Theoretical Study on Electron Collisions with Methylamine

Victor A. S. da Mata1, Leonardo M. F. de Oliveira2, Manoel G. P. Homem1, and Gabriel. L. C. de Souza2

1Departamento de Química, Universidade Federal de São Carlos, 13565-905, São Carlos, Brazil
2Departamento de Química, Universidade Federal de Mato Grosso, 78060-900, Cuiabá, Brazil

Abstract: In this work, we present a theoretical study on electron collisions with methylamine (CH$_3$NH$_2$). Elastic differential, integral, and momentum-transfer cross sections, as well as the grand-total and total absorption cross sections were calculated in the 1-500 eV energy range. A complex optical potential derived from a Hartree-Fock molecular wave function was used to represent the collision dynamics and a single-center expansion method combined with the Padé approximant technique was used to solve the scattering equations. For that, the EPolyScat-D package, originally developed by Gianturco et al. \cite{1} and further modified by Souza et al. \cite{2} to include the absorption potential, was used to perform the calculations. In this framework, the complex optical potential is given by:

\begin{equation}
V_{\text{opt}} = V_{\text{st}} + V_{\text{ex}} + V_{\text{cp}} + iV_{\text{abs}},
\end{equation}

where V_{st} and V_{ex} are the static and exchange components, respectively, derived exactly from the target wave function, V_{cp} is the correlation-polarization contribution obtained within the framework of free-electron-gas model \cite{3}, and V_{abs} is the improved model absorption potential developed by our group \cite{4}.

In Fig. 1, we present our calculated results for the in Differential Cross Sections (DCS) for the elastic e^{-}-CH$_3$NH$_2$ scattering at 500 eV. Unfortunately, there is no experimental data available in the literature for this molecule. Thus, experimental results for the isoelectronic molecule methanol (CH$_3$OH) taken from Sugohara et al. \cite{5}
are presented for comparison purposes. The computed results of the elastic e^--CH$_3$NH$_2$ scattering present similar trend to that observed for the measured e^--CH$_3$OH DCS. In addition, the DCS magnitudes are practically the same for all the angular region covered by the measurements. The complete results obtained in the 1-500 eV energy range will be presented at the Conference.

Figure 1: Differential cross sections for elastic scattering at 500 eV. Solid line: present results for e^--CH$_3$NH$_2$; Circles: experimental data from Sugohara et al. [5] for e^--CH$_3$OH.

Key-words: Electron scattering, methylamine, cross sections.

Support: This work has been supported by FAPESP and CNPq. M. G. P. H. acknowledges FAPESP for the financial support under the grant 2015/08258-2.

References: