicon, 171 (2001) 73
 ${ }^{2}$ J. Zukerman-Schpector and I. Haiduc: Crystengcomm. 4 (2002) 178.
 ${ }^{3}$ M.V. Teijido, J. Zukerman-Schpector, O.N. Ventura, R.L. Camilo, I. Caracelli, R.C. Gauadagnin, A.L. Braga and C. Silveira: Z.Kristallogr. 219 (2004) 652

[^44]: ${ }^{1}$ Grellier, P.; Sarlauskas, J.; Anusevicius, Z.; Maroziene, A. ; HoueeLevin, C. ; Schreve,, J. ; Cenas, N. Arch. Biochem. and Biophys. 2001, 2, 199-206
 ${ }^{2}$ Krungkrai, J.; Scozzafava, A.; Reungprapavut, S.; Krungkrai, S.R.; Rattanajak, R.; Kamchonwongpaisan, S.; Supuran, C.T. Bioorg. \& Med. Chem. 2005, 13, 483-489

[^45]: ${ }^{1}$ Canal Neto, A.; Muniz, E. P.; Centoducatte, R. and Jorge, F. E. J Mol Structure (Theochem) 2005, 718, 219.
 ${ }^{2}$ Muniz, E. P. and Jorge, F. E. Int J Quantum Chem 2006, 106, 943.
 ${ }^{3}$ Hehre, W. H.; Radom, L.; Schleyer, P. v. R. and Pople, J. A. Ab initio molecular orbital theory; Wiley: New York, 1986.
 ${ }^{4}$ Rassolov, V. A.; Pople, J. A.; Ratner, M. A. and Windus, T. L. J Chem Phys 1998, 109, 1223.
 ${ }^{5}$ Editor-in-chief Lide, D. R. CRC Handbook of Chemistry and Physics; CRC Press: London, 1994.

[^46]: ${ }^{1}$ R. E. Mesmer and C. F. Baes, Inorganic Chemistry.
 ${ }^{2}$ A. L. De Noronha, L. Guimarães, H. A. Duarte, J. Chem. Theory and Comp., 2007, in press.

[^47]: ${ }^{1}$ Lee, M.-T.; Iga, I.; Machado, L. E.; Brescansin, L. M.; y Castro, E. A., Sanches, I. P. and de Souza, G. L. C. J. Electron. Spectr. Rel. Phenom. 2007, 155, 14.
 ${ }^{2}$ Staszewska, G.; Schwenke, D. W.; Thirumalai, D. and Truhlar, D. G. Phys. Rev. A 1983, 28, 2740.
 ${ }^{3}$ Joshipura, K. N. and Vinodkumar, M. Z.. Phys.D. 1997, 41, 133.
 ${ }^{4}$ Rao, M. V. V. S. and Srivastava, S. K. J. Geophys .Res .(Planets) 1993, 98, 13137.
 ${ }^{5}$ Lindsay, B. G.; Rejoub, R. and Stebbings, R. F.J. Chem. Phys. 2003, 118, 5894.

[^48]: ${ }^{\text {T }}$ Saraiva, P. P. Estudo Clínico e Molecular da Relação entre Câncer de Mama e Doenças Tireoidianas. Botucatu, 2002. 64p. Dissertação (Mestrado) - Faculdade de Medicina, Universidade Estadual Paulista.
 ${ }^{2}$ Barone, P. M. V. B.. Camilo Jr. e Galvão, D. S. A. Physical Review
 Letters 1996, 77 (6), 1186.

[^49]: ' Wang Q.L.; Ma Y.; Yan H.; Ji X.; Qiu Q. Appl. Catal. A: 139, 5157 (1996).
 ${ }^{2}$ Pereira, M. S. Nascimento, M. A. C. Theor. Chem. Acc., 110; 441445 (2003).
 ${ }^{3}$ Nicholas, J.B., Topics Catal., 4, 1-2 (1997).

[^50]: ${ }^{\prime}$ Nunes, G. G. et al.. Inorg. Chem. Commun. 2004, 8, 83;
 ${ }^{2}$ Westrup, K. C. M. et al. Book of Abstracts of the XIII Brazilian Meeting on Inorganic Chemistry. Fortaleza, CE, 2006. p. 90.
 ${ }^{3}$ Gaussian 03, M. J. Frisch, et al. Gaussian03; Gaussian, Inc.: Wallingford, Connecticut, 2004.

[^51]: ${ }^{1}$ Brown, P.O.; Integration. In Retroviroses, Coffin, J.M.; Hugghes, S.H. \& Varmus, H.E.; Editors Plainview, NY: Cold Spring Harbor Press; 1997.
 ${ }^{2}$ Fesen, M.R.; Pommier, Y.; Leteurtrr, F.; Hiroguchi, S.; Yung, J. and Kohn, K. W. Biochem. Pharmacol. 1994. 48, 595.
 ${ }^{3}$ Raghavan, K.; Buolamwini; J. K.; Fesen, M. R.; Pommier, Y.; Kohn, K. W. and Weinstein, J. N. J. Med. Chem. 1995, 38, 890.
 ${ }^{4}$ Field, M. J.; Bash, P. A.; Karplus, M. J. Comput. Chem. 1990, 11, 700.

[^52]: ${ }^{1}$ Best, R. B.; Jackson G. E. e Naidoo K. J. J. Phys.Chem. 2001, 105, 4742-4751.
 ${ }^{2}$ Dowd, M. K.; Reilly, P. J.; French, A. D. Biopolymers. 1994, 34, 625 638.
 ${ }^{3}$ Morat C.,Taravel, F. R. Tetrahedron Letters. 1988, 29, 199-200.

[^53]: / Herdeiro, R. S.; Pereira, M. D.; Panek, A. D. e Eleutherio, E. C. A. Blochem, Biophys. Acta. G, Gen. Sub
 2006.1760, 340.
 ${ }_{2}$ Soares. C. S. e da Silva, C. O. Quim. Nova. 2007 (submetido).
 Z Landin, J. e Paschen, I. J. Phys. Chem. A 1997, 101, 2996.

[^54]: 'da Silva, C. O.; Nascimento, M. A. C. Carbohydr. Res. 2004, 339, 113-122.

[^55]: ${ }^{1}$ a) Meusel, M.; Gütschow, M. Org. Prep. \& Proc. Int. 2004, 36, 391;
 b) Lopéz, C. A.; Trigo, G. G. Adv. Heterocycl. Chem. 1985, 38, 177.
 ${ }^{2}$ a) Delley, B., Chem. Phys. Lett. 1986, 110, 329; b) Delley, B., J. Chem. Phys. 2000, 113, 7756; c) Wang, Y., Perdew, J. P., Phys. Rev. 1991, B 43, 8911.
 ${ }^{3}$ InsightII/Analysis/Discover/DMol3/DelPhi programs, version 2000 Accelrys, 9685 Scranton Road, San Diego, CA 92121-3752, USA. 4 Hönig, B., Nicholls, A. Science 1995, 268 (5214), 1144.

[^56]: ${ }^{1}$ Leurs, R.; Blandina, P.; Timmerman, H. Trends in Pharmacological Sciences .1998, 19, 177.
 ${ }^{2}$ Dvorak, C. A. et al. Journal of Medicinal Chemistry .2005, 48, 2229.
 ${ }^{3}$ Da Silva, R. R.; Ramalho, T. C.; Santos, J. M.; Figueroa-Villar, J. D. The Journal of Physical Chemistry A.2006, 110, 1031.

[^57]: Cesura, A. M.; Pletscher, A. Prog. Drug Res. 1992, 38,171.
 ${ }^{2}$ Maseras, F; Morokuma, K. J. Comput. Chem. 1995,16,1170
 ${ }^{3}$ Ramachandran, G.N.; Ramakrishnan, P.; Sasisekharan, V. J of Molec. Biology, 1963, 7, 95.

[^58]: ${ }^{\dagger}$ Williams, D. L.; Spring, L.; Collins, L. et al. Antimicrobial Agents and Chemotherapy 1998, 42, 1853.
 ${ }^{2}$ Gues, N.; Peitsch, M.; Schwede, T. e Diemand, A. Biochemical Society Trabsactions 1996, 24, 271.
 ${ }^{3}$ Berman, H. M.; Wesrbrook, J.; Feng, Z.; Gilliland, G. et al. Nucleic Acids Research 2000, 28, 235.
 ${ }^{4}$ http://biotech.ebi.ac.uk: $8400 /$
 ${ }^{5}$ http://www.molegro.com

[^59]: Scorza, M. C.; Carrau, C.; Silverira, R.; Zapata-Torres, G.; Cassels, B. K.; Reyes-Parada, M. Biochem. Pharmacol. 1997, 54, 1361.
 ${ }^{2}$ Da Silva, R.R.; Ramalho, T.C.; Santos, J.M.; Figueroa-Villar, J.D. J.
 Phys. Chem. A 2006, 110,

[^60]: ' Atkinson, J. \& Arey, J. Atmos. Environ. 2003, 37 supl., S197.
 ${ }^{2}$ Grosjean, E.;Grosjean, D.,Seinfeld, J.H., Int. J.Chem.Kinet. 1996, 28, 373382.
 ${ }^{3}$ Nunes, F.M.N.; Veloso, M.C.C.; Pereira, P.A.P and J.B.de Andrade Atmos. Environ. 2005, 39, 7715. ${ }^{\text {C }}$ Crystal D.F ; Ham, J.E. ; Wells, J.R Atmos. Environ. 2007, 41, 1188-1199.

[^61]: ${ }^{\top}$ Pyykkö, P. Mol. Phys. 2001, 99, 1617.
 ${ }^{2}$ Cooke, S.A.; Krumrey, C. and Gerry, M.C.L. Phys. Chem. Chem. Phys. 2005, 7, 2570.
 ${ }^{3}$ Haiduke, R.L.A. and da Silva, A.B.F. J. Comput. Chem. 2006, 27, 1970. ${ }^{4}$ Raghavan, P. At. Data Nucl. Data Tables 1989, 42, 189.

[^62]: ${ }^{1}$ Bartlett, N. Proc. Chem. Soc. 1962, 218.
 ${ }^{2}$ Pauling, L. J. Am. Chem. Soc. 1933, 55, 1895.
 ${ }^{3}$ Haiduke, R.L.A. and da Silva, A.B.F. J. Comput. Chem. 2006, 27, 71.
 ${ }^{4}$ Pepkin, V.I.; Lebedev, Y.A.; Apin, A.Y. Zh. Fiz. Khim. 1963, 43, 1564.
 ${ }^{5}$ Reichmann, S. and Schreiner, F. J. Chem. Phys. 1969, 51, 2355.
 ${ }^{6}$ Nielsen, U. and Schwarz, W.H.E. Chem. Phys. 1976, 13, 195.
 ${ }^{7}$ Burger, H. et al. J. Chem. Phys. 1994, 101, 1.

[^63]: ${ }^{\text {' Goedert, M.; Spillantini, M. G., Science. 2006, 314, } 777 .}$
 ${ }^{2}$ Epifânio, R. A.; Pinheiro, L. S.; Alves, N. C., J. Braz. Chem. Soc., 2005, 16,
 1367.

[^64]: ${ }^{T}$ McElroy, M. B., Salawitch, Wofsy, S. C. e Logan, J. A. Nature 1986, 321, 759.
 ${ }^{2}$ Abbatt, J. P. D. e Molina, M. J. Geophys. Res. Lett. 1992 19, 461.

[^65]: ${ }^{1}$ J. Jo, C. Chi, S. Höger, G. Wegner, D. Y. Yoon, Chem. Eur. J. 2004, 10, 2681.
 ${ }^{2}$ K. T. Wong, Y. Y. Chien, R. T. Chen, C. F. Wang, Y. T. Lin, H. H. Chiang, P. Y. Hsieh, C. C. Wu, C. H. Chou, Y. O. Su, G. H. Lee, S. M. Peng, J. Am. Chem. Soc. 2002, 124, 11576.
 ${ }^{3}$ J. Lee, Y. J. Jung, S. K. Lee, J. I. Lee, H. J. Cho, H. K. Shim, J. Polym. Sci. Part A, 2005, 43, 1845.
 ${ }^{4}$ Lee, S. H.; Tsutsui, T., Thin Solid Films, 2000, 363, 76.

[^66]: Pinto, M. F. S.; M. Trsic, Internet Electron. J. Mol. Des. 2004, 3, 45.
 ${ }^{2}$ Coto, P. B.; Strambi, A.; Ferre, N.; Olivucci; M., PNAS 2006, 103, 17154.
 ${ }^{3}$ Savedra, R. M. L.; Pinto, M. F. S.; Trsic, M. J. Chem. Phys. 2006, 125, 144901.
 ${ }^{4}$ Vreven, T.; Morokuma, K., Theo. Chem. Acc. 2003, 109, 125.
 ${ }^{5}$ Ivanova, D.; Kolev, V.; Lazarova, T.; Padrós, E.; Tetrahedron Lett. 1999, 40, 2645.
 ${ }^{6}$ Luecke, H.; Schobert, B.; Richter, H.; Cartailler, J.; Lanyi, J. K. J. Mol. Biol. 1999, 291, 899.

[^67]: ${ }^{1}$ Sarma, G. N.; Savvides, S. N.; Becker, K.; Schirmer, M.; Schirmer, R. H. e Karplus, P. A. J. Mol. Biol. 2003, 328, 893.
 ${ }^{2}$ Krauth-Siegel, R. L.; Müller, J. G.; Lottspeich, F. e Schirmer, R. H. Eur. J. Biochem. 1996, 235, 345.
 ${ }^{3}$ HyperChem ${ }^{\text {® }}$ 5.01 Computional Chemistry, Waterloo, Ont. N2L 3X2, Canada, Hypercube Inc., 1996.
 ${ }^{4}$ CSD - Cambridge Structural Database - licença concedida ao Prof. Julio Zukerman Schpector - LaCrEMM - DQ - UFSCar.
 ${ }^{5}$ Kuntz, I. D.; Blaney, J. M.; Oatlay, S. J.; Landridge, R.; Ferrin, T. E. J. Mol. Biol. 1982, 161, 269.
 ${ }^{6}$ Shoichet, B. K.; Kuntz, I. D. J. Mol. Biol. 1991, 221, 327.
 ${ }^{7}$ Vega-Teijido, M.; Caracelli, I.; Zukerman-Schpector, J. J. Mol. Graph. Model. 2006, 24, 349.

[^68]: ${ }^{1}$ Stauffer, M E., Young, John K., Evans, J. N. S.; Biochemistry 2001, 4, 3951.
 ${ }^{2}$ Wang X.J., Jiang F. D., Gang L.X., Zhen Z.; Sci. Sin., Ser. B, Chem. Biol. Agric. Med. Earth Sci. 0:0-0(2001).
 ${ }^{3}$ Eschenburg, S; et al. J. Biol. Chem. 2003, 278, 49215.
 ${ }^{4}$ Fujitsu Co 2002.

[^69]: ${ }^{1}$ Chadan, K.; Sabatier, P.C.; Inverse Problems in Quantum Scattering Theory. Springer; March 1989.
 ${ }^{2}$ Tikhonov, A.N and Arsénine, V.; Méthodes de Résolution de Problèmes Mal Posés, Mir, 1974.
 ${ }^{3}$ N.H.T. Lemes, E. Borges and J.P. Braga. J. Braz. Chem. Soc. In press.
 ${ }^{4}$ Lazarides. A. A., Rabitz, H. J. Chem. Phys., 101 (1994) 4735.

[^70]: ${ }^{1}$ Canal Neto, A.; Muniz, E. P.; Centoducatte, R. and Jorge, F. E. J. Mol. Structure (Theochem) 2005, 718, 219.
 ${ }^{2}$ Fantin, P. A.; Barbieri, P. L.; Canal Neto, A. and Jorge, F. E. J. Mol. Structure (Theochem) 2007, 810, 103.
 ${ }^{3}$ Basch, H.; Garmer, D. R.; Jasien, P. G.; Kraus, M. and Stevens, W. J. Chem. Phys. Lett. 1989, 163, 514.

[^71]: ${ }^{1}$ Perdew J. P., Ruzsinsky A., Tao J., Staroverov V. N., Scuseria G. E. and Csonka G. I. J. Chem. Phys. 123, 062201 (2005).
 ${ }^{2}$ Odashima, M. M. and Capelle, K. J. Chem. Phys. accepted (2007).
 ${ }^{3}$ Lieb, E. H. and Oxford, S. Int. J. Quantum Chem. 19, 427 (1981).
 ${ }^{4}$ Perdew, J. P., Burke, K. and Ernzerhof, M. Phys. Rev. Lett 77, 3865 (1996).
 ${ }^{5}$ Tao, J., Perdew, J. P., Staroverov, V. N. and Scuseria, G. E. Phys. Rev. Lett 91, 146401 (2003).
 ${ }^{6}$ Chan, G. K.-L. and Handy, N. C. Phys. Rev. A 59, 3075 (1999).
 ${ }^{7}$ Schipper P. R. T., Gritsenko O. V. and Baerends E. J. Phys. Rev. A 57, 1729 (1998); J. Chem. Phys. 107, 5007 (1997).
 ${ }^{8}$ Karasiev V. V. J. Mol. Struct. 493, 21 (1999).
 ${ }^{9}$ Davidson E. R. et al Phys. Rev. A 47, 3649 (1993).
 ${ }^{10}$ Hsing, C. R., Chou, M. Y. and Lee, T. K. Phys. Rev. A 74, 032507 (2006).

[^72]: ${ }^{\text {Conal Neto, A.; Muniz, E. P.; Centoducatte, R. and Jorge, F. E. J. Mol. }}$ Structure (Theochem) 2005, 718, 219.
 ${ }^{2}$ Barbieri, P. L.; Fantin, P. A.; Jorge, F. E. Mol. Phys. 2006, 104, 2945.
 ${ }^{3}$ Dunning, Jr., T. H. J Chem Phys 1989, 90, 1007.
 ${ }^{4}$ Wilson, A. K.; Woon, D. E.; Peterson, K. A. and Dunning Jr., T. H. J. Chem Phys 1999, 110, 7667.
 ${ }^{5}$ Editor-in-chief Lide, D. R. CRC Handbook of Chemistry and Physics; CRC Press: London, 1994.

[^73]: www.msg.ameslab.gov/GAMESS/GAMESS.html
 ${ }^{2}$ www.kjemi.uio.no/software/dalton/dalton.html
 ${ }^{3}$ dirac.chem.sdu.dk/
 ${ }^{4}$ www.netlib.org/blas/index.html
 ${ }_{6}$ www.netlib.org/atlas/
 ${ }^{6}$ developer.amd.com/acml.jsp

[^74]: ${ }^{1}$ Pliego Jr., J. R., Quím. Nova, 2006, (29), 535.
 ${ }^{2}$ Barone, V.; Cossi, M., J. Chem. Phys., 1997,(107),3210.
 ${ }^{3}$ Custodio, R.; Giordan, M.; Morgon, N. H.; Goddard., J. D. , Int. J. Quantum Chem., 1992,(42),411.

[^75]: ${ }^{1}$ R.C. Barreto, Dissertação de Mestrado, USP, 2006
 ${ }^{2}$ K. Coutinho, et al, Chem.Phys.Lett. 369 (2003) 345.
 ${ }^{3}$ H.C. Georg, K. Coutinho, S. Canuto, J.Chem.Phys. 126 (2007) 034507
 ${ }^{4}$ S. Canuto, K. Coutinho, Adv.QuantumChem. 28 (1997) 89
 ${ }^{5}$ C.M. Breneman, K.B. Wiberg, J.Comp.Chem. 11 (1990) 361
 ${ }^{6}$ H.J.C. Berendsen, et al, J.Phys.Chem. 91 (1987) 6269

[^76]: Garzón, I. L. et al. , Nanotechnology 2001, 12, 126.
 ${ }^{2}$ Batista, R. J. C. et al. , Phys. Rev. Lett. 2006, 96, 116802.

[^77]: ${ }^{1}$ da Siva, C. O.; Mennucci, B. e Vreven, T. J. Org. Chem. 2004, 69, 81618164.
 ${ }^{2}$ Zhao, SL; Zhou; ZY; Wang, WJ e Ma, HK. International Journal of ${ }_{3}$ Quantum Chemistry 2007, 107, 1015-1026.
 ${ }^{3}$ Stephens, P.J.; Devlin, F. J.; Cheeseman, J.R. e Frisch, M.J. J. Phys. Chem. A 2001, 105, 5356-5371.
 ${ }^{4}$ Stephens, P.J.; Devlin, F. J.; Cheeseman, J.R. e Frisch, M.J. J. Phys. Chem. A 2000, 104, 1039-1046.

[^78]: ${ }^{1}$ Rocha,W.R.. J.Mol. Strct. 2004, 677,2004.
 ${ }^{2}$ Torrent, M; Solà, M; Frenking G. Chemical Reviwes 2000, 100,439.
 ${ }^{3}$ Zuidema, E; Daura-Oller E; Carbó, J.J; Bo, C; van Leewuen, P. W. N. M. Organometallics.2007,26,2234
 ${ }^{4}$ Dapprich, S; Komarómi, I; Byun, K.S; Morokuma, K; Frish, M.J.J. Mol. Strct. 1999,461, 1

[^79]: ## Ablrobechinemios

 ## PPGFIS-UFES, PPGQUI-UFES e CAPES

 'Chatterjee, T.; Muhkopadhyay, A.; Khan, K. A.; Giri, A. K. Mutagenesis, 1998, 13, 619.
 ${ }^{2}$ Snyder, R. D.; Ewing, D.; Hendry, L. B. Mutat. Res. 2006, 609, 47.
 ${ }^{3}$ Arguelho, M. L. P. M.; Alves, J. P. H.; Stradiotto, N. R. In: Resumos da $27{ }^{1}$. RA da Sociedade Brasileira de Química e XXVI Congresso Latinoamericano de Química, 2004, Salvador, BA.
 ${ }^{4}$ Chung, F. L.; Roy, K. R.; Hecht, S.S. J. Org. Chem. 1988, 53, 14.

[^80]: 'Haldar, P.; Guin, J.; Ray, J. K. Tetrahedron Lett. 2005, 46, 1071;
 ${ }^{2}$ Lima, J. C. B.; Morgon, N. H. Livro de Resumos do XIII RASBQ 2007, 154;
 3"http://webbook.nist.gov/chemistry/",
 2007.

[^81]: 1 - Pinheiro, J. C., Ferreira, M.M.C., Romero, O.A.S., Antimalarial activity of dihydroartemisinin derivatives against P. falciparum resistent to mefloquine: a quantum chemical and multivariate satudy. Journal of Molecular Structure (Theochem) 572 (2001) 35-44.
 2 - Cardoso, F.J.B., Figueiredo, A.F., Lobato, M.S., Miranda, R.M., Almeida, R.C.O.A., A Study on Antimalarial Artemisinin derivatives using MEP maps and Multivariate QSAR. Journal of Molecular Modeling, aceito 2007.
 3 - Cardoso, F.J.B., Costa, R.B., Figueiredo, A.F., Barbosa, J.P., Jr, I.N., Pinheiro, J.C., Romero, O.A.S. Modeling Artemisinin Derivatives with Potent Activity against P. falciparum Malaria with Ab Initio and PLS Methods. Internet Eletronic of Molecular Design 2007, 6.
 4 - Ferreira, M.M.C., Multivariate QSAR, J. Braz. Chem. Soc., Vol.13, No.6, 742-753, 2002.

[^82]: (a) $6-31++G(2 d f, 2 p d)$. (b) $6-311++G(2 d f, 2 p d)$

[^83]: ${ }^{\top}$ Edmonds, D. J.; Johnston,D. e Procter, D. J. Chem. Rev. 2004, 104, 3371.
 ${ }^{2}$ Dahlén, A.; Nilsson, Å. e Hilmersson G. J. Org. Chem. 2006, 71, 1576.
 ${ }^{3}$ Bertran, J. et al.. J. Am. Chem. Soc. 1992, 114, 9576.

[^84]: ${ }^{\text {T}}$ Viçoso, J. S.; Haiduke, R. L. A. e Bruns, R. E., J. Phys. Chem. A. 2006, 110, 4839. ${ }^{2}$ Breneman C. M. ; Wiberg K. B.. J. Comput. Chem. 1990, 11, 361.

[^85]: ${ }^{\prime}$ Nielsen, J. C., Woldbaek, T. and Klaboe, P. J. Mol. Struct. 1975, 27, 283.
 ${ }^{2}$ Gussoni, M., Ramos, M.N., Castiglioni, C., Zerbi, G. Chem. Phys. Letters. 1987, 142, 515.

[^86]: Woldbaek,T.; Klaeboe, P.; Nielson, C. J.; J. Mol. Struct. 1975, 27, 283;
 ${ }^{2}$ Corsaro, C.; Parker, S. F.; Physica B. 2004, 350, e591;
 ${ }^{3}$ Xantheas, S. S.; J. Chem. Phys. 1996, 104, 8821.

[^87]: ${ }^{1}$ West, R. e Glaze, W. J. Am. Chem. Soc. 1961, 83, 3580.
 ${ }^{2}$ Weiss, E. e Lucken, E. A. C. J. Organomet. Chem. 1964, 2, 197.
 ${ }^{3}$ Hase, Y. Tese de Livre-Docência, IQ-UNICAMP 1984.

[^88]: Castro, M. A. e Canuto, S. Phys. Rev. A 1993, 48, 826
 ${ }^{2}$ Bernath, P. F.; Rogers, S. A.;O'Brien, L. C. e Brazier, C. R. Phys. Rev. Lett. 1988, 60, 197.
 ${ }^{3}$ Martin, J. M. L.; François, J. P. e Gijbels, R. J.Chem. Phys. 1990, 92 6655.

[^89]:
 ${ }^{1}$ Herzberg, G, Molecular Spectra and Molecular Structure: III. Eletronic Structure of Polyatomic Molecules, Van Nostrand. 1966, 604, 589.
 ${ }^{2}$ Hwang, D. Y.; Mebel, A. M.; Chemical Physics. 2000, 256, 169.

[^90]: ${ }^{1}$ Klabunde, T. et al. Nat. Struct. Biol. 1998, 5, 1084.
 ${ }^{2}$ Rey, N. A. et al. Inorg. Chem. 2007, 46, 348.
 ${ }^{3}$ Siegbahn, P. E. M. and Blomberg, M. R. A., Chem. Rev. 2000, 100, 421.

[^91]: CNPq, FAPEMIG, FINEP
 ${ }^{1}$ Kazlauskas, R. J. Curr. Opin. Chem. Biol. 2005, 9, 195.
 ${ }^{2}$ Rey, N. A. et al. Inorg. Chem. 2007, 46, 348.
 ${ }^{3}$ Born, K. et al. J. Biol. Inorg. Chem. 2007, 12, 36.
 ${ }^{4}$ Smoukov, S. K. et al. J. Am. Chem. Soc. 2002, 124, 2595.

[^92]: Schwarz, W. H. E.; Chem. Phys. 1975, 11, 217; Schwarz, W. H. E.; Buenker, R. J.; Chem. Phys. 1976, 13, 153. ${ }^{2}$ Turci, C. C.; Urquhart, S. G.; Hitchcock. A. P.; Can. J. Chem. 1996, 74, 851. ${ }^{3}$ Stöhr, J.; NEXAFS Spectroscopy, Spring Series in Surface Science; Spring-Verlag: New York, 1992. ${ }^{4}$ Kosugi, N.; Kuroda, H.; Chem. Phys.Lett. 1980, 74, 490. ${ }^{5}$ Huo, B.; Hitchcock. A. P.;Simile2; McMaster University, Hamilton, ON,. 1996.

[^93]: ${ }^{\top}$ Pullen, A. E.; Olk, R. M. Coord. Chem. Rev. 1999, 188, 211. ${ }^{2}$ Ferreira, G. B.; Comerlato, N. M; Wardell, J. L. e Hollauer, E. JBCS. 2004, 15, 951. ${ }^{3}$ Ferreira, G. B.; Comerlato, N. M; Wardell, J. L. e Hollauer, E. Spec. Chim. Acta A. 2005, 61, 2663. ${ }^{4}$ Ferreira, G. B.; Comerlato, N. M; Wardell, J. L., Hollauer, E. Inorg. Chim. Acta. 2006, 359, 1239. ${ }^{5}$ Wardell, J.L., Spencer, G.M., Aupers, J.H.; Polyhedron 1996, 15, 2701. ${ }^{6}$ Assis, F., Chohan, Z.H., Howie, R.A., Khan, A., Low, J.N., Spencer, G.M., Wardell, J.L., Wardell, S.M.S.V.; Polyhedron 1999, I8, 3533.

[^94]: ' J. Szejtli, Chem. Rev. 1998, 98, 1743.
 ${ }^{2}$ C. S. Nascimento Jr. et al, Chem. Phys. Lett. 2004, 397, 422.
 ${ }^{3}$ C. S. Nascimento Jr. et al, J. Phys. Chem. A 2005, 109, 3209.
 ${ }^{4}$ C. S. Nascimento Jr. et al, J. Inc. Phenom. Macroc. Chem, 2007 (in press). (DOI: 10.1007/s10847-007-9320-5).

[^95]: 1 Svenstrup, N.; Becher, J. Synthesis. ${ }^{1995}$, 215. ${ }^{2}$ Comerlato, N.M., Ferreira, G.B., Skakle, J.M.S., Wardell, J.L. Acta. Crys E 60, 2284, 2004. ${ }^{3}$ Steimecke, G., Siecer, H.J., Kirmse, R., Dietzsch, W., Hoyer, E. Phosphorus and Sulfur, 12, 237, $1982 .{ }^{4}$ Kosugi, N.; Kuroda, H.; Chem. Phys.Lett. 1980, 74, 490. ${ }^{5}$ Francis, J.T.; Turci, C.C.; Tyliszczak, T.;Souza, G.G.B., Kosugi, N.; Hitchcock. A. P.; Phys. Rev. A; 52, 4665.

[^96]: I Svenstrup, N.; Becher, J. Synhlesis. ${ }^{1995}$, 215. ${ }^{2}$ Kosugi, N.; Kuroda, H.; Chem. Phys.Lett. 1980, 74, 490. ${ }^{3}$ Comerlato, N.M., Ferreira, G.B., Skakle, J.M.S., Wardell, J.L. Acta. Crys E 60, 2284, 2004. ${ }^{4}$ Steimecke, G., Siecer, H.J., Kirmse, R., Dietzsch, W., Hoyer, E. Phosphorus and Sulfur, 12, 237, 1982.

[^97]: Robert G. Ridley, Nature 2002, 415, 686.
 ${ }^{2}$ Araújo. J. Q.; Walkimar. J. de M. Carneiro, Araujo, M. T.; Taranto, A. G. (manuscript in preparation).

[^98]: ${ }^{1}$ Lang, D. R., Davis, J. A.; Lopes, L. G. F., Ferro, A. A.; Vasconcellos, L. C. G.; Franco, D. W.; Tfouni, E.; Wieraszko, A.; Clarke, M. J. Inorg. Chem. 2000, 39, 2294.

[^99]: Curtiss, L. A.;
 998, 109, 7764
 Stevens, W.J.; Krauss, M.; Basch, H.; e Jasien, P.G.; Can. J. Chem. 1992, 70, 612
 http://srdata.nist.gov/cecbdb/exprotbar2.asp?casno=7722841\&ti=1
 Herbst, E.; Messer, J. K..; De Lucia, F. C. e Helminger, Paul, J. Mol. Spect. 1985, 108, 42.
 http://srdata.nist.gov/cccbdb/exprotbar2.asp?casno=302012\&ti=1
 http://srdata.nist.gov/cccbdb/exprotbar2.asp?casno=74895\&ti=1
 Gurvich, L.V.; Veyts, I. V.; Alcock, C. B.; "Thermodynamic Properties of Individual Substances", Fouth Edition, Hemisphere Pub. Co., New York, 1989

[^100]: ${ }^{1}$ R.W. Taft, in Steric Efects in Organic Chemistry, M. S. Newman (Ed), Wiley, New York, 1956, p. 556-675.
 M. Segala, Y. Takahata, D.P. Chong, J. Mol. Struct THEOCHEM, 2006, 758, 61.
 ${ }^{3}$ Y. Takahata, D.P. Chong, J. Electron Spectrosc. Relat. Phenom. 2003, 133, 69.

[^101]: 1.R. L. Redginton, J. Mol. Spectry.65, 171,(1977).
 2.D. M Dennison, Revs. Modern. Phys. 20, 313,(1951).
 3. G. E. Hasen and D. M. Dennison, J. Chem. Phys.12, 175,(1940). 4.Y, Hase, Quim. Nova, 27(4),664-667,(2004).

[^102]: ${ }^{1}$ Bertie, J. E.; Michaelian, K. H.; Eysel, H. H.; Hager, D., J. Chem. Phys. 1986, 85, 4779. Bertie, J. E.; Michaelian, K. H.; J. Chem. Phys.. 1982, 76, 886.

[^103]: ${ }^{1}$ Chowdhury, P. K. and Balfour, W. J. J. Chem. Phys. 2006, 124, 216101.
 ${ }^{2}$ Gobbo, J. P. and Borin, A. C. J. Chem. Phys, 2007, 126, 011102.

[^104]: ${ }^{1}$ Borin, A. C; Gobbo, J. P. and Roos, B. O. Chem. Phys., 2007, Article in Press.
 ${ }^{2}$ Roos, B. O.; Borin, A. C. and Gagliardi, L. Angew. Chim. Int. Ed., 2007, 46, 1469.
 ${ }^{3}$ Morse, M. D. Chem. Rev., 1986, 86, 1049.

[^105]: ${ }^{1}$. Goodell, J. R; Puig-Basagoiti, F.; M.Forshey, B.; Shi, P.Y.; Ferguson D. M.; Jornal. Med. Chem. 2006, 49, 2127.

[^106]: ' Y. Q. Liang, H. Zhang, Y. X. Dardenne, J. Chem. Educ., 1995, 72, 148.
 ${ }^{2}$ E. Guillaumín-España, A. L. Salas-Brito, R. P. Martínez y Romero, H. N. Núñez-Yépez, Rev. Mex. Fis., 2001, 47, 98.

[^107]: ' $\overline{\text { Geladi, P.; Grahn, H. Multivariate Image Analysis, Wiley, Chichester, }}$ 1996.
 ${ }^{2}$ Freitas, M. P. Org. Biomol. Chem., 2006, 4, 1154.
 ${ }^{3}$ Wang, J. G.; Li, Z. M.; Ma, N.; Wang, B. L.; Jiang, L.; Pang, S. S.; Lee, Y. T.; Guddat, L. W.; Duggleby, R. G. J. Comput.-Aid. Mol. Des., 2005, 19, 801.
 ${ }^{4}$ ChemDrawn Ultra 7.0, CambridgeSoft Corp., Cambridge, 2001.

[^108]: DQI - UFLA e FAPEMIG.
 ${ }^{1}$ Fukui, K. et al. J. Chem. Phys., 1954, 22, 1433. Hoffmann, R.; Woodward, R. B. Acc. Chem. Res. ,1968, 1, 17.
 2 Fukui, K. Angew. Chem. Int. Ed., 1982, 21, 801.
 3 da Silva, R. R.; Ramalho, T. C., Santos, J. M.; Figueroa-Villar, J. D. J. Phys. Chem. A, 2006, 110, 1031.
 4 da Silva, R. R.; Ramalho, T. C., Santos, J. M.; Figueroa-Villar, J. D.
 J. Braz. Chem. Soc., 2006, 17, 23.

 5 Stowasser R; Hoffmsnn R. J. Am. Chem. Soc., 1999, 121, 3414.

[^109]: 1 Costa, R.C.C.; Lelis, F.; Oliveira, L.C.A.; Fabris, J.D.; Ardisson, J.D;
 Rios, R.R.A.; Silva, C.N; Lago, R.M.; Catal. Commun. 2003, 4,
 ${ }^{1}$ L.C.A. Oliveira, M. Goncalves, M.C. Guerreiro a, T.C. Ramalho, J.D. Pereira, K. Sapag. Applied Catalysis A: General 316 (2007) 117-124.

[^110]: Choi, K.; Yu, Y.G.; e Hahn, G. FEBS Letters 2005, 579, 4903.
 ${ }^{2}$ Gues, N.; Peitsch, M.; Schwede, T. e Diemand, A. Biochemical Society Trabsactions 1996, 24, 271.
 ${ }^{3}$ Berman, H. M.; Wesrbrook, J.; Feng, Z.; Gilliland, G. et al. Nucleic Acids Research 2000, 28, 235.
 ${ }^{4} \mathrm{http}$;//www.molegro.com

[^111]: [1] SIKORSKI, J.A.; GRUYS, K. Acc. Chem. Res. 30, 2-8, 1997.
 [2]. BERMAN, H. M.; Wesrbrook, J.; Feng, Z.; Gilliland, G. et al. Nucleic Acids Research 2000, 28, 235.
 [3] MIZYED, S.; WRIGHT, J.E.I.; BYEZYNSKI, B.; BERTI, P.J. Biochemistry, 42, 6986-6995, 2003.

[^112]: 1 Car R, Parrinello M. Phys. Rev. Lett. 1985; 55, 4487.
 2 Chen, B.C.; Plilipborn, W. Helev. Chim. Acta 1983, 5, 1537.
 3 Ramalho, T.C.; Buhl, M. Helev. Chim. Acta 2005, 88, 2705.
 4 Ramalho, T.C.; Luz, G.H.P. em preparação

[^113]: ${ }^{1}$ Poland, A. and JC. Knutson, Annu. Rev. Pharmacol. Toxicol. 1992, 22, 517.
 ${ }^{2}$ Gasiewicz, T.A., Handbook of Pesticide Toxicology, Academic Press, San Diego, 1991, 1191
 ${ }^{3}$ S.Kobayashi et al, Journal of Molecular Structure, 1999, 475, 203.

[^114]: ${ }^{1}$ S. C. Brown, Electron-molecule scattering, Wiley, N. York 1979.
 ${ }^{2}$ R. K. Janev, in Atomic and Plasma-Material Interaction Processes in Controlled Thermonuclear Fusion, edited by R. K. Janev and H. W. Drawin, Elsevier, Amsterdam 1993.
 ${ }^{3}$ J. J. Perry, Y. H. Kim, J. L. Fox and H. S. Porter, J. Geophys. Res. 199910416541

[^115]: ${ }^{4}$ M. T. N. Varella, M. H F. Bettega, A. J. R. da Silva, and M. A. P. Lima, J. Chem. Phys. 19991102452.
 ${ }^{3}$ F. A. Gianturco, J. Phys. B 1991244627.
 ${ }^{6}$ D. T. Alle, R. J. Gulley, S. J. Buckmann, and M. J. Brunger, J. Phys. B 1992252572.

[^116]: ${ }^{1}$ Mozejko, P, Sanches,M. Radiat. Environ. Biophys. 2003, 42, 201.
 ${ }^{2}$ Mozejko, P, Sanches,M. Radiat. Phys. Chem. 2005, 73, 77.

[^117]: ${ }^{\top}$ Neef, M.; Doll, K.; Surf. Sci, 2006, 600, 1085.
 ${ }^{2}$ Ponec, V.; Van Barneveld, W. A.; Ind. Eng. Chem. Prod. Res. Dev., 1979, 18, 268.
 ${ }^{3}$ Hirschl R.; Hafner, J.; Surf. Sci., 2002, 498, 21.
 ${ }^{4}$ Lopes, N.; Nørskov, J. K..; Surf. Sci., 2001, 477, 59.
 ${ }^{5}$ Marek Gajdoš, M.; Eichler, A.; Hafner, J.; J. Phys.: Condens. Matter, 2004, 16, 1141.
 ${ }^{6}$ Monteiro, R. S.; Paes, L. W. C.; Carneiro, J. W. de M.; Aranda, D. A. G., manuscript in preparation.
 ${ }^{7}$ Zhang, C. J.; Baxter, R. J.; Hu, P.; Alavi,A.; Lee, M.-H., J. Chem. Phys., 2001, 115, 5272.
 ${ }^{8}$ Gajdos", M.; Eichler, A.; Hafner, J. J. Phys.: Condens. Matter, 2004, 16, 1141.

[^118]: ${ }^{\top}$ Ponec, V.; Van Barneveld, W. A.; Ind. Eng. Chem. Prod. Res. Dev., 1979,18, 268.
 ${ }^{2}$ Delbecq. F.; Sautet. P., Phys. Review B., 1999, 59. 5142.
 ${ }^{3}$ Monteiro, R. S.; Paes, L. W. C.; Carneiro, J. W. de M.; Aranda, D. A. G., manuscript in preparation.
 ${ }^{4}$ Zhang, C. J.; Baxter, R. J.; Hu, P.; Alavi,A.; Lee, M.-H., J. Chem. Phys., 2001,115, 5272.

[^119]: ${ }^{1}$ Foresman, J. B.; Frisch, Æ.; Exploring Chemistry with Electronic Structure Methods; Gaussian Inc, segunda ed., 1996.
 ${ }_{2}^{2}$ Curtiss, L. A.; Raghavachari, K.; Redfern, P. C.; Rassolov, V.; Pople, J. A; Journal of Chemical Physics; 109; 7764-7776; 1998.

[^120]: 'Mazzé, F.M.; Degrève, L. Acta Virol. 2006, 50, 75.
 ${ }^{2}$ Lindahl, E.; Hess, B.; van der Spoel, D. J. Mol. Mod. 2001, 7, 306.
 ${ }^{3}$ http://www.rcsb.org/pdb

[^121]: ${ }^{1}$ Angle S. R.; Rainier J.D.; Woytowicz C., J Org. Chem. (1997)62, 5884.
 ${ }^{2}$ Becke, A. D., J. Chem. Phys. (1992) 96, 2155.
 ${ }^{3}$ Lee, C.; Yang, W.; Parr, R. G., Phys. Rev. (1988) B 37, 785.

[^122]: Christensen, N. E. e I. Gorczyca. Optical and Structural-Properties of Iii-V Nitrides under Pressure. Physical Review B, v.50, n.7, Aug, p.4397-4415. 1994.
 ${ }^{2}$ Northrup, J. E. e J. Neugebauer. Theory of $\operatorname{GaN}(10(1)$ over-bar- 0) and (11(2)over-bar-0) surfaces. Physical Review B, v.53, n.16, Apr, p.1047710480. 1996.
 ${ }^{3}$ Vurgaftman, I. e J. R. Meyer. Band parameters for nitrogen-containing semiconductors. Journal of Applied Physics, v.94, n.6, Sep, p.3675-3696. 2003.
 ${ }^{4}$ Segev, D. e C. G. Van De Walle. Surface reconstructions on InN and GaN polar and nonpolar surfaces. Surface Science, v.601, n.4, Feb, p.L15-L18. 2007

[^123]: ${ }^{i}$ Sun, K.; Liu, J.; Nag, N.; Browning, N. D. Catal. Lett. 84, 2002, 193.
 ${ }^{i i}$ Stará, I.; Matolin, V. Surf. Sci. 313, 1994, 99.
 iii Delbecq, F.; Sautet, P. Surf. Sci. 295,1993, 353.
 ${ }^{\text {iv }}$ Shustorovich, E. Adv. Catal. 37, 1990, 101
 ${ }^{v}$ Neurock,M. Topics in Catal., 9, 1999, 135.

[^124]: ' G. L. Blackman, et al. J. Mol. Spectrosc., 1976, 60, 63.
 ${ }^{2}$ M.L.S. Garcia et al. J. Chem. Soc. Perkin. Trans II, 1391, 1983, 1391.

[^125]: ${ }^{1}$ Canal Neto, A.; Muniz, E. P.; Centoducatte, R. and Jorge, F. E. J. Mol. Structure (Theochem) 2005, 718, 219.
 ${ }^{2}$ Barbieri, P. L.; Fantin, P. A. and Jorge, F. E. Mol. Phys 2006, 104, 2945.
 ${ }^{3}$ Raynes, W. T.; Fowler, P. W.; Lazzeretti, P.; Zanasi, R. and Grayson, M. Mol. Phys. 1988, 64, 143.

 4'Gauss, J. and Stanton, J. F. J. Chem. Phys. 1996, 104, 2574.

[^126]: ${ }^{1}$ Ueda, S.; Kuroda, Y.; Miyajima H. and Kuwara, T. J. Prop. Power 1994, 10, 646.
 ${ }^{2}$ Tantos, J. B. O.; Valença, G. P.; Rodrigues J. A. J., J. of Catal., 2002,

 210,

[^127]: ${ }^{1}$ Gonçalves, C. P. and Mohallem, J. R., Journal of Computational Chemistry, 25 (2004) 1736.

[^128]: Resende, S. M. J. Atmos. Chem. 2007, 56, 21.
 ${ }^{2}$ Ravichandran, K.; Williams, R.; Fletcher, T. R. Chem. Phys. Lett. 1994, 217, 375.
 ${ }^{3}$ Herndon, S. C.; Froyd, K. D.; Lovejoy, E. R.; Ravishankara, A. R. J. Phys. Chem. A 1999, 103, 6778.

[^129]: 'Lucchese R. R., Raseev G. e McKoy V. Phys. Rev. A 1982 25, 2572.
 ${ }^{2}$ A. W. Fliflet and V. McKoy, Phys. Rev. A 1980 21, 697.
 ${ }^{3}$ Padial N. T. and Norcross D. W. Phys. Rev. A 1984 29, 1742.
 ${ }^{4}$ M.-T. Lee, et. al, J. Electr. Spectr. Rel. Phenom 2007 155, 14-20.
 ${ }^{5}$ Staszewska G. et. al., Phys. Rev. A 1984 29, 3078.
 ${ }^{6}$ Hwang W., Kim Y.-K., Rudd M. E., J. Chem. Phys. 1996 104, 2956.
 ${ }^{7}$ Rapp D., Englander-Golden, J. Chem Phys. 1965 43, 1464.
 ${ }^{8}$ Orient O. J., Srivastava S. K., J. Phys. B 1987 20, 3923.
 ${ }^{9}$ Zecca A. et. al., J. Phys. B 1991 24, 2747.
 ${ }^{10}$ Nishimura H., Sakae T., Jpn. J. Appl. Phys. Part I 1999 29, 1372.
 " Kanik I., Trajmar S., Nickel J. C., J. Geophys. Res. 1993 98, 7447.
 ${ }^{12}$ Sueoka O. and Mori S., J. Phys. B 1986 19, 4035.

[^130]: ${ }^{1}$ Esteves, P. M.; Fleming, F. P.; Barbosa, A. G. H. Symposium Series No. 965: Recent Developments in Carbocation and Onium Ion Chemistry, K Laali Ed., American Chemical Society, 2007
 ${ }^{2}$ (a) Gerratt, J. Adv. At. Mol. Phys. 1971, 7, 141. (b) Cooper, D. L.; Gerratt, J.; Raimondi, M. Adv. Chem. Phys. 1987, 69, 399.
 ${ }^{3}$ (a) Fleming, F. P.; Barbosa, A. G. H.; Esteves, P. M. J. Phys. Chem. A 2006, 110, 11903. (b) Hinkle, C. E.; McCoy, A. B.; Huang, X. C.; Bowman, J. M. J. Phys. Chem. A 2007, 111, 2033. (c) Fleming, F. P.; Barbosa, A. G. H.; Esteves, P. M. J. Phys. Chem. A 2007, 111, 2971.
 ${ }_{5}^{4}$ Barbosa, A. G. H.; Fleming, F. P.; Esteves, P. M. a ser publicado
 ${ }^{5}$ Esteves, P. M.; Fleming, F. P.; Barbosa, A. G. H. a ser publicado

[^131]: ${ }^{1}$ Barbosa, A. G. H.; Fleming, F. P.; Nascimento M. A. C. submetido para publicaçao

[^132]:
 ${ }^{2}$ Andrew G. Rinzler Nature Nanotech. 2006 I, 17.
 ${ }^{3}$ A. T. Hagler, E. Huler \& S. Lifson. J. Am. Chem. Soc, 1974 96, 5319, P. Dauber-Osguthorpe, V. A. Roberts, D. J. Osguthorpe, J. Wolff, M. Genest \& A. T. Hagler. Proteins: Structure, Function and Genetics, 1988 4,31 , e referências ali citadas
 ${ }^{4}$ Cerius2 Versão 4.10, Accelrys Inc.: 9685 Scranton Rd., San Diego, CA 92121, U.S.A., http://www.accelrys.com.

[^133]: ${ }^{1}$ Truhlar, D. G.; Pliego Jr., J. R. Transition State Theory and Chemical Reaction Dynamics in Solution, in Continuum Solvation Models in Chemical Physics: From Theory to Applications, Mennucci, B.; Cammi, R., editors; John Wiley: 2007.

[^134]: ${ }^{1}$ Mazzé, F.M.; Degrève, L. Acta Virol. 2006, 50, 75.
 ${ }_{3}^{2}$ Lindahl, E.; Hess, B.; van der Spoel, D. J. Mol. Mod. 2001, 7, 306.

[^135]: ${ }^{1}$ Mazzé, F.M.; Degrève, L. Acta Virol. 2006, 50, 75.
 ${ }^{2}$ Lindahl, E.; Hess, B.; van der Spoel, D. J. Mol. Mod. 2001, 7, 306.
 ${ }^{3}$ Degrève, L.; Brancaleoni, G.H.; Fuzo, C.A.; Lourenzoni, M.R.; Mazzé, F.M.; Namba, A.M.; Vieira, D.S. Braz. J. Phys. 2004, 34, 102.

[^136]: ${ }^{1}$ Munjal, H.; Baluja, K. L., J. Phys.B: At. Mol. Opt.Phys. 2006, 39, 3185.

 2 Takatsukn, K.; McKoy, V. Phys. Rev. A 1980, 24, 2473.
 3 Takatsuka, K.: McKoy, V. Phys. Rev. A 1984, 30, 1734.
 4 Bettega, M. H. F.; Ferreira, L. G.; Lima, M. A. P., Phys. Rev. A $1993,41,1111$.
 5 Bacheclet, G.: Haman, D. R., Schluter, M., Phys. Rev. B 1982, 26, 4199.
 ${ }^{6}$ Bauschlicher C. W., J. Chem. Phys. 1980, 72, 880

[^137]: ${ }^{1}$ W. P. Su, J. R. Schrieffer, A. J. Heeger, Phys. Rev. B. 1980, 22, 2099.
 ${ }^{2}$ M. P. Lima, G. M. e Silva Phys. Rev. B 2006, 74, 224304.

[^138]: ${ }^{1}$ CUNHA, W. F. ; RONCARATTI JUNIOR, Luiz Fernando ; GARGANO, Ricardo ; Silva, GME . Fitting Potential Energy Surface of Reactive Systems via Genetic Algorithm. International Journal of Quantum Chemistry, v. 106, p. 2650-2657, 2006.

[^139]: ${ }^{1}$ Campos, Jonathas Antunes Determinação das energias eletrônicas e correspondentes niveis vibracionais nos ions moleculares $H_{2}{ }^{+}, D_{2}{ }^{+}, T_{2}{ }^{+}$, $H D^{+}$e $D T^{+}$através da equação de Hamilton Jacobi Dissertação de Mestrado UnB (2006).
 ${ }^{2}$ Neto, J.J Soares; Costa, L.S, Braziliam Journal of Physics, vol. 28, (2006).
 ${ }^{3}$ R.Rydberg, Z.Phys., 73, 376 (1931).
 ${ }^{4}$ A. Lagan `a, G.Ferraro, E.Garcia, O. Gervasi and A.Ottavi, J. Chem. Phys., 168, 341-348 (1992).
 ${ }^{5}$ J.L. Dunham, Phys. Rev. 41 (1932) 721.
 ${ }^{6}$ A.A. Radzig and B.M. Smirnov. Reference Data on Atoms, Molecules, and Ions. Moscow (1980)

[^140]: Baldock, C.; de Boer, G. J.; Rafferty, J. B.; Stuitje A.R.; Rice, D.W., Biochem. Pharmacol. 1998, 55, 1541.
 ${ }^{3}$ Doherty, D. MOLSIM: Molecular Mechanics and Dynamics Simulation Software. User's Guide, version 3.0; The Chem21 Group Inc.: Chicago, IL, 1997.
 ${ }^{4}$ Rogers, D. WOLF Genetic Function Approximation. Reference Manual, version 5.5; Molecular Simulation Inc.: Burlington, MA, 1994.

[^141]: ${ }^{1}$ Francis, P. T.; Palmer, A. M.; Snape, M.; Wilcock, G. K.; The cholinergic hypotesis of Alzheimer's disease: a review of progress. J. Neurol Neurosurg Phychiatry 1999, v. 66, pp 137-147.
 2 CAChe 5.0, fuijitus Limited, Cliba City, Chiba 2616588 , Japan.
 3 Frisch, M. J.; et al; J. A. Gaussian98, Revision A.9; Technical Report; Gaussian: Pittsburgh, PA, 1988.
 ${ }^{4}$ Chatfield C.; Collins ${ }^{\text {a J.; "Introduction to Multivariate Analysis" }}$ (Cambrigde University press, Cambridge (1980)).

[^142]: [1] Lijinsky, W. Chemistry and Biology of N-nitroso Compounds; Cambridge University Press: Cambridge, 1992.
 [2] Rademacher, P.; St申levik, R.; Acta Chem. Scand. 1969, 23, 660.

[^143]: ${ }^{1}$ da Cunha, W.; Roncaratti, L.; Gargano, R.; Magela, G. Int. J. Quantum Chem. 119 (2006) 2650.
 ${ }^{2}$ García, E.; Laganà, A. Mol. Phys. 55 (1985) 621.
 ${ }^{3}$ Pack, R. T.; Parker, G. A. J. Chem. Phys. 87 (1987) 3888.
 ${ }^{4}$ Parker, G. A.; Pack, R. T. J. Chem. Phys. 98 (1993) 6883

[^144]: ${ }^{5}$ Murrel, J. N.; Carter, S.; Farantos, S. C.; Huxley, P.; Varandas, A. J. C. (1984). Molecular Potential Energy Functions. John Wiley \& Sons, New York.

[^145]: ${ }^{1}$ Bode, F.; Sachs F. e Franz, M. R. Nature 2001, 409, 35.
 ${ }^{2}$ Gottlieb, P.A.; Ostrow, K.L; Mammoser, A.; Suchyna, T.; Sachs, F.; Oswald, R.; Kubo, S.; Chino, N. Toxicon 2003, 42, 263.
 ${ }^{3}$ Jie Fang, K.H. Iwasa. Neurosci. Lett., 2006, 404, 213.
 ${ }^{4}$ Suchyna,T.M.; Johnson, J.H.; Hamer, K.; Leykam, J.F.; Gage, D.F.; Clemo, H.F.; Baumgarten, C.M.; Sachs, F. J.Gen.Physiol., 2000, 115, 583.

[^146]: ${ }^{1}$ G. Li, C. Martinez, S. Semancik, J Am Chem Soc, 2005 127, 4903.
 ${ }^{2}$ W. P. Su, J. R. Schrieffer, A. J. Heeger, Phys. Rev. B. 1980, 22, 2099.

[^147]: [1] W. P. Su, J. R. Schrieffer, A. J. Heeger, Phys. Rev. B. 1980, 22, 2099.

[^148]: ${ }^{1}$ Michalková, A.; Tunega, D. and Nagy, L. T. J. Mol. Struct. (THEOCHEM) 2002, 581, 37.
 ${ }_{2}^{2}$ Gardolinski, J. E.; Martins F ${ }^{\text {o }}$, H. P. and Wypych, F. Quim. Nova. Wo. 30.

[^149]: ${ }^{1}$ Frost, R. L.; Kristof, J.; Horvath, E. and Kloprogge, J. T. Spectrochim. Acta. Part A 2000, 56, 1191.
 ${ }^{2}$ Michalková, A.; Tunega, D.; and Nagy, L. T. J. Mol. Struct. (THEOCHEM) 2002, 381 ,

[^150]: ${ }^{1}$ Sagnella, D. E.; Straub, J. E.; Thirumalai, D. J. Chem. Phys. 2000, 113, 7702.
 ${ }^{2}$ Sagnella, D. E.; Straub, J. E. J. Phys. Chem. B 2001, 105, 7057.
 ${ }^{3}$ Ota, N; Agard, D. J. Mol. Biol. 2005, 351, 345.

[^151]: ${ }^{1}$ Ferrara, N.; Gerber, H.-P.; LeCouter, J. Nat. Med. 2003, 9, 669.
 ${ }^{2}$ Carmeliet, P. Nature, 2005, 438, 932.
 ${ }^{3}$ Horta, B. A. C.; Cirino, J. J. V. and De Alencastro, R. B. Proteins, 2007, 67, 517.

[^152]: ${ }^{1}$ Aspesi, G. H.; Tese de Doutorado, 2006, IQ-UnB
 ${ }^{2}$ Daskalova, L. I.; Binev, I.; Int. J. Quantum. Chem. 2006, 106, 6, 1338
 ${ }^{3}$ Binev, Y. I.; Georgieva, M. K.; Novkova, S. I. Spectrochim Acta A 2003, 59, 3041.

[^153]: ${ }^{1}$ M. Gonçalves, J.; Vieira, L. G.; An. Acad. Bras. Ciênc., 1950: 22,141.
 2 Dos-Santos, M. C.; Tese de Doutorado; USP, Säo Paulo, 1993;72.
 3 Mancin, A. C.; Soares, A. M.; Andriao-Escarso, S. H.; Faca, V. M.; Toxicon, 1998; 36 (12), 1927
 ${ }^{4}$ Fernandes, A. J. N.; Dissertação de Mestrado; UFAM, Manaus, 2004.
 ${ }^{5}$ Du, O.; Wei, D.; Chou, K. C.; Peptides, 2003, 24, 1863.
 6 Hoge, A. R.; Romano, S. A; Mem. Inst. Butantan, 1972 , $36,109$.
 7 Bjarnason, J.; Fox, J. W.:.J. Toxicol. Toxin Reviews, 1988/89. 7 , 121.

[^154]: ${ }^{1}$ Roberto-Neto, O.; Machado, F. B. C; Ornellas, F. R., Chem. Phys. 2005, 315, 27.
 ${ }^{2}$ Persky, A., Chem. Phys. Lett. 1998, 298, 390.
 ${ }^{3}$ Berkowitz, J; Ellison, G. B; Gutman, D. J. Phys. Chem. 1994, 98, 2744.
 4 Bottoni, A; Poggi,G, Journal of Molecular Structure (Theochem) 1995, 337,161.
 ${ }^{5}$ Halkier, A.; Helgaker, T.; Jørgensen,; Klopper, W.; Koch. H.; Olsen, J.; Wilson, A. K., Chem. Phys. Lett. 1998, 294, 45.

[^155]: ${ }^{1}$ Rejoub, R.; Morton, C.D.; Lindsay, B. J., Stebbings, R. F. J. Chem. Phys. 118, 4, 2003
 ${ }^{2}$ Srivastava S. K., Chutjian A., Trajmar S. J. Chem. Phys. 631975.
 ${ }^{3}$ Mozejko P., Sanche L., Radiat. Phys. Chem. 732005.

[^156]: ${ }^{1}$ Srivastava S. K., Chutjian A., Trajmar S., J. Chem. Phys. 631975.
 ${ }^{2}$ Mozejko P., Sanche L., Radiat. Phys. Chem. 732005.

[^157]: ${ }^{T}$ Krungkrai, S.R.; DelFraino, B.J.; Smiley, J.A.; Prapunwattana, P.; Mitamura, T.; Horii, T.; and Krungkrai, J, Biochemistry, 2005, 44, 1643.
 ${ }^{2}$ Lisgarten, J.N.; Potter,B.S.; Bantuzeko,C.;Palmer, R.A. ,J. Chem. Cryst., 1998,28, 539.
 ${ }^{3}$ PIROUETTE 3.01, INFOMETRIX, INC; Woodinville, WA, 2001.
 ${ }^{4}$ Rogers, D,; Hopfinger, A.J., J. Chem. Inf. Comput. Sci., 1994, 34,854.

[^158]: ${ }^{\text {i }}$ L.F. Fraceto and E. de Paula; Quim. Nova 2004, 207, 66.
 ${ }_{\mathrm{ii}}^{\mathrm{ii}} \mathrm{J}$ J. M. Martínez and L. Martínez.,Journal of Computational Chemistry, 2003, 24, 819.

[^159]: ${ }^{1}$ Pinheiro, J.C.; Santos, C.C.; Barbosa, J.P.; dos Santos, M.A.B.; Lira, F.A.M.; Cardoso, F.J.B.; Treu-Filho, O.; Kondo, R.T Computational Materials Science. 2007, 39, 713-717.
 ${ }^{2}$ Pinheiro, J. C.; Farias, M. S., dos Santos, M. A.B., Lobato, M. S., Figueiredo, A. F., Barbosa, J. P., Ferreira, J. E.V., Costa, E. B., Ferreira, R. D. P., Materials Science: An Indian Journal. 2 (6) 2006.
 ${ }^{3}$ Treu Filho, O.; Pinheiro, J.C.; Kondo, R.T. J. Mol. Struct. (THEOCHEM) 2004, 671, 71-75.

[^160]: ${ }^{1}$ Pinheiro, J.C.; Santos, C.C.; Barbosa, J.P.; dos Santos, M.A.B.; Lira, F.A.M.; Cardoso, F.J.B.; Treu-Filho, O.; Kondo, R.T. Computational Materials Science. 2007, 39, 713-717.
 ${ }^{2}$ Pinheiro, J. C.; Farias, M. S., dos Santos, M. A.B., Lobato, M. S., Figueiredo, A. F., Barbosa, J. P., Ferreira, J. E.V., Costa, E. B., Ferreira, R. D. P., Materials Science: An Indian Journal. 2 (6) 2006.

[^161]: ${ }^{1}$ C. Desfrancüois, S. Carles and J. P. Schermann, Chem. Rev.. 2000, 100, 3943
 ${ }^{2}$ Ferreira, G. G., E. Borges, J. P. Braga and J. C. Belchior, Int. J. Quantum Chem, 2006, 106, 2752.

[^162]: 1 Tikhonov, A.N and Arsénine, V.; Méthodes de Résolution de Problèmes Mal Posés, Mir, 1974.
 ${ }^{2}$ N.H.T. Lemes, E. Borges and J.P. Braga. J. Braz. Chem. Soc. In press. ${ }^{3}$ Chrastil, J. Comput. Chem. 1988, 12, 289.

[^163]: ${ }^{1}$ P. R. P. Barreto, A. F. Vilela, and R. Gargano. Int. J. Quantum Chem.., 103(5):659-684, 2005.

[^164]: CNPq.
 ${ }^{1}$ Senent, M. L.; Niño, A.; Muñoz-Caro, C.; Smeyers, Y. G; Domingues-Gómez, R.; Orza, J. M. J. Phys. Chem. 2002, 106, 10673.
 ${ }^{2}$ Halkier, A.; Helgaker, T.; Klopper, W.; Jørgensen, P.;Császár, A. G. Chem. Phys. Lett. 1999, 310, 385.
 ${ }^{3}$ Sancho-García, J. C. and Pérez-Jiménez, A. J. J. J. Phys. B: At. Mol. Opt. Phys.. 2002, 35, 1509.

[^165]: ${ }^{1}$ Truitt, M. J.; Toporek, S. S.; Rovira-Hernandez, R.; Hatcher, K.; White, J. L. J. Am. Chem. Soc. 2004, 126, 11144.
 ${ }^{2}$ Sremaniak, L. S.; Whitten, J. L.; Truitt, M. J.; White, J. L. J. Phys. Chem. B 2006, 110, 20762.
 ${ }^{3}$ Eder, F.; Stockenhuber, M.; Lercher, J. A. J. Phys. Chem. B 1997, 101, 5414.
 ${ }^{4}$ van Santen, R. A.; Kramer, G. J. Chem. Rev. 1995, 95, 637.

[^166]: ${ }^{1}$ Calladine, C.R.; Drew, H.R. J. Mol. Biol. 1984, 178, 773.
 ${ }^{2}$ Hunter, C.A. J. Mol. Biol. 1993, 230, 1025.
 ${ }^{3} \mathrm{Lu}, \mathrm{X} .-\mathrm{J}$. ; Olson, W.-K. Nucleic Acids Res. 2003, 31, 5108.
 ${ }_{5}^{4}$ Lindahl, E.; Hess, B.; van der Spoel, D. J. Mol. Model. 2001, 7, 306.
 ${ }^{5}$ Oostenbrink, C.; Soares, T.A.; van der Vegt, N.F.A.; van Gunsteren, W.F. Eur. Biophys. J. 2005, 34, 273.

[^167]: ${ }^{1}$ Netz, P. A. ; Raymundi, J.; Camera, A. S. e Barbosa, M. C. Physica A 2004, 342, 48
 ${ }^{2}$ Oliveira, A. B.; Netz, P. A.; Colla, T. e Barbosa, M. C. J. Chem. Phys. 2006, 124, 084505, Oliveira, A. B.; Netz, P. A.; Colla, T. e Barbosa, M. C. J. Chem. Phys. 2006, 125, 124503
 ${ }^{3}$ Netz, P. A.; Starr, F. W.; Stanley, H. E. e Barbosa, M. C. Journal of Chemical Physics 2001, 115, 344

[^168]: ${ }^{1}$ Leitão, A. A.; Vugman, N. V. e Bielschowsky, C. E. Chem. Phys. Lett. 2000,321,269
 ${ }^{2}$ Gaussian 03,Revision B.02, Gaussian, Inc., Wallingford CT, 2004.
 ${ }^{3}$ Esteves, M. C.; Vugman, N.V.; Leitão, A. A. e Bielschowsky, C. E. J. Phys. Chem. A. - Publicado na WEB 06/07/2007

[^169]: ${ }^{1}$ Ramos,J.M; Versiane.O; Felcman,J.; Soto,C.A.T. Spectrochim Acta A 2007,67 (3,4)1037.
 ${ }^{2}$ Ramos, J.M; Versiane.O; Felcman,J.; Soto,C.A.T. Spectrochim Acta A 2007,67
 $(3,4) 1046$

[^170]: ${ }^{1}$ Overhof, H. e Overhof, J.-M. Phys. Rev. B, 2005, 72, 115205.
 ${ }^{2}$ Leitão, A. A.; Vugman, N. V. e Bielschowsky, C. E. Chem. Phys. Lett. 2000,321,269.
 ${ }^{3}$ Esteves, M. C.; Vugman, N.V.; Leitão, A. A. e Bielschowsky, C. E. J. Phys. Chem. A. - Publicado na WEB 06/07/2007
 ${ }^{4}$ Gaussian 03,Revision B.05, Gaussian, Inc., Wallingford CT, 2004.

[^171]: ${ }^{1}$ Cohen, M. D.; Flavian, S. J. Chem. Soc. B. 1967, 317.
 ${ }^{2}$ Cohen, M. D.; Flavian, S. J. Chem. Soc. B. 1967, 321.

[^172]: ${ }^{1}$ Harada, A.; Li, J. and Kamachi, M. Nature 1993, 364, 516.
 ${ }^{2}$ Ikeda, T.; Ooya, T. and Yui, N. Polym. Adv. Technol. 2000, 11, 830.
 ${ }^{3}$ Miyake, K.; Yasuda, S.; Harada, A.; Sumaoka, J.; Shigekawa, H. and Komiyama, M. J. Am. Chem. Soc. 2003, 125, 5080:

[^173]: ${ }^{1}$ Malspina T. em Estabilidade isomérica e ligações de hidrogênio em agregados e líquidos moleculares, Tese de Doutorado, Instituto de Física, USP, 2006.
 ${ }^{2}$ Feng, P. Y. e Balasubramanian, K. Chem. Phys. Lett. 1999, 301,458.
 ${ }^{3}$ Archibong, E. F.; Goh, S. K. e Marynick D.S. Chem. Phys. Lett. 2002, 361, 214.
 ${ }^{4}$ Guo, L.; Wu, H. e Jin, Z. J. Mol. Struct. (Theochem) 2004, 684, 67.
 ${ }^{5}$ Malaspina, T.; Coutinho, K. e Canuto, S. Chem. Phys. Lett. 2005, $411,14$.
 ${ }^{6}$ Feng,. P. Y e Balasubramanian, K. Chem. Phys. Lett. 1998, 288, 1.
 ${ }^{7}$ Archibong, E. F. e Mvula, E. N Chem. Phys. Lett. 2004, 391, 325.

[^174]: ${ }^{1}$ Mazzé, F. M.; Fuzo, C. A. e Degrève, L.; Biochimica et Biophysica Acta 2005, 1747,

[^175]: ${ }^{1}$ Mohallem J.R., Dreizler, R. M. e Trsic, M. Int. J. Quant. Chem. Symp, 1986, 20, 45.
 ${ }^{2}$ Griffin, J. J. e Wheeler, J. A. Phys. Rev., 1957, 108, 311.
 ${ }^{3}$ Barbosa, R. C. e Da Silva, A B. F., Mol. Phys., 2003, 101 1073.
 ${ }^{4}$ Bunge, C. F., Barrientos, J. A., Bunge, A. V. e Cogordan, J. A., Phys. Rev. A, 1992, 46, 3691.

[^176]: ${ }^{1}$ Marinov, M, Int. J. Chem. Kinet. 1999, 31, 183.
 ${ }^{2}$ Halkier, A.; Helgaker, T.; Jørgensen,; Klopper, W.; Koch. H.; Olsen, J.; Wilson, A. K., Chem. Phys. Lett. 1998, 294, 45.
 ${ }_{4}^{3}$ Park, J; Xu, F., Lin, M. C., J. Chem. Phys. 118, 9990, 2003.
 ${ }^{4}$ Roberto-Neto, O; Machado, F. B. C; Ornellas, F. R., Chem. Phys. 2005, 315, 27.

[^177]: ${ }^{I}$ IKAN, R. Natural Products: A laboratory guide. Jerusalém, Israel Universities Press, 1969, 301p
 ${ }^{2}$ Martens, H. e Naes, T., em "Multivariate Calibration"; John Wiley \& Sons, New York 1989.

[^178]: Pandeya, S. N.; Sriram, D.; Nath, G.; DeClercq, Eur. J. Phar. Scien. 1999, 9:25-31.

[^179]: Sanche, L., Eur. Phys. J. D 2005, 35, 367.
 ${ }^{2}$ Mozejko, P.; and Sanche, L. Radiat. Environ. Biophys 2003, 42, 201.
 ${ }^{3}$ Mozejko, P.; and Sanche, L. Radiat. Phys. Chem. 2005, 73, 77.
 ${ }^{4}$ Bouchiha, D.; Gorfinkiel, J. D.; Caron, L. G. and Sanche, L. J. Phys. B:
 At. Mol. Opt. Phys. 2006, 39, 975.
 ${ }^{5}$ Mott, N. F.; Massey, H. S. W. The theory of atomic collisions 1965, Oxford University Press, Oxford.
 ${ }^{6}$ Salvat, F. Phys. Rev. A 2003, 68, 012708.
 ${ }^{7}$ Iga, I.; Sanches, I. P.; de Almeida, E.; Sugohara, R.T.; Rosani, L.; Lee, M.-T. J. Electron Spectrosc. Relat. Phenom. 2007,155, 7.

[^180]: M MARGeclimeDtes
 Os autores agradecem ao IMMC, CNPq (projeto Universal/2006 e bolsas) e a Fapesq/PB.

[^181]: Tegus, O.; Bruck, E.; Buschow, K. H. J. , Nature 2002, 415, 150.
 ${ }^{2}$ Provenzano, V.; Shapiro, A. J.; Shull, R. D. , Nature 2004, 429, 853.
 ${ }^{3}$ Podloucky, R., J. Magn. Magn. Matter. 2006, 43, 204.

[^182]: ${ }^{1}$ Ueda, S.; Kuroda, Y.; Miyajima H. and Kuwara, T. J. Prop. Power 1994, 10, 646.
 ${ }^{2}$ Habas, M.-P.; Baraille, I.; Larrieu C. and Chaillet, M. Chem. Phys. 1997, 219, 63.
 ${ }^{3}$ Pople J. A. and Curtiss, L. A. J. Chem. Phys. 1991, 95, 4385.
 ${ }^{4}$ Syage, J. A.; Cohen R. B. and Steadman, J. J. Chem. Phys. 1992, 97, 6072.
 ${ }^{5}$ Meot-Ner (Mautner), M.; Nelsen, D. F.; Willi, M. R.and Frigo, T. B. J. Am. Chem. Soc. 1984, 106, 7384.
 ${ }^{6}$ Machado F. B. C. and Roberto-Neto, O. Chem. Phys. Lett. 2002, 352, 120.

[^183]: ${ }^{1}$ Wiberg, K. B.; Oliveira de, A. E.; Trucks, G. J. Phys. Chem. A 2002, 106, 4192
 4199.

[^184]: ${ }^{1}$ Szabo, S.; Ostlund, N. S.; Modern Quantum Chemistry. Dover, New York, 1996.
 ${ }^{2}$ Bobrowicz, F. W.; Goddard III, W. A.; Meth. Electronic Structure Theory. Plenum Publ. Corp., 1977.
 ${ }^{3}$ Horta, B.A.C, Fleming, F.P., Cardozo, T.M., Pereira, M.S., Barbosa, A.G.H., Nascimento, M.A.C. (em preparação).
 ${ }^{4}$ Huzinaga, S. J. Chem. Phys. 1964, 42, 1293.

[^185]: ${ }^{1}$ Levine, I.N. "Quantum Chemistry", Fifth Edition, Prentice Hall, 2000
 ${ }^{2}$ Ruedenberg, K. Rev. Mod. Phys. 1962, 34, 326.
 ${ }^{3}$ Goddard III, W.A.,Wilson Jr., C.W., Theor. Chim. Acta. 1972, 26, 211.
 ${ }^{4}$ Kutzelnigg, W., Theor. Chim. Acta 1976, 43, 1.
 ${ }^{5}$ Nascimento, M.A.C., Barbosa, A.G.H., in "Worlds of Quantum
 Chemistry", Brandas, E., Kryachko, E., Kluwer 2003, I, 371

[^186]: ${ }^{1}$ Mowry, J.R.; Anders, R.E. e Johson, J.A. Oil Gas J 1985, 83, 128
 ${ }^{2}$ Mowry, J.R.; Martindale, D.C. e Hall, P.H. Arab J Sci Eng 1985, 1036
 ${ }^{3}$ Machado, F.; Lopez, C.M.; Campos Y.; Bolívar, A. e Yunes, S. Appl. Catal. A 2002, 226, 241
 ${ }^{4}$ Frash, M. V.; van Santen, R. A. J Phys Chem A 1995, 103, 2102
 ${ }^{5}$ Pereira M.S.; Nascimento, M.A.C. Chem Phys Letters 2005, 406, 446
 ${ }^{6}$ Pereira M.S.; Nascimento, M.A.C. J Phys Chem B 2006, 110, 3231

[^187]: ${ }^{1}$ Gauss, J. J. Chem. Phys. 1993. 99, 3629
 ${ }^{2}$ Sekino, H. e Bartlett, R.J. J. Chem. Phys. 1986. 84, 2726
 ${ }^{3}$ Löwdin, P.O. Advances in Chemical Physics 1959, p. 207.
 ${ }^{4}$ Nascimento, M. A. C., Barbosa, A. G. H. em Fundamental World of Quantum Chemistry, Brandas, E. J. e Kryachko, E. S. (Editores), Kluwer 2003, vol I, p. 371

[^188]: ${ }^{1}$ Barisic, L. et al., Chem. Eur. J. 2006, 12, 4965.
 ${ }^{2}$ Veauthier, J. M. et al., Inog. Chem. 2005, 44, 6736.
 ${ }^{3}$ Lin, C. et al.,.Phys. Rev.B 2007, 75, 205131.
 4 Krebs, B. et al., Coord. Chem. 1999, 182, 211.

[^189]: ${ }^{1}$ Freire, R.O.; Rocha, G.B.; Simas, A.M. Inorg. Chem. 2005, 44, 3299.
 ${ }^{2}$ Freire, R.O.; Rocha, G.B.; Simas, A.M. J. Mol. Model 2006, 12, 373.
 ${ }^{3}$ Allen, F.H. Acta Crystallogr. B, 2002, 58, 380.

[^190]: ${ }^{\text {'Fujita, H.; Nakano, M.; Takahata, M. and Yamaguchi, K. Chem. Phys. }}$ Lett. 2002, 358, 435; Fujita, H.; Nakano, M.; Takahata, M. and Yamaguchi, K. Synth. Met. 2003, 137, 1391.

[^191]: ${ }^{1}$ Schulten, K.; Ohmine, I.; and Karplus, M. J. Chem. Phys. 1976, 64, 4422.

[^192]: ${ }^{1}$ McNamara, J.P., Berrigan, S.D., Hillier, I.H., J. Chem. Theory Comput., 2007, 3, 1014.

[^193]: ${ }^{1}$ (a) Rodembusch, F. S., Campo. L.F., Stefani, V., Rigacci, A. J. Mater. Chem. 2005, 15, 1537. (b) Rodembusch, F. S., Leusin, F. P., Medina, L. F. C., Brandelli, A., Stefani, V. Photochem. Photobiol. Sci. 2005, 4, 254. (c) Burns, A., Ow, H., Wiesner, U. Chem. Soc. Rev. 2006, 35, 1028.
 ${ }^{\text {ii }}$ (a) Ríos, M. A., Ríos, M. C. J. Phys. Chem. A 1998, 102, 1560. (b) Elguero, J., Katritzky, A. R., Denisko, O. V. Adv. Heterocycl. Chem. 2000, 76, 1. (c) Vivie-Riedle, R. de, De Waele, V., Kurtz, L., Riedle, E. J. Phys. Chem. A 2003, 107, 10591.
 iii (a) Cossi, M., Barone, V. J. Chem.Phys. 2001, 115, 4708. (b) Burke, K., Werschnik, J., Gross, E. K. U. J. Chem. Phys. 2005, 123, 062206.

[^194]: ' Park, J.; Xu, Z. F. e Lin, M. C. J. Chem. Phys. 2003, 118, 9990.
 ${ }^{2}$ Bansal, K. M. e Freeman, G. R. J. Am. Chem. Soc. 1968, 90, 7183.
 ${ }^{3}$ Aders, W. K. e Wagner, H. G. Ber. Bunsenges. Phys. Chem. 1973, 77, 712.
 ${ }^{4}$ Linnert, H. V. e Riveros, J. M. J. Bras. Chem. Soc. 1991, $2,42$.

[^195]: ${ }^{1}$ Takara, M..; Ito ,A. S., J. Fluoresc. 2005, 15(20), 171-7.
 ${ }^{2}$ Paci, E., J. C. Biochim. Biophys. Acta. 2005, 1595 (I-2), 185-200.

[^196]: ${ }^{1}$ Priestap, H. A. Tetrahedron 1984, 40, 3617.
 ${ }^{2}$ Helgaker, T.; Jaszunski, M.; Ruud, K. Chem. Rev. 1999, 99, 293.

[^197]: ${ }^{1}$ Smith M.B. and March J., "Advanced Organic Chemistry: Reactions, Mechanisms, and Structure", $5^{\text {a }}$ ed., Wiley-Interscience, NY, (2001).
 ${ }^{2}$ Miertus, S., Scrocco, E., Tomasi, J., Chem. Phys., 55 (1981) 117.
 ${ }^{3}$ Breneman, C. M., Wiberg, K. B. J. Comp. Chem., 11 (1990) 361.
 4 Parr, R.G., Yang, W., "Density-Functional Theory of Atoms and Molecules", Oxford University Press, (1989)
 ${ }_{6}^{5}$ Perdew, J. P., Burke, K., Ernzerhof, M., Phys. Rev. Lett., 77 (1996) 3865.
 ${ }^{6}$ Becke, A. D., J. Chem. Phys., 98 (1993) 5648.

[^198]: 1. J. H. Beumer, J. M. Rademarker-Lakhai, H. Rosing, M. J. X. Hillebrand, T. M. Bosch, L. L. Lazaro, J. H. M. Schellens, J. H. Beijnen. Cancer Chemother Pharmacol 59. 825-837 (2007)
 2 M. Zewail-Foote, L. H. Hurley. J. Am. Chem. Soc. 123, 6485-6495 (2001) 3. Lu, X.-J., Olson W. K. Nucleic Acids Research. 17 (2003) 5108.
 2. www.gromacs.org
[^199]: ${ }^{1}$ Cunha, L.O.R.;Urano M. E; Chagas J. R.; Almeida P. C.; Bincoletto C.; Tersariol I. L. S.; Comasseto J. V., Bioorganic \& Medicinal Chem. Let., 2005, 15, 755-760.
 ${ }^{2}$ Vega-Tejiido, M; Zukerman-Schpector, J.; Ventura, O.N.; Camillo, R. L.; Caracelli, I. Guadagnin, R. C.; Braga, A. L.; Silveira, C. C. Z. Kristallogr., 2004, 219, 652-658
 ${ }^{3}$ Protein Data Bank. http://www.rcsb.org/pdb/home/home.do
 ${ }^{4}$ Hartshorn M. J., Verdonk M. L., Chessari G., Brewerton S. C., Mooij W. T. M., Mortenson P. N., Murray C. W., J. Med. Chem., 2007, 50, 726-741,. ${ }^{5}$ Cunha, L.O.R.; Zukerman-Schpector, J.; Caracelli, I.; Comasseto J.V., Journal of Organometallic Chem., 2006, 691, 4807-4815

[^200]: ${ }^{1}$ Cameotra, S. S.; Makkar, R. S. Curr. Opin. Microb. 2004, 7, 262. ${ }^{2}$ Latge, P.; Rico, I.; Garelli, R.; Lattes, A. J. Dispers. Sci. Technol. 1991, 12, 227.
 ${ }^{3}$ Dupuy, C.; Auvray, X.; Petipas, C.; Anthore, R.; Costes, F.; Rico-Lattes, I.; Lattes, A. Langmuir 1996, 12, 3162.

[^201]: ${ }^{1}$ V. W. Laurie; D. T. Pence, J. Chem. Phys., 1961, 38, 2693.
 ${ }^{2}$ M.N. Ramos; M. Gussoni, C. Castiglioni e G. Zerbi, J. Chem. Phys. Lett., 1987, 142, 515.
 ${ }^{3}$ V. H. Rusu; J. B. P. da Silva e M. N. Ramos, 2007, 834, 253.

[^202]: ${ }^{1}$ Index Kewensis, suppl. XX; Claredon Press; Oxford, 1996.
 ${ }_{2}^{2}$ Dwyer, J.D., Brottonia, 7, 143, 1951.
 ${ }^{3}$ von Martius, F., Flora Brasiliensis, 15, 240, 1870.
 ${ }^{4}$ Dwyer, J.D., Tropical Woods, 83, 15, 1945.
 ${ }^{5}$ Alencar, J.C., Acta Amazonica, 12, 75, 1982.
 ${ }^{6}$ Burkart, A., Lãs Leguminosas Argentinas, 15, 1943.
 ${ }^{7}$ Cheeseman, J.R., Trucks, G.W., Keith, T.A., Frisch, M.J., J. Chem. Phys., 104, 5497, 1996.
 ${ }^{8}$ Ditchfield, R., Hehre, W.J., Pople. J.A., J. Chem. Phys., 54, 724, 1971.
 ${ }^{9}$ Becke, A.D., J. Chem. Phys., 98, 5648, 1993.

[^203]: Y. J. Tan, S. Bailey, B. Kinsella, Corrosion Science 38 (1996), 1545-1561.
 ${ }^{2}$ Cruz J., Martínez R., Genesca J., García-Ochoa E., J Electroanalytical Chem. 566 (1) 111 (2004).

[^204]: ${ }^{1}$ Dmitrenko, O.: Wood, H. B. Jr.; Bach, R. D. e Ganem, B. Organic Letters. 2001, 3, 4137.
 ${ }^{2}$ Osborne, A.; Thorneley, R. N. F.; Abell, C. e Bornemann, S. The Journal Biological Chemistry. 2000, 275, 35825.
 ${ }^{3}$ Kitzing, K.; Auweter, S.; Amrhein, N.; e Macheroux, P. The Journal of Biological Chemistry. 2004, 279, 9451.
 ${ }^{4}$ Maclean, J. e Ali, S. Structure. 2003, 11, 1499.

[^205]: Agradectherios
 CNPq, PIBIC/CNPq/UFPE, FACEPE
 ${ }^{1}$ FUNASA - Ministério da Saúde - Monitoramento da Resistência das populaces do Aedes aegypti no país. 2000, Relatório: documento mimeografado, Brasília - DF.
 ${ }^{2}$ A. Blumtritt, Dissertação de Mestrado, UFPE, 2006.

[^206]: ${ }^{1}$ Bond, C. S.; Yihong, Z.; Berriman, M.; Cunningham, M. L; Fairlamb, A. H. e Hunter, W. N. Structure 1999, 7, 81-89.
 ${ }^{2}$ Protein Data Bank. http://www.rcsb.org/pdb/home/home.do
 ${ }^{3}$ Vega-Teijido, M.; Caracelli, I.; Zukerman-Schpector, J. J. Mol. Graph. Model. 2006, 24, 349-355.
 ${ }^{4}$ G. Jones, P. Willett, R.C. Glen, A.R. Leach, R. Taylor; J. Mol. Biol., 1997, 267, 727-748.
 5 Nissink, J. W. M.; Murray, C.; Hartshorn, M.: Verdonk, M. L.; Cole, J. C. e Taylor, R. Proteins 2002, 49, 457-471.
 6 Hartshorn, M.; Verdonk, M.; Chessari, G.; Brewerton, S. C.: Mooij. W. T. M.; Mortenson, P. N. e Murray, C. W. J. Med. Chem. 2007, 50. 726-741.

[^207]: ${ }^{1}$ Zani, , C. L.; Fairlamb, A.H. Mem. Inst. Oswaldo Cruz.(2003) 98, 565
 ${ }^{2}$ Vega-Teijido, M.; Caracelli, I.; Zukerman-Schpector, J. J. Mol. Graph.
 Model. (2006) 24, 349.
 ${ }^{3}$ Kuntz, I. D.; Meng, E. C.; Shoichet, B. K. Acc. Chem. Res.,(1994) 27, 117.

[^208]: Komatsu, K; Murata, Y.; Murata, M. J. Am. Chem. Soc. 2003, 125, 7153
 Schur, D.V.; Tarasov, B.P.; Shulga, Y.M.; Zaginaichenko, S.Y.;
 Matysina, Z.A. e Pomytkin, A.P.; Carbon 2003, 41, 1331
 Bhattacharya, S; Kimura, T; Komatsu, N; Chem. Phys Letters, 2006, 430, 435

[^209]: ${ }^{1}$ Mendeleev, D.; J. Rus. Chem. Soc. 1869, 1, 60.

[^210]: ${ }^{1}$ DiGabriele, A. D. et al. Nature 1998, 393, 812.
 ${ }^{2}$ Patrie, K. M. et al. Biochemistry 1999, 38, 9264.
 ${ }^{3}$ Brooijmans, N. and Kuntz, I. Ann. Rev. Biophys. 2003, 32, 335.
 ${ }^{4}$ Tsalis,C. and Stariolo, D. E. Physica A 1996, 233, 395.
 ${ }^{5}$ Berman, H. J. et al. Nucl. Acid. Res. 2000, 28, 235.
 ${ }^{6}$ Agostini, F. P. et al. J. Comp. Chem. 2006,
 ${ }^{7}$ Fernandes, T. V. et al. IBCCF Monographies, 2007.
 8 Faham, S. et al. Curr. Opin Struct. Biol. 1998, 8, 576.

[^211]: ${ }^{1}$ Viçozo, J. S. Jr.; Haiduke, R. L. A.; Bruns, R. E. J. Phys. Chem. A 2006, 110, 4839.
 ${ }^{2}$ Viçozo, J. S. Jr.; Haiduke, R. L. A.; Bruns, R. E. J. Phys. Chem. A 2007, 111, 515.
 ${ }^{3}$ Bader, R. F. W. "Atoms in Molecules: A Quantum Theory", Clarendon Press: Oxford, UK, 1990.

[^212]: ${ }^{\text {'Clemente, J. C et al., Acta Cryst. 2006. D62, 246. }}{ }^{2}$ Banerjee, R., et al., Proc. Natl Acad. Sci. USA 2002, 9, 990. ${ }^{3}$ Alves, C. N., et al., Chem. Eur. J. 2007 in press. ${ }^{4}$ Vagapandu, S. et al.,Medicinal Research Reviews 2007, 27, 65.

[^213]: ${ }^{1}$ Serrano-Andres, L.; Merchan, M. J. Mol. Struct. - THEOCHEM 2005, 729, 99.
 ${ }^{2}$ Weber, W; Thiel, W., Theor. Chem. Acc. 2000, 103, 495.
 ${ }^{3}$ Over 30 published papers by B.O. Roos, L. Serrano-Andres, M. Merchan, J.D. Hirst, and co-workers.
 ${ }^{4}$ Ridley, J.E.; Zerner, M.C. Theor. Chem. Acta 1973, 32, 111.

[^214]: ${ }^{\text {THend }}$ Hiruma-Lima, C. A.; Gracioso, J. S.; Toma, W.; Almeida, A. B.; Paula, A. C. B.; Brasil, D. S. B.; Müller, A. H.; Souza Brito, A. R. M. Phytomedicine 2001, 8, 94 .

[^215]: ${ }^{1}$ Ferreira, A. D. Q. Quim. Nova. 2002, 25, 572-578.
 ${ }^{2}$ Vaidyanathan, V. G.; Weyhermuller, T.; Balachandran, U. N.; Subramanian,
 J. J. Journal of Inorganic Biochemistry 2005992248 -2255.
 ${ }^{3}$ Protein Data Bank. http://www.rcsb.org/pdb/home/home.do
 ${ }^{4}$ G. Jones, P. Willett, R.C. Glen; J. Mol. Biol. 1995, 245, 43-53
 ${ }^{5}$ G. Jones, P. Willett, R.C. Glen, A.R. Leach, R. Taylor; J. Mol. Biol., 1997, 267, 727-748.

[^216]: ${ }^{1}$ Caracelli, I., Stamato, F.M.L.G., Mester, B., Paulino, M., Cerecetto, H. 1996. Acta Crystallogr., C52, 1281-1282
 ${ }^{2}$ Paulino, M.; Iribarne, F.; Hansz, M; Veja, M.; Seoane, G.; Cerecetto H.; Di Maio, R.; Caracelli, I; Zukerman-Schpector, J; Olea, C; Stoppani, A., O., M.; Berriman, M.; Fairlamb, A., H.; Tapia, O. J. Mol. Struct. (Theochem). 2002, 584, 95-105.
 ${ }_{3}$ Vega-Teijido, M.; Caracelli, I.; Zukerman-Schpector, J. J. Mol. Graph. Model. 2006, 24, 349-355.

[^217]: ${ }^{1}$ Rocha, G. B.; Freire, R. O.; Simas, A. M., and Stewart, J. J. P. J. Comp. Chem. 2006, 27, 1101.

[^218]: ${ }^{1}$ Martin, C. R.and Kohli, P. Nat. Rev. 2003, 2, 29.
 ${ }^{2}$ Chen, B. X.; Wilson, R. S.; Das, M.; Coughlin D.J.; and Erlanger, B.F. Immunology 1998, 95, 10809.
 ${ }^{3}$ Brettreich , M.; and Hirsch, A. Tetrehedron Lett. 1998, 2731.
 ${ }^{4}$ Kurz, A.H.; Halliwell, C.M.; Davis, J.J.; Hill, A.O.; and Canters, G.W. J. Chem. Soc., Chem. Commun. 1998, 433.
 ${ }^{5}$ Foley, S.; Crowley, C.; Smaihi, M.; Bonfils, C.; Erlanger, B.F.; Seta, P.; and Larroque, C. Biochem. Biophys. Research Commun. 2002, 294, 116.

 * ivanazanella@gmail.com

[^219]: ${ }^{1}$ Protein Data Bank http://www.resb.org
 ${ }^{2}$ Protein Data Bank http://www.rcsb.org Biol. 1982, 161, 269-288
 ${ }^{3}$ Shoichet, B., K. \& Kuntz, I., D. J. Mol. Biol. 1991, 221, 327-346.
 4 Vega-Teijido, M.; Caracelli, I.; Zukerman-Schpector, J. J. Mol. Graph. Model. 2006, 24, 349-355.

[^220]: ${ }^{1}$ van Gunsteren, W., et al. Hochschulverlag an der ETH 1996.
 ${ }^{2}$ Arora, N., Jayaram, B. J. Comp. Chem. 1997 , 18(9), 1245

[^221]: ${ }^{1}$ Curtis, M. D.; Shiu, K.; Butler, W. M. e Huffmann, J. C. J. Am. Chem. Soc. 1986, 108, 3335.
 ${ }^{2}$ Curtis, M. D.; Shiu, K.; Butler, W. M. e Huffmann, J. C. J. Am. Chem. Soc. 1986, 108, 3335.

[^222]: ${ }^{1}$ Eugene P. Lambert, Joseph B.; Mazzola. 2003 Pearson Professional
 ${ }^{2}$ W.R.P. Scott et al. Journal of Physical Chemistry 1999, 103(19):3596-3607.

[^223]: Lu, Z.L.; Wang, C.Z. e Ho, K..M. Phys. Rev. B 2000, 61, 2329.
 ${ }^{2}$ Marim, L.R.; Lemes, M. R. e Dal Pino, A., Phys. Rev. A. 2003, 67, 33203
 ${ }^{3}$ Lemes, M.R.,; Marim, L.R. e Dal Pino, A. Phys. Rev. A 2002, 66, 23203.
 ${ }^{4}$ McCarthy, M.C. e Thaddeus, P. Phys. Rev. Lett. 2003, 90, 213003.

[^224]: ${ }^{1}$ Mundim, K.C.; Physica A 2005, 350, 338.
 ${ }^{2}$ Tsallis, C.; Química Nova 1994, 17, 468.
 ${ }^{3}$ Tsallis, C.; J. State Phys. 1988, 52, 479.
 ${ }^{4}$ Borges, E. P.; J. Phys. A 1988, 31,5281.

[^225]: ${ }^{1}$ E. P. Borges, J. Phys. A 1998, 31, 5281.
 ${ }^{2}$ C. Tsallis, J Stat. Phys. 1988, 52, 479.
 ${ }^{3}$ C. S. Eseteves, H. C. B. de Oliveira, L. Ribeiro, R. Gargano, K. C. Mundim, Chem. Phys. Lett. 2007, 427, 10.
 ${ }^{4}$ A. Laganà, J. M. Alvari no, M. L. Hernandez, P. Palmieri, E. García, end T. Martinez. J. Chem. Phys. 1997, 106, 10222.
 ${ }^{5}$ A. F. A. Vilela, r. Gargano, P. R. P. Barreto. Int. J. Quantum Chem . 2005, 103, 695
 ${ }^{6}$ K. C. Mundim, C. Tssallis, Int. J. Quantum Chem. 1996, 58, 373.

[^226]: ${ }^{1}$ Carlsson, J. R. A.; Li, X. -H.; Gong, S. F. e Hentzell, H. T. G. J. Appl. Phys. 1993, 74, 891.
 ${ }^{2}$ Mukaida, M.; Goto, T. e Hirai, T. J. Mater. Sic. 1992, 27, 255
 ${ }^{3}$ Dunning, T.H. J. Chem. Phys. 1989, 90, 1007.
 ${ }^{4}$ Koput, J.; e Peterson, K.A. J. Phys. Chem. A 2002, 106, 9595.
 ${ }^{5}$ Viswanathan, R., Schmude, W. e Gingerich, K.A. Chem. Phys. 1989, 90, 1007
 ${ }^{6}$ Davy, R.; Skoumbourdis, E. e Dinsmore, D. Mol. Phys. 2005, 103, 611.
 ${ }^{7}$ McCarthy, M.C. e Thaddeus, P. Phys. Rev. Lett. 2003, $90,213003$.

[^227]: ${ }^{1}$ Hamond, B. L.; Lester, W.A.; Reynolds, P.J. 1994. Monte Carlo Methods in Ab Initio Quantum Chemistry: World Scientific.
 ${ }^{2}$ Politi, J. R. S.; Custódio, R.; J. Chem. Phys. 2003, 118(11), 4781.
 ${ }^{3}$ Alexander, S. A.; Coldwell, R. L.; Chem. Phys. Lett. 2005, 413, 253.

[^228]: ${ }^{1}$ Ai, Jeng Lin et all. J. Med. Chem. 1987, 11, 2147-2150.
 2Ai, Jeng Lin e Miller, R. E. J. Med. Chem. 1994, 38, 764-770.
 ${ }^{3}$ G. Bernadinelli et all. J. Quant. Chem. 1994, 21, 117-131

[^229]: ${ }^{1}$ Antonio L. C. Gomes, Julia R. de Rezende, Antonio F. Pereira de Araújo and Eugene I. Shakhnovich. Description of atomic burials in compact globular proteins by Fermi-Dirac probability distributions. Proteins:Structure, Function and Bioinformatics, 2007, 66, 304-320.
 ${ }^{2}$ - K.C. Mundim and C. Tsallis
 Geometry optimization and conformational analysis through generalized simulated annealing
 Int. J. Quantum Chem., 2007, 58: (4) 373-381.

[^230]: 1. Patrick, G. L. An Introduction to Medicinal Chemistry. OXFORD, 3th ed, 2005, 108, 3335.
 2. Sussman, J.L: Harel, M.: Silman, I. Axelsen, P. H. Protein Science. 1994, 3, 188-197.
 3. Mizutani, M. Y., Itai, A. J. Med. Chem. 2004, 47, 4818-4828.
 4. Nascimento, E.C.M, Martins, J.B.L and co, Estudo B3LYP e semi-empírico de drogas inibidoras da AchE, XXX ENFMC, São Lourenço, 2007.
[^231]: ${ }^{1}$ Roldán, R.; Romero, F. J.; Jiménez, C.; Borau, V.; Marinas, J. M.; App. Cat. A. 2004, 266, 203.
 ${ }^{2}$ Maliyekkal, S. M.; Rene, E. R.; Philip, L.; Swaminathan, T.; J. Hazar. Mat. 2004, 109B, 201.

[^232]: SANTANA, S. R.; BORBA, Flávia S.L.; LONGO, Ricardo L.; PEDROSA, Gilmara G.; CRUZ, Petrus A. Santa.; J. Comp. Aided Mat. Design,2005, 12, 101-110
 BORBA, Flávia S.L.; SANTANA, S. R.; LONGO, Ricardo L.; J. Comp. Aided Mat. Design,2005, 12, 93-99

[^233]: ${ }^{1}$ Dardenne, L.E.; Werneck, A.S.; Neto, M.O.; Bisch, P.M. Proteins 2003, 52 236.
 ${ }^{2}$ Lima, A.P.; Scharfstein, J.; Storer, A.C.; Menard, R. Mol. Biochem. Parasitol. 1992, 56, 335.
 ${ }^{3}$ Huang, L.; Brinen, L.S.; Ellman, J.A. Bioorg. Med. Chem. 2003, 11, 21.
 ${ }^{4}$ Lima, A.P.; Tessier, D.C.; Thomas, D.Y.; Scharfstein, J.; Storer, A.C.; Vernet T. Mol. Biochem. Parasitol. 1994, 67(2), 333
 ${ }^{5}$ Kamphuis, I.G.; Kalk, K.H.; Swarte, M.B.A.; Drenth, J. J. Mol. Biol. 1984 179(2), 233.
 ${ }^{6}$ Almog, O.; Gallagher, D.T.; Ladner, J.E.; Strausberg, S.; Alexander, P. Bryan, P.; Gilliland, G.L. J. Biol. Chem. 2002, 277(30), 27553.

[^234]: ${ }^{1}$ Ohlenbusch, G.; Frimmel, F.H.; Chemosphere 2001, 45, 323.

[^235]: ${ }^{\text { }}$ deMon2k, Andreas M. Köster, Patrizia Calaminici, Mark E. Casida, Roberto Flores-Moreno, Gerald Geudtner, Annick Goursot, Thomas Heine, Andrei Ipatov, Florian Janetzko, Jorge M. del Campo, Serguei Patchkovskii, J. Ulises Reveles, Dennis R. Salahub, Alberto Vela, deMon developers, 2006.
 ${ }^{2}$ Gonçalves, C. P.; Mohallem, J. R., J. Comput. Chem., USA, v. 25, n. 14, p. 1736-1739, 2004.
 ${ }^{3}$ Mohallem, J. R.; Goncalves, C. P.; Tathiana Moreira. Chem. Phys. Letters, Holanda, v. 406, p. 371-374, 2005.
 ${ }^{4}$ Assafrão D.; Mohallem J. R., J Phys B: At. Mol. Opt. Phys. 40 (2007) F85.

[^236]: http://multicore.amd.com/br-pt/AMD-Multi-Core.aspx
 visitada em 14/07/2007.
 ${ }^{2}$ http://www.gaussian.com/ visitada em 14/07/2007.
 ${ }^{3}$ http://www.emsl.pnl.gov/docs/nwchem/nwchem.html visitada em 14/07/2007.

[^237]: ${ }^{1}$ Ammal, S. C.; Yamataka, H.; Aida, M.; Dupuis, M.; Science 299, 1555 (2003).
 ${ }^{2}$ Millam, J. M.; Bakken, V.; Chen, W.; Hase, W. L.; Schlegel, B. H.; J. Chem. Phys. 111, 3800 (1999).
 ${ }^{3}$ Kraka, E.; Wu, A.; Cremer, D.; J. Phys. Chem. A 107, 9008 (2003).
 ${ }^{4}$ Horn, B. A.; Herek, J. L.; Zewail, A. H.; J. Am. Chem. Soc. 118, 8755 (1996).

[^238]: ${ }^{1}$ Erb, A., Walker, E., Flukiger, R., Phys. C., 1996, 258, 9.
 ${ }^{2}$ Heifets, E., Goddard, W. A., Phys. Rev. 2004, B 69, 035408.
 ${ }^{3}$ Stashans, A., Serrano, S., Surf. Sci. 2002, 497

[^239]: ${ }^{1}$ K. S. Pitzer, J. Chem. Phys. 8, 711 (1940).
 ${ }^{2}$ K. S. Pitzer and W.D. Gwinn, J. Chem. Phys. 10, 428 (1942).
 ${ }^{3}$ W.J. Orville-Thomas, Ed., Internal Rotation in Molecules (John Wiley \& Sons, London, 1974)

[^240]: ADrarget ing hios
 FAPESP (Fundação de Amparo à pesquisa do Estado de São Paulo)

[^241]: ${ }^{1}$ Stratospheric Ozone 1993, United Kingdom Stratospheric Ozone Review Group. Fifth report, HMSO, London (1999).
 ${ }^{2}$ M. J. Molina, F.S. Rowland Nature 1974, 249, 810.
 ${ }^{3}$ M. Yen, P. M. Johnson, M. G. White, J. Chem. Phys. 1993, 99, 126.
 ${ }^{4}$ N. Komiha, O. K. Kabbaj, M. Lhamyani-Chraibi, J. Fluorine Chem., 2001, 108, 177.

[^242]: 1. Asato, G., Berkelhammer, G. J. Med. Chem. 1972, 15, 1086. 2. Lages-Silva, E., Filardi, L.S., Brener, Z., Mem. Inst. Oswaldo Cruz 1980, 85, 401
 2. Filardi, L.S., Brener, Z. Ann. Trop. Med. Parasitol. 1982,76, 293.
 3. Urbina, J.A., Docampo, R. Trends Parasitol. 2003,19, 495.
 4. Ferreira, R.C., Ferreira, L.C.: Mutat. Res. 1986, 171, 11015.
[^243]: Coudray, C.; Favier, A. Free Rad. Biol. \& Med. 2000, 29, 1064.
 Blackburn, A.C.; Doe, W.F.; Buffinton, G.D. Free Rad. Biol. \& Med. 1998, 25 305.

[^244]: Bessems, J.G.M.; Vermeulen, N.P.E. Critical Reviews in Toxicology 2001, 31-,: 55.
 Thomas, S.H. Pharmacology \& Therapeutics. 1993, 91,120.
 Duffy, J.R.; Dearden, J.C.; Rostron, C. Pharm. \& Pharmacol., 2001, 53, 1505.

 Kulmacz, R.J., Palmer, G.; Tsai, A.L. Mol. Pharmacol. 1991, 883.

[^245]: ${ }^{1}$ Hopkins, T. A. et al., Chem. Matter. 1996, 8, 344.
 ${ }^{2}$ Humbs, W. et al., Chem. Phys. Lett. 1999, 304, 10.
 ${ }^{3}$ Hunga, L. S. and Chenb, C. H., Mater. Sci. Eng., A 2002, 39, 143.

[^246]: ' Levine, I. Quantum chemistry. 4.ed. New Jersey, Prentice Hall, 1991.
 ${ }^{2}$ Szabo, A., Ostlund, N. S. Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory, Dover Publication, 1996.
 ${ }^{3}$ HANDBOOK of chemistry and physics. Boca Raton, Florida, CRC Press, 2003-2004

[^247]: ${ }^{1}$ Ayabe, S. ; Omoto, H. ; Utaka, T. ; Kikuchi, R. ; Sasaki, K. ; Teraoka, Y. ; Eguchi, K. Appl. Catal. 241, 2003, 261.
 ${ }^{2}$ Mizuno and Nakajima T. , J. Chem. Eng. Japan 35, 2002, 485.
 ${ }^{3}$ C.W. Robert (editor-in-chief), CRC Handbook of Chemistry and Physics, CRC Press, Boca Raton, FL, 1985-1986, F174
 ${ }^{4}$ Hopstaken, M. J. P.; Niemantsverdriet, J. W. J. Chem. Phys.2000, 113, 5457
 ${ }^{5}$ Shustorovich, E. Adv.Catal. 37, 1990, 101.

[^248]: ${ }^{1}$ V. Lounnas, B. M. Pettitt and G. N. Phillips, Jr, Biophys. J., 1994, 66, 601 604
 ${ }^{2}$ Berendsen, H., D. Spoel, and R. Drunen. 1995. GROMACS 3.1.4. Comput. Phys. Commun. 91:43-56

[^249]: ${ }^{1}$ Eugene S. Kryachko e Thérèse Zeegers-Huyskens, J. Phys. Chem. A 2001, 105, 7118-7125.
 ${ }^{1}$ Pavel Hobza e Zdenejk Havlas, Chem. Rev. 2000, 100, 4253-4264

[^250]: ${ }^{1}$ Brossi, A.; Venugopalan, B.; Gerpe, L. D.; Yeh, H. J. C.; Anderson, J. L. F.; Buchs, P.; Luo, X. D.; Milhous, W. Peters, W. J. Med. Chem. 1988, 31, 645.

[^251]: ${ }^{\text {'Bhattacharjee, A. K., Eur. J. Med. Chem.. 2004, 39, 59-67 }}$
 ${ }^{2}$ Politzer, P.; Truhlar, D. G. (Eds.), In: Chemical Applications of Atomic and Molecular Eletrostatic Potentials, Plenum, New York, 1981.
 ${ }^{3}$ Fábio José B. Cardoso, Rodrigo B. da Costa, Antonio F. de Figueiredo, Jardel P. Barbosa, Ilfran Nava Jr., José C. Pinheiro, and Oscar Augusto S. Romero. Int. Elect. J. Mol. Dês., no prelo.

[^252]: ${ }^{1}$ Cances, E.; Mennucci, B. and Tomasi J., J.Chem. Phys. 1997, 107, 3032.
 ${ }_{2}$ Tomasi, J.; Mennucci, B. and Cammi, R., Chem. Rev. 2005, 105, 2999.
 ${ }^{3}$ Emsley, J; The Elements, Clarendon Press, Oxford, 1999.
 ${ }^{4}$ Langlet, J.; Claverie, P.; Caillet, J. and Pullman, A., J. Phys. Chem. 1988, 92, 1617.
 ${ }^{5}$ Pascual-Ahuir, J.L.; Silla, E.; Tomasi, J. and Bonaccorsi, R., J. Comput. Chem. 1987, 8, 778.
 ${ }^{6}$ Luque, F.J.; Curutchet, C.; Muñoz-Muriedas, J.; Bidon-Chanal, A.; Soteras, I.; Morreale, A.; Gelpí, J.L. and Orozco, M. Phys. Chem. Chem. Phys. 2003, 5,3827.

[^253]: B Venugopalan, PJ Karnik, CP Bapat, DK Chatterjee, N Iyer, D Lepcha, Eur J Med Chem (1995) 30, 697-706, Elsevier, Paris.

[^254]: ${ }_{2}^{1}$ http://srdata.nist.gov/cccbdb/exp2.asp visitado em 05/06/2007.
 2 Acheson R. M. "An Introduction to the Chemistry of Heterocyclic Compounds", $2^{\text {a }}$ ed., John Wiley \& Sons, EUA, (1967).
 ${ }^{3}$ Kollman P. A. e Allen L. C. Chem. Rev. 1972, 72, 283.

[^255]: ${ }^{1}$ Desoize, B.; Madoulet, C.; Crit. Rev. Onc. Hemat., 2002, 42, 317.
 ${ }^{2}$ Costa, L. A. S. ; Rocha, W. R.; De Almeida, W. B. ; Dos Santos, H.
 F. J. Chem. Phys. 2003, 118, 10584.

[^256]: 1.Bitterwolf, T. E, Coordination Chem Rev 206-207, 2000, 419.
 2. Noack, k., J. Organomet Chem., 7, 1967, 1518
 3. Jie Zhang, Kuo-Wei Huang, David J. Szalda, and R. Morris Bullock, Organomet. 25, 2006, 2209.

[^257]: ${ }^{1}$ Situação Epdemiologica da Malaria no Brasil. Ministério da Saúde, 2007. ${ }^{2}$ Woolfrey, J. R.; Avery, M. A.; Doweyko, A. M.. J. Computer-Aided Mol. Design. 1998, 12, 165.

[^258]: 'Gómes-Zavalia, A.; Reva, I. D.; Frija, L; Cristiano, M. L. e Fausto, R., J. Phys. Chem. A. 2005, 109, 7967.
 ${ }^{2}$ Dallos, M. e Lischka, H., Theor. Chem. Acc. 2004, 112, 16.
 ${ }^{3}$ Maier, G.; Eckwert, J.; Bothur, A; Reisenauer, H. P. e Schmitd, C., Liebigs Ann. 1996, 1041.

[^259]: ${ }^{1}$ Coutinho, K.; Canuto, S.; Zerner, M.C.; J. Chem. Phys., 2000, 112, 9874.
 ${ }^{2}$ Couto, P.C.; Cabral , B.J.C.; Canuto, S.; Chem. Phys. Lett. 2006, 429, 129.

[^260]: ${ }^{1}$ L. T. Costa and M. C. C. Ribeiro, J. Chem. Phys. 124, 184902 (2006).
 ${ }^{2}$ L. J. A. Siqueira and M. C. C. Ribeiro, J. Chem. Phys. 125, 214903 (2006).

[^261]: ${ }^{1}$ Bruce, E.D.V.; Rocha, W.R. Organometallics, 2004, 23, 5308.
 ${ }^{2}$ Galembeck, S.E.; et al. J.Mol.Struct., 1993, 282, 97.

[^262]: ${ }^{1}$ Pardo, L.; Banfelder; J. R.; Osman, R, J. Am. Chem. Soc. 1992, 114, 2382.
 ${ }^{2}$ Zhao, Y.; Lynch, B. J. Truhlar, D. G., J. Phys. Chem. A 2004, 108, 2715.
 ${ }^{3}$ Halkier, A.; Helgaker, T.; Jørgensen,; Klopper, W.; Koch. H.; Olsen, J.; Wilson, A. K., Chem. Phys. Lett. 1998, 294, 45.
 ${ }^{4}$ Pu, J; Truhlar, D. G., J. Phys. Chem. A, 2005, 109, 773.

[^263]: ${ }^{1}$ R. G. Parr e W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford University Press, Oxford, 1989). K. Capelle, Braz. J. Phys. 36, 1318 (2006).
 ${ }^{2}$ M. A. L. Marques, C. A. Ullrich, F. Nogueira, A. Rubio, K. Burke e E. K. U. Gross, Time-dependent density functional theory, (Berlin Heidelberg: Springer, 2006).
 ${ }^{3}$ W. Kohn, Rev. Mod. Phys. 71, 1253 (1999).
 ${ }^{4}$ D. L. Hill e J. A. Wheeler, Phys. Rev., 89, 1102 (1953). J. J. Griffin e J. A. Wheeler, Phys. Rev., 108, 311 (1957).
 ${ }^{5}$ K. Capelle, J. Chem. Phys., 119, 1285 (2003).
 ${ }^{6}$ E. Orestes, K. Capelle, A. B. F. da Silva e C. A. Ullrich, The generator coordinate method in time-dependent density-functional theory: memory made simple., J. Chem. Phys., (no prelo).

[^264]: ${ }^{1}$ DeMon2k, Andreas M. Köster, Patrizia Calaminici, Mark E. Casida, Roberto Flores-Moreno, Gerald Geudtner, Annick Goursot, Thomas Heine, Andrei Ipatov, Florian Janetzko, Jorge M. del Campo, Serguei Patchkovskii, J. Ulises Reveles, Dennis R. Salahub, Alberto Vela, deMon developers, 2006.
 ${ }^{2}$ Gonçalves, C. P. and Mohallem, J. R., J. Comput. Chem., 25 (2004) 1736.
 ${ }^{3}$ Assafrão D. and Mohallem J. R., J Phys B: At. Mol. Opt. Phys. 40 (2007) F85.

[^265]: L. Wang, J. Zhang, J. Mol. Struct. (THEOCHEM) 543 (2001) 167.
 A. Gross, I. Barnes, R. M. Sørensen, J. Kongsted, K. V. Mikkelsen, J. Phys. Chem. A 108 (2004) 8659.
 I. Fourré, J. Bergès, J. Phys. Chem. A 108 (2004) 898.
 F. Tureček, Collect. Czech. Chem. Commun. 65 (2000) 455.

[^266]: ${ }^{1}$ J. N. Murrell, S. Carter, S. C. Farantos, P. Huxley and A. J. C. Varandas, Molecular Potential Energy Functions, Wiley, 1984.
 ${ }^{2}$ A. Aguado and M. Paniagua, J. Chem. Phys.. 1992, 96, 1265.
 ${ }^{3}$ M. J. Frisch et. al., Gaussian 03, Revision C.02, Gaussian, Inc., 2003, Pittsburgh PA.

[^267]: ${ }^{1}$ Metzler, D.E.., Biochemistry: The Chemical Reaction of Living Cells,] York: Academic (1977).
 ${ }^{2}$ Jones, M., Biochemical Thermodynamics, Ed. Amsterdam: Elsevier, 1979
 ${ }^{3}$ Terekhova, I.V., Lapshev, P.V. and Kulikov, O.V., Russian Journal of Cc Chemistry, 2003, 29, 73.
 ${ }^{4}$ Coutinho, K. and Canuto, S. DICE: A Monte Carlo program for molec liquid simulation. USP, Brazil, V2.9, 2003.
 ${ }^{5}$ MOPAC Program Version 6 (QCEP 455).
 ${ }^{6}$ Zindo Package, Quantum Theory Project, Williamson Hall, Unive Florida 1990.

[^268]: ${ }^{1}$ Lindahl, E.; Hess, B.; van der Spoel, D. J. Mol. Mod. 2001, 7, 306
 Case, D. A.; Cheatham, T.; Darden, T.; Gohlke, H.; Luo, R.; Merz, K. M.; Onufriev, A.; Simmerling, C.; Wang, B.; Woods, R. J. Comput. Chem. 2005, 26, 1668
 Jorgensen, W. L.; Maxwell, D. S.; Tirado-Rives, J.; J. Am. Chem. Soc. 1996, 118, 11225
 Schmidt, M. W.; Balbridge, K. K.; Boatz, J. A.; Elbert, S. T.; Gordon, M.S.; Jensen, J. H.; Koseki, S.; Matsunaga, N.; Nguyen, K. A.; Su, S. J.; Windus, T. L.; Dupuis, M.; Montgomery, J. A. J. Comput. Chem. 1993, 14, ${ }_{5}^{1347}$
 Baily, C. I.; Cieplak, P.; Cornell, W.; Kollman, P. A. J. Phys. Chem. 1993, 97, 10269

[^269]: ' Antoniotti, S.; Antonczak, S.; Golebiowski, J. Theoretical Chemistry Accounts, 2004, 112, 290.
 ${ }^{2}$ Solomons, T. W. G.; Fryhle, C. B.; Química Orgânica, $7^{\text {a. }}$ ed., LTC Livros Técnicos e Científicos Editora S.A: Rio de Janeiro, 2001

[^270]: ${ }^{1}$ Humbel, S.; Sieber, S.; Morokuma, K., J. Chem. Phys., 1996, 60, 1101.
 ${ }^{2}$ Lin, H.; Truhlar, D. G., Theor. Chem. Acc. 2007, 117, 185.
 ${ }^{3}$ Price-Berners, S. J.; Sadler P. J.; Ronconi, L., Prog. Nuc. Mag.Res. Spectr., 2006, 49, 65.

[^271]: ${ }^{1}$ M. J. Molina, F. S. Rowland, Nature 1974, 249, 810.
 ${ }^{2}$ S. Roszak, et al, J. Chem. Phys. 1997, 106, 7709.
 ${ }^{3}$ J. F. King, et al, Chem. Phys. Lett. 1993, 212, 289.
 ${ }^{4} \mathrm{H}$. Okabe, Photochemistry of Small Molecules (Wiley, New York, 1978), p. 375-380.

[^272]: ${ }^{1}$ Molina, M.J.,Rowland, F.S., Nature, 1974, 249, 810
 ${ }^{2}$ Martín, I.; Mayor, E., Velasco, A.M., Theor Chem Acc, 2006,116, 614.
 ${ }^{3}$ Prochaska,F.T.,Andrews,L., J.Chem.Phys., 1978, 68(12), 5577.
 ${ }^{4}$ Charmet,P.A.,Stopa,P.,Toninello,P.,Giorgianni,S.,Ghersetti,S.,Phys. Phys.Chem.Chem.,2002, 5, 3595.
 ${ }^{5}$ Stoppa,P.,Gambi, A.,J. Mol. Struct.,2000, 517-518, 209-216.
 ${ }^{6}$ Bartell,L.S.,Vance,W.N.,Goates,S.R.,J.Chem.Phys.,1984,80(9), 3923.
 ${ }^{7}$ Hoskins, L.C., Lee, C.J.,J.Chem.Phys.,1973, 59(9), 4932.
 ${ }^{8}$ Bartell, L.S., Brockway, L.O.,J.Chem.Phys.,1955, 23(10), 1860.

[^273]: Bedard, L. L.; Massey, T. E. Cancer Letters. 2006, 241, 174-183.
 ${ }^{2}$ McLean, M.; Dutton, M. F. Pharmac. Ther. 1995, 65, 163-192.
 ${ }^{3}$ Guengerich, F. P..; Kyle, O. A.; Williams, K. M.; Deng, Z.; Harris,
 T. M. Chem. Res. Toxicol. 2002, 75, 780-792.
 ${ }^{4}$ Sabbioni, G.; Wild, C. Carcinogenesis. 1991, 12, 1, 97-103.

[^274]: ${ }^{\text {TK.S. Wong, S.G. Han, Z.V. Vardeny, J. Shinar, Y. Pang, S. ljadi- }}$ Mghsoodi, T. Barton, S. Grigoras, B. Parbhoo, Appl.Phys. Lett. 58, (1991) 1695.
 ${ }^{2}$ M.J.S. Dewar, E.G. Zoebisch, E.F. Healy, J.J.P. Stewart, J. Am. Chem. Soc. 107 (1985) 3902.
 ${ }^{3}$ S.P. Karna, M. Dupuis, J. Comp. Chem. 12 (1991) 487.

[^275]: 'Ribas, V.W.; Ueno, L.T.; Roberto-Neto,O.; Machado, F.B.C.; Chem. Phys., 2006, 330, 295.
 ${ }^{2}$ Ribas, V.W.; Ueno, L.T.; Roberto-Neto,O.; Machado, F.B.C., Chem. Phys., 2006, 321, 55.
 ${ }^{3}$ Huber, K.P.; Herzberg, G.; Molecular Spectra and Molecular Structure. Constants of Diatomic Molecules, Van Nostrand, New York, 1979.
 ${ }^{4}$ Partridge, H.; Langhoff, S.R.; Bauschlicher, Jr.; J. Chem. Phys., 1988, 88, 6431.

[^276]: ${ }^{1}$ Behm, J.M.; Morse, M.D.; Boldyrev, A.I.;Simons, J.; J. Chem. Phys., 1994, 101, 5441.
 2Fabbi, J.C.; Langenberg, J.D.; Morse, M.D.; Chem. Phys. Let., 2000, 320, 303.
 ${ }^{3}$ Ribas, V.W.; Ueno, L.T.; Roberto-Neto,O.; Machado, F.B.C., Chem. Phys., 2006, 321, 55.
 ${ }^{4}$ Ribas, V.W.; Ueno, L.T.; Roberto-Neto,O.; Machado, F.B.C.; Chem. Phys., 2006, 330, 295.

[^277]: ${ }^{1}$ Kanis, D. R.; Ratner, M. A.; and Marks, T. J. Chem. Rev., 1994, 94, 195.
 ${ }^{2}$ Williams, D. J. Thin Solid Films, 1992, 216, 117.
 ${ }^{3}$ Prasad P. R. and Williams, D. J. Introduction to nonlinear optical effects in molecules and polymers; Wiley-Interscience, New York, 1991.
 ${ }^{4}$ Silva, A.M.S.; da Rocha, G.B.; Menezes, P.H.; Miller J. and Simas, A.M. J. Braz. Chem. Soc., 2005, 16, 583.
 ${ }^{5}$ Clays, K., Persoons, A. Review of Scientific Instruments 1992, 63.6, 3285.
 ${ }^{6}$ Bonifassi, P.; Ray P. C. and Leszczynski, J. Chem. Phys. Lett., 2006, 431, 321.

[^278]: PR Mong LEDes
 We have studied systematically the electronic, structural and total energy differences of the hybrid $\mathrm{A}_{\| l} \mathrm{~B}_{\mathrm{VI}}(\mathrm{en})_{0.5}$ system using a first-principles approach. We show that the alpha(I) phase is the most stable phase for all the hybrids considered, while the relative stability of the alpha(II) and beta phases increases as the lattice constant of hte hybrid increases.

[^279]: Moon, C.-Y.; Dalpian, G. M.; Zhang, Y.; Wei, S.-H.; Huang, X.Y.; Li,J. Chemistry of Materials 2006, 18, 2805.

[^280]: ${ }^{\text {Li}}$ Liu, Y., Wong, Ko, C.-B., Wong, M.-K., Che, C.--D., J. Org. Letters. 2005, 7, 1561.

[^281]: ${ }^{1}$ A. Filippetti, N. Spaldin, Phys. Rev B. 2003, 67, 125109.
 ${ }^{2}$ Park et al. .Nature. 2002, 417, 722.
 ${ }^{3}$ J. P. Perdew, Alex Zunger. Phys. Rev. B. 1981, 23, 5048.

[^282]: da Silva, J.B.P.; et al. Q. Nova, aceito para publicação, 2007.

[^283]: - Souza R. K.et al.Catalisadores de Cu/ZnO/Ga2O3 para sintese de metanol.Partel-preparo e caracterização.SBCat. Anais do $13{ }^{\circ} \mathrm{C} . \mathrm{B}$. Catálise $/ 3^{\circ}$ MercoCat.
 - Vaccari A. Preparation and catalytic properties of cationic and anionic clays. Catal. Today. 41 (1998) 53.

[^284]: 1. Batigalhia, F.; Zaldine-Hernandes, M.; Ferreira, A.G.; Malvestiti, I.; Cass. B. Q. Tetrahedron 2001, 57, 9669
 2. Sensato, F. R., Custódio, R., Longo, E., Safont, V.S., Andrés, J. J. Org. Chem. 2003, 68, 5870
 3. Sensato, F. R., Custódio, R., Longo, E., Safont, V.S., Andrés, J. Eur. J. Org. Chem. 2005, 2406
[^285]: ${ }^{1}$ Sibata, C. H.; Colussi, V. C.; Oleinick, N. L. and col. Braz. J. Med. Res. 2000, 33(8), 869.
 ${ }^{2}$ Allison, R. R.; Downie G. H.; Cuenca R. and col. Photodiagnosis and Photodynamic Therapy 2004, 1, 27
 ${ }^{3}$ Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F. J. Am. Chem. Soc. 1985, 107 (13), 3902-3909.
 ${ }^{4}$ Becke, A. D. J. Chem. Phys. 1993, 98, 5648
 ${ }^{5}$ Rassolov, V.A.; Pople, J. A.; Ratner; M. A. and col. J. Chem. Phys. 1998, 109 (4) 1223
 ${ }^{6}$ Bacon, A. D. and Zerner, M. C. Theoret. Chim. Acta (Berlin) 1979, 53 (1) 21
 ${ }^{7}$ Ridley, J. E. and Zerner, M. C. Theoret. Chim. Acta (Berlin) 1973, 32 (2) 111.

[^286]: ${ }^{1}$ Rout, C. S., Krislma, S. H., Vivekchand S.R.C., Govindaraj, A., Raio, C.N.R., Chem. Phys. Lett. 2005, 418, 586.
 ${ }^{2}$ Erkoç, S., Kokten, H., Physica E., 2005, 28, 162
 ${ }^{3}$ Chen, S.J., Liu, Y.C., Lu, Y.M., Zhang, J.Y., Shen, D.Z., Fan,X.W.JJournal of Crystal Growth, 2006, 289, 55
 ${ }^{4}$ Zhan J. H., Bando Y., Hu, J. Q., Golberg, D., Appl. Phys. Lett., 2006, 89, 243111

[^287]: ${ }^{1}$ Pavão,A.C., Craw,J.S., Chaer, M.A.C.; Int. J. Quantum Chem.,48, 219 (1993).
 ${ }^{2}$ Perl,M.L., Loomba,D.; Mod. Phys. Let.,35,2595(2004).
 ${ }^{3}$ Barbosa, A. G. H.; Nascimento, M. A. C.,Mol. Phys.100,1677 (2002).
 ${ }^{4}$ De Rújula,A., Giles,R.C., Jaffe,R.L.; Phys. Rev. D, 17, 285 (1978).

[^288]: ARAÚJO, E. S. Cinética de Deslignificação Organossolve. Dissertação de Mestrado. Instituto de Química de São Carlos - USP (1995).
 ${ }^{2}$ ARAÚJO, E. S. Estudos Cinéticos da Deslignificação Organossolve em Sistemas Tamponados. Tese de Doutoramento. Instituto de Química de São Carlos - USP (2000).
 ${ }^{3}$ SARKANEN,K. V. \& LUDWIG, G. H. (ed). Lignins: occurrence, formation, structure and reactions. New York: Wiley-Interscience, 1971.

[^289]: [1] Hyoun Woo Kim, Seung Hyun Shim. J. Alloys Comp. 426 (2006) 286.
 [2]Young Zhang et al. Appl. Surf. Sci. 253 (2006) 792.

[^290]: $\overline{\text { Queiroz, J. F.; Carneiro, J. W. M.; Sabino A. A.; Sparapan, R.; }}$ Eberlin, M. N.; Esteves, P. M. J. Org .Chem 2006, 71, 6192-6203
 ${ }^{2}$ Rodrigues, P. F. 2006, Tese de mestrado, Instituto de Química, Universidade Federal do Rio de Janeiro

[^291]: Jurecka, P; Sponer, J; Cerny, J; Hobza, P, Phys. Chem. Chem. Phys., 2006, 8, 1985.
 ${ }^{2}$ Goedecker S,; Teter M; Hutter J, Phys Rev. B., 1996, 54, 1703.

[^292]: ${ }^{1}$ Helgaker, T.; Jaszunsku, M.; Ruud, K. Chemical Reviews. 1999, 99, 293.
 ${ }^{2}$ Tomasi, J.; Menucci, B.; Cammi, R.; J. Chemical Reviews 2005, 105, 2999.

[^293]: ${ }^{1}$ Agrawal, V. K.; Srivastava, R. Khadikar, P. V. Bio. Med. Chem. 2001, 9, 3287.
 ${ }^{2}$ Elslager, E. F.; Colbry, N. L.; Davoll, J.; Hutt, M. P.; Johnson, J. L. e Werbel, L. M. J. Med. Chem. 1984, 27, 1740.

[^294]: ${ }^{1}$ Delarue, S.; Girault, S.; Maes, L.; Debreu-Fontaine, M. A.; Labaeïd, M.; Sergheraert, P. C. J. Med. Chem. 2001, 44, 2827.

[^295]: 'de Moura, A.F.; Freitas, L.C.G. Chem. Phys. Lett., 2005, $411,474$.
 ${ }^{2}$ de Moura, A. F. ; Trsic, M. J. Phys. Chem. B 2005, 109, 2005.

[^296]: ${ }^{\top}$ De Oliveira, D. B.; Gaudio, A. C. Quant. Struct.-Act. Relat. 2000, 19, 599-601.
 ${ }_{2}^{2}$ Visual Studio, Professional edition, Version 8.0, Microsoft Co, 2005.

[^297]: ${ }^{1}$ (a) Geman, S; Geman, D. IEEE Trans. Pattern Anal. Machine Intell. PAMI-6. 1984, 6, 721; (b) Kirkpatrick, S. J. Stat. Phys. 1984, 34 (5-6), 975; (c) Moret, M. A.; Pascutti, P. G.; Bisch, P. M.; Mundim, K. C. J. Comp. Chem. 1998, 19 (6), 647; (d) Moret, M. A.; Bisch, P. M.; Mundim, K. C.; Pascutti, P. G. Biophys. Journal. 2002, 82 (3), 1123.
 ${ }^{2}$ Metropolis, N.; Ulam, S. J. American Stat. Association. 1949, 44 (247), 335.
 ${ }^{3}$ Metropolis, N.; Rosenbluth, A. W.; Rosenbluth, M. N.; Teller, A. H.; Teller, E. J. Chem.Phys. 1953, 21 (6), 1087.
 ${ }^{4}$ Kirkpatrick, S.; Gelatt Jr., C. D.; Vecchi, M. P. Science. 1983, 220 (8), 671.
 ${ }^{5}$ Szu, H.; Hartley, R. Physics Letters A. 1987, 122 (3-4), 157.
 ${ }^{6}$ Tsallis, C.; Stariolo, D. A. Physica A. 1996, 233, 395.

[^298]: ${ }^{\text {' Conforme citação de Metropolis e colaboradores na referência [14]. }}$

[^299]: ${ }^{\text {' }}$ Vighi, M..; Gramatica, P.; Consolaro, F. e Todeschini, R.. Toxicol. \& Environm, Safety 2001, 49, 206.

[^300]: ${ }^{1}$ Vighi, M..; Gramatica, P.; Consolaro, F. e Todeschini, R.. Toxicol. \& Environm, Safety 2001, 49, 206.

[^301]: ${ }^{1}$ F. F. Guimarães, F. Gel'mukhanov, A. Cesar e H. Ågren, Chem. Phys. Let 2005, 405, 398.
 ${ }^{2}$ C. Daniel, J. Full, L. Gonzalez, C. Lupulescu, J. Manz, A. Merli, S. Vajda e I Woste, Science 2003, 299, 536; H. Rabitz, Science 2003, 299, 525.
 ${ }^{3}$ F.F. Guimara~es, V.C. Felicı 'ssimo, V. Kimberg, A. Cesar, F. Gel_mukhanov eSPec wave packet propagation program, Universidade Federal de Mina Gerais -- Brazil and Royal Institute of Technology - Sweden, 2004.
 ${ }^{4}$ W. A. Chupka, J. Berkowitz e M. E. Russell Sixth International Conferenc. on the Physics of Electronic \& Atomic Collisions, Cambridge, MA, 1969.
 ${ }^{5}$ J. G. Pruett, F. R. Grabiner e P. R. Brooks, J. Chem. Phys. 1975 ,63, 1173.

[^302]: ${ }^{1}$ Bernardi, R. C.; Gomes, D. E. B.; Pascutti, P. G.; Ito A. S.; Ota, A. T.. Int. J. Quan Chem. 2006, 106, 1277.
 ${ }^{2}$ Bernardi, R. C.; Gomes, D. E. B.; Pascutti, P. G.; Ito A. S.; Taft, C. A.; Ota, A. T.; Int. J. Quan Chem. 2007, 107, 1672.
 ${ }^{3}$ Bernardi, R. C.; Gomes, D. E. B.; Pascutti, P. G.; Ito A. S.; Ota, A. T.; Mol. Sim [in press]
 ${ }^{4}$ Tielenan, D. P.; Berendesen, H. J. C.; J. Chem. Phys. 1996, 105, 4871.
 ${ }^{5}$ Fraceto, L. F.; Spisni, A.; Schreier; de Paula, E.; Bioph. Chem. 2005, 115, 11.

[^303]: 1 Morell. Christopha: Gruad, Andre and Toro-Labbe; Alejandro, Chewn. Phys. Lett. 2006, 425, 342.
 2 Morell, Christophe: Grand, Andrča and Tero-Labbe; Acjandro. J. Plyss. Chem. 2005, 109, 205.
 ${ }^{3}$ Bryliakov, Konstantin. P.; Semikolenova, Nina V.; Zudin, Vladimir N.; Zakharov, Vladimir A. and Talsi, Evgenii P., Catal. Commun. 2004, 5, 45.
 ${ }^{4}$ Britovsek, J. P. George; Clentsmith, Guy K. B.; Gibson, Cernon C.; Goodgame, David M. L.; McTavish, Stuart J. and Pankhurst, Quentin A. Catal. Commun. 2002, 3, 207.

[^304]: [1] ${ }^{1}$ E.A. Bender, Mathematics Methods of Artificial Intelligence; E. E. Comp. So. Press.:Washington, 2000.
 [2] ${ }^{2}$ G. P. Voga; J. C. Belchior; Thermochim. Acta; 452: 140148; 2007.

[^305]: Malbouisson, L .A. C.; Martins, M. G. R.; Makiuchi, N. Int. Journal of Quntum Chemitry. 2006, 106, 2772.

[^306]: ${ }^{\text {'F Ferrão, L. F. A.; Ueno, L.T.; Roberto-Neto, O. e Machado, F. B. C }}$ Livros de Resumos do XIII SBQT, 2005.
 ${ }^{2}$ Wu Z. J. Mol. Struct. (Theochem) 2005, 728, 167.
 ${ }^{3}$ Gutsev G. L.; Andrews, L. e Bauschlicher Jr. Theor. Chem. Acc. 2003, 109, 298.
 ${ }^{4}$ Wu Z. J. Comp. Chem. 2005, $27,267$.
 ${ }^{5}$ Polak M.L.; Gilles M. K.; Ho J. e Lineberger W. C. J. Phys. Chem. 1991, 95, 3460.

